• Aucun résultat trouvé

Reply : A universal classification of eukaryotic transposable elements implemented in Repbase

N/A
N/A
Protected

Academic year: 2021

Partager "Reply : A universal classification of eukaryotic transposable elements implemented in Repbase"

Copied!
1
0
0

Texte intégral

(1)

L i n k to o r i g i n a L a rt i c L e L i n k to i n i t i a L c o r r e s p o n d e n c e

Reply: A universal classification of

eukaryotic transposable elements

implemented in Repbase

Thomas Wicker, François Sabot, Aurélie Hua-Van, Jeffrey L. Bennetzen, Pierre Capy, Boulos Chalhoub, Andrew Flavell, Philippe Leroy,

Michele Morgante, Olivier Panaud, Etienne Paux, Phillip SanMiguel and Alan H. Schulman

In response to the correspondence by Vladimir V. Kapitonov and Jerzy Jurka (A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Rev. Genet. 9 (2008), doi:10.1038/nrg2165-c1)1 on our Review (A

unified classification system for eukaryotic transposable elements. Nature Rev. Genet. 8, 973–982 (2007))2, Repbase is a useful tool,

alongside RetrOryza, the Triticeae repeat database (TREP), The Institute for Genomic Research (TIGR) repeat databases and other such resources, for organizing and accessing the complexity and commonalities of the transposable elements. Any apparent under-exposure of Repbase or other tools in our paper was unintentional. The hierarchical classification system of Repbase is consistent

with that of Finnegan3 from 1989 as well

those of others4,5. We have endeavored to

conserve the areas of agreement within the transposable element community on transposable element taxonomy, while add-ing features (includadd-ing a full hierarchical nomenclature) and application rules that will benefit annotators and non-experts.

1. A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Rev. Genet.

9 (2008), doi:10.1038/nrg2165-c1.

2. A unified classification system for eukaryotic transposable elements. Nature Rev. Genet. 8, 973–982 (2007).

3. Finnegan, D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 5, 103–107 (1989). 4. Kumar, A. & Bennetzen, J. Plant retrotransposons.

Ann. Rev. Genet. 33, 479–532 (1999). 5. Capy, P., Bazin, C., Higuet, D. & Langin, T. (eds)

Dynamics and evolution of transposable elements (Library of Congress, Austin, Texas, 1998).

nATuRE REVIEWs |genetics www.nature.com/reviews/genetics

CorrespondenCe

Références

Documents relatifs

Arrive ensuite la troisième partie intitulée « Winnie the witch 4 » puisque c’est en fait la quatrième vidéo, mais il s’agit bien de la troisième présentation de

Si l'on envisage la communauté à Mercierclla comme une en- tité biotique, il est nécessaire de considérer la microflore asso- ciée aux colonies que constituent ces

Myocd acts as a bifunctional switch for smooth vs skeletal muscle differentiation: skeletal myoblasts overexpressing Myocd are incapable to differentiate and acquire a

In this work, we consider the NP-hard problem of scheduling malleable jobs to minimize the total weighted completion time or mean weighted flow time.. For this problem, we introduce

The main results obtained were the following: 1) Unilateral hip and knee displacements were followed by a similarly organised pattern of leg muscle activation; 2) During mid-swing

Dennoch kommt Terstege zur gleichen Aussage, dass nicht der volle schaden der geschädigten Massstab für das Design von haftungsregeln für Wirtschaftsprüfer sein sollte.

Abbreviations: BAC, bacterial artificial chromosome; CSS, chromosome survey sequence; EBI, European Bioinformatics Institute; EST, expressed sequence tag; GO, gene ontology;

Local minima were obtained by performing a zero-temperature Monte-Carlo simulation with the energy function in Eq (2), starting from initial conditions corresponding to