• Aucun résultat trouvé

THE INTERNAL FRICTION SPECTRUM OF PREMARTENSITIC TRANSFORMATIONS

N/A
N/A
Protected

Academic year: 2021

Partager "THE INTERNAL FRICTION SPECTRUM OF PREMARTENSITIC TRANSFORMATIONS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00221034

https://hal.archives-ouvertes.fr/jpa-00221034

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

THE INTERNAL FRICTION SPECTRUM OF

PREMARTENSITIC TRANSFORMATIONS

O. Mercier, B. Tirbonod, E. Török

To cite this version:

(2)

JOURNAL DE PHYSIQUE

CoZZoque C5, suppZ6ment au nO1O, Tome 42, octobre 2982 page C5- 1037

THE INTERNAL FRICTION SPECTRUM O F PREMARTENSITIC TRANSFORMATIONS

*

*

0 . Mercier, B. ~irbonod*and E. T6r6k

Brown Boveri Research Centre, 5400 Baden, SwPtzerZand

*fluclear Engineering Laboratory, Swiss Federal I n s t i t u t e of Technology,

1007 Lausanne, Switzerland

*

*

I n s t i t u t Strawnann, 4437 WaMenburg, Switzerland

A b s t r a c t .

-

I n equiatomic N i T i , two i n t e r n a l f r i c t i o n peaks can appear d u r i n g t h e t r a n s f o r m a t i o n t o t h e m a r t e n s i t i c phase. One o f t h e two peaks, which i s associated w i t h a sharp minimum o f t h e Youngs's modulus, i s e x p l a i n e d as r e s u l t i n g from a p r e m a r t e n s i t i c phase t r a n s i t i o n , which occurs i n two stages: a second order phase t r a n s i t i o n , associated w i t h a softening o f t h e (110) transverse phonon node, f o l l o w e d by t h e " l o c k i n " o f t h i s incommensurate phase. The o t h e r peak i s associated w i t h t h e m a r t e n s i t i c transformation i t s e l f . Experiments have been done f o r several N i T i base a l l o y s and have shown t h a t t h e second o r d e r phase t r a n s i t i o n occurs i n a l l a l l o y s , i n which N i i s s u b t i t u - t e d by Cu o r Fe, whereas t h e " l o c k i n " phase t r a n s i t i o n i s o n l y observed f o r a l l o y s having a d d i t i o n s o f Fe. I t i s a l s o shown t h a t t h e CuZnAl and t h e CuAlNi a l l o y s do n o t show a s i m i l a r behaviour.

1. I n t r o d u c t i o n .

-

The near equiatomic N i T i a l l o y ( a l l o y 1 o f t a b l e I ) undergoes a m a r t e n s i t i c t r a n s f o r m a t i o n around o0C. I n a d d i t i o n , above t h e temperature o f t h e m a r t e n s i t e t r a n s f o r m a t i o n [Is, anomalies have been observed i n X-rays and e l e c t r o n d i f f r a c t i o n

[I)

.

r e s i s t i v i t y measurements (2)

,

i n t e r n a l f r i c t i o n measurements (3)

,

e l a s t i c constants measurements (4) and i n e l a s t i c neutron s c a t t e r i n g (5). These e f f e c t s

-

s o - c a l l e d p r e m a r t e n s i t i c e f f e c t s

-

a r e now t e n t a t i v e l y explained i n t h e f o l l o w i n g way (5) :

-

Above R ( p a r t I o f Fig. I ) , a second o r d e r phase t r a n s i t i o n occurs by the F .

s o f t e n i n g o f t h e t r a n s v e r s e a c o u s t i c a l (TA) phonon branch along (110) ,, t r a n s f o r m i n g t h e h i g h temperature CsCl phase i n t o a s t i l l unknown s t r u c t u r e , c a l l e d R-phase. This new phase appears p r o g r e s s i v e l y w i t h decreasing temperature from Rs (about 100°C above RF) and i s associated w i t h a r e s i s t i v i t y p l a t e a u and a decrease o f t h e Young's modulus.

-

Between RF and :$Is ( p a r t I 1 o f F i g . 1 ) . another phase t r a n s i t i o n occurs, which i s associated w i t h an increase o f r e s i s t i v i t y and a peak o f i n t e r n a l f r i c t i o n . Salanon e t a1 (6) suggested t h a t a s i m i l a r e f f e c t observed on an a l l o y comparable t o t h e a l l o y 2 was due t o a " l o c k i n " t r a n s i t i o n , f o l l o w i n g t h e incommensurate phase t r a n s i t i o n o f p a r t I.

-

Between MS and :IF. t h e m a r t e n s i t i c t r a n s f o r m a t i o n occurs, associated w i t h a decrease o f r e s i s t i v i t y and another i n t e r n a l f r i c t i o n pebk ( p a r t 111).

(3)

JOURNAL DE PHYSIQUE

-

Below LIF, t h e a l l o y i s f u l l y m a r t e n s i t i c ( p a r t I V ) .

The above succession o f phase t r a n s f o r m a t i o n s i s n o t always observed, f o r instance d u r i n g t h e h e a t i n g o f N i T i o r i f t h e l4iTi a l l o y i s m o d i f i e d i n s u b s t i t u i n g Ni by Cu. The r e s u l t s of f u r t h e r i n v e s t i g a t i o n s on t h i s s u b j e c t , done mainly by a n e l a s t i c measurements, a r e presented i n t h i s paper.

2. Experimental.

-

The N i T i base a l l o y s were prepared u s i n g standard technique (7).

The composition and t h e t r a n s f o r m a t i o n temperature Hs o f t h e d i f f e r e n t a l l o y s are given i n Table 1. The t r a n s f o r m a t i o n temperatures were determined by an AC e l e c t r i - c a l r e s i s t i v i t y technique (Fig. 2). The a n e l a s t i c measurements were done d u r i n g thermal c y c l i n g between 100 K and 400 K on p l a t e of 50 mm x 5 mm x 1 mm i n dimen- sions i n u s i n g a resonant b a r apparatus

f 8 ) ,

working i n t h e ItHz range.

3. Results and discussion.- NiTiFe a l l o y s . R e s i s t i v i t y ( F i g . 2) and i n t e r n a l f r i c t i o n ( F i g . 3 and 4) measurements were made on two a l l o y s o f s l i g h t l y d i f f e r e n t nominal compositions ( w i t h r e s p e c t i v e l y 1.5 wt.% and 3.4 wt.% Fe). The r e a l com- p o s i t i o n o f these a l l o y s was n o t v e r i f i e d . One observes a decrease i n E f o r the 2 a l l o y s , t o g e t h e r w i t h an increase i n Q-l, a p l a t e a u and a s l i g h t increase i n R. f o l l o w e d a t lower temperatures by an I.F. peak, l o c a t e d a t 225 K f o r t h e a l l o y 2 and a t 100 K f o r t h e a l l o y 3. For b o t h a l l o y s rls i s lower than 100 K. By comparison w i t h t h e curves, measured on N i T i , i t i s assumed c h a t RF i s a t t h e minimum o f E

and t h a t t h e a n e l a s t i c peak i s due t o t h e same phase t r a n s f o r m a t i o n t h a t t h e one defined i n p a r t I 1 of F i g . 1. T h i s phase t r a n s f o r m a t i o n i s f i n i s h e d a t a tempera- t u r e , c a l l e d here R;, l o c a t e d w e l l above Ms f o r a l l o y 2. This above assumption i s t h e most l o g i c a l one, though o n l y X-rays measurements o r neutron measurements c o u l d proof i t . Our a n e l a s t i c measurements show c l e a r l y t h a t t h e minimum o f E i s a t h i g h e r temperature than t h e I.F. peak and t h a t t h e I.F. increases a l r e a d y more than 150°C b e f o r e t h e peak ( F i s . 4 ) . They show a l s o t h a t a h i g h damping e x i s t s between R i and l f S (Fig. 3 ) . i . e . above t h e m a r t e n s i t i c transformation.

NiTiCu a l l o y s . I n s u b s t i t u i n g Ni by Cu, t h e peak associated w i t h t h e phase t r a n s i t i o n o f p a r t I 1 disappears, as was r e p o r t e d i n (9) f o r a l l o y s having up t o 20 wt.% Cu and how i t i s shown here i n Fig. 5 f o r t h e a l l o y 4, which has 26 wt.% Cu. The m a r t e n s i t i c t r a n s f o r m a t i o n ( i l s ) begins d i r e c t l y a f t e r t h e minimum o f E,

(4)

100 80 100

3

80 60 100 200 300 400 TEMPERATURE ( K ) TEMPERATURE ( K )

:

Schematic representation

:

Electrical resistance

behaviour of the resistance

in arbitrary units) of alloys

R (in arbitrary units), of the

2

-

5

of Table I as a function

Young's modulus E

and

of the inter- of temperature.

nal friction Q-I for the alloy

1

of

Table I as a function of tempera-

ture. Parts I to IV are explained

in text.

TEMPERATURE ( K 1 TEMPERATURE ( K )

Fig.

;

:

Young's mpdulus

6

and in-

:

Young's mpdulus E and in-

terns

friction Q- measured dur-

=

friction Q- measured on

ing cooling on alloy

2

of Table I

alloy

3

of Table I during a heat-

(measurement frequency: 1.46

KHz).

ing, followed by cooling (measure-

(5)

JOURNAL DE PHYSIQUE

what proves t h e absence o f t h e

l o c k i n g

o f t:he R-phase f o r t h i s a l l o y 4.

Ni TiCuFe a l l o y . I n s u b s t i t u i n g N i by b o t h Cu and Fe, i t i s p o s s i b l e t o o b t a i n an a l l o y ( a l l o y 5 ) , which has a l l t r a n s f o r m a t i o n s w e l l separated, b u t s t i l l above 100 K. The succession o f t h e 3 phase t r a n s f o r m a t i o n s (second o r d e r R. l o c k - i n o f R and m a r t e n s i t i c ) can be f o l l o w e d by t h e r e s i s t i v i t y measurement (Fig. 2 ) and on t h e a n e l a s t i c measurements ( F i g . 6) d u r i n g c o o l i n g and heating. These r e s u l t s show, f i r s t l y , t h a t t h e e f f e c t i n s u b s t i t u i n g N i by Cu o r Fe i s a d d i t i v e and, secondly, t h a t i t i s p o s s i b l e t o have the succession o f t h e phases d u r i n g h e a t i n g too. Thus t h e case o f N i T i , which shows t h e l o c k i n o f t h e R phase o n l y d u r i n g c o o l i n g i s j u s t a s p e c i a l one.

CuZnAl and CuAlNi a l l o y s . For comparison purposes, s i m i l a r measurements have been done on m a r t e n s i t i c CuZnAl (71.1 wt.% Cu, 24.2 wt.% Zn and 4.7 wt.% A l ) and CuAlNi (82 wt.% Cu, 1 4 wt.% A1 and 4 wt.% N i ) (Fig. 7 and 8). F o r b o t h a l l o y s , t h e

I.F. peak i s l o c a t e d between t h e s t a r t and t h e f i n i s h of t h e m a r t e n s i t i c phase t r a n s f o r m a t i o n . Before t h e peak, no sharp minimum o f E i s observed; however, f o r CuZnAl, a sharp minimum o f E i s present d u r i n g t h e phase t r a n s f o r m a t i o n and t h e I.F. peak i s much more pronounced than t h e one o f CuAlNi.

Clamping o f p a r t I. On a l l t h e N i T i base a l l o y s , an i n c r e a s e o f damping and a decrease o f t h e Young's modulus a r e observed between RS and RF. I n r e p o r t i n g t h e I.F. on a l o g a r i t h m i c scale, t h i s increase appears much more c l e a r l y and i n a s i m i l a r f a s h i c n f o r a l l t h e a l l o y s ( F i g . 9 ) . A c o n s i s t a n t increase o f a f a c t o r o f 50 was noted f o r b o t h t h e measurement made w i t h t h e pendulum ( a l l o y 1) and f o r t h e o t h e r measurements made i n t h e kHz range ( a l l o y s 3

-

5 ) . For N i T i , t h e second o r d e r phase t r a n s i t i o n R appears d u r i n g t h i s temperature i n t e r v a l . From a n e l a s t i c t h e o r i e s o f second order phase t r a n s i t i o n ( r e l a x a t i o n near a Lambda t r a n s i t i o n (10)

jO.

such a t r a n s i t i o n i s associated w i t h a decrease o f Q-l propor- t i o n a l t o (T-Tc)

,

where T i s t h e c r i t i c a l t r a n s i t i o n temperature and 0 an exponent v a r i i n g from -1 c l k s e Tc t o -2 f u r t h e r away from Tc and w i t h an increase o f t h e compliance ( o r a decrease o f modulus) p r o p o r t i o n a l t o (T

-

Tc). These behaviours a r e observed on a l l a l l o y s and we can then conclude t h a t t h i s R phase t r a n s i t i o n , associated w i t h t h e s o f t e n i n g o f t h e TA (110) phonon branch occurs i n every a l l o y . I t i s s i g n i f i c a n t t h a t t h i s behaviour i s observed f o r measurements done b o t h i n t h e Hz and t h e kHz, because u s u a l l y such e f f e c t s a r e observed i n t h e MHz range. For N i T i , t h e measurements o f Pace and Saunders (11). done i n t h e [1Hz, c o n f i r m o u r r e s u l t s .

For t h e CuZnAl and CuAlNi a l l o y s , n o t h i n g s i m i l a r happens. However, f o r CuZnAl, a minimum o f E i s observed d u r i n g t h e m a r t e n s i t i c transformation, which c o u l d i n d i - c a t e a s o f t e n i n g o f t h e e l a s t i c constants d u r i n g t h i s transformation. C o i n c i d e n t a l - l y o r n o t , CuZnAl has a l s o an anomalie on t h e (110) TA phonon branch (12). whereas CuAlNi does n o t (13) ; however, t h e anomal i e o f CuZnAl does n o t degenerate i n t o a s o f t mode. Our measurements c o u l d e v e n t u a l l y suggest t h a t i n t h e l a t t e r t h e s o f t e n i n g a r r i v e s simultaneously w i t h t h e m a r t e n s i t i c t r a n s f o r m a t i o n . Moreover, t h e r e s u l t s o f CuAlNi i n d i c a t e t h a t t h i s s o f t e n i n g i s n o t always necessary t o t h e m a r t e n s i t i c transformation.

(6)

TEMPERATURE ( K ) TEMPERATURE ( K

Fig. 5

:

Young's mpdulus E and in-

Fig.

6

:

Young's

mndulus

E

and in-

ternal friction Q- measured on al- ternal friction Q

measured on

loy

4

of Table I during a heating,

alloy

5

of Table I during a heat-

followed by a cooling (measurement ing, followed by a cooling (mea-

frequency:

1.06

KHz).

surement frequency: 1.44

KHz).

TEMPERATURE ( K )

TEMPERATURE ( K )

:

Young's

mndulus

E and in-

-

:

Young's mpdulus E and in-

%!&

friction

*

measured on a

terne friction Q

measured on a

CuZnAl alloy, during a thermal cy-

CuAlNi alloy during a thermal cy-

cle (measurement frequency:

cle (measurement frequency:

(7)

C5- 1042 JOURNAL DE PHYSIQUE

t h a t such domains belong t o t h e R phase. However, b e f o r e knowing more about t h i s phase and about t h e s t r u c t u r e o f t h e domains and domain boundaries, i t i s d i f f i - c u l t t o make a model; however, we t h i n k t h a t i t w i l l be s i m i l a r t o those

d e s c r i b i n g t h e h i g h damping i n Cu;.in a l l o y s (14), where magnetic domain motion causes t h e h i g h damping. I t should a l s o be noted t h a t t h e N i T i base a l l o y s between Rk and Ms simultaneously demonstrate h i g h damping, l i k e i n t h e m a r t e n s i t i c c o n d i t i o n and h i g h s t r e n g t h l i k e i n t h e @ - s t r u c t u r e .

References

1 D.P. Dautovich and G.R. Purdy, Can. met. Quat. 2, 129 (1965).

2 G.D. Sandrock, A.J. Perkins and R.F. Hehemann, ? l e t a l l . Trans.

2,

2769 (1971) 3 0. Mercier, K.N. Llelton and Y. De P r e v i l l e , Acta Met.

27,

1467-(1979)

4 0. blercier, K.N. Melton, G. Gremaud and J. HXgi, J. o f Appl. Phys.

51,

1833

( 1980)

5 0. Mercier, P. BrEesch and W. BGhrer, Helv. Acta Phys.

53,

243 (1980) 6 N.B. Salamon, t.2. Meichle, C.11. Wayman and C.M. Hwang, unpublished research,

U n i v e r s i t y o f I 1 1 in o i s , Urbana and Brookhaven N a t i o n a l Laboratory, Upton, N.Y. (1979)

7

C.M.

Jackson, 5.3. Waqner and R.J. Wasilewski, NASA r e p o r t , NASA SP5110 (1972) 8 G. Hausch and E. TorBk, Phys. S t a t . Sol. (a)

40,

55 (1977).

9 0. Plercier, E. Torok, B. Tirbonod, i n "Proceedings o f t h e I n t e r n a t i o n a l Conference on t l a r t e n s i t i c Transformations", Cambridge, Ha., U.S.A.,702

(1979)

10 A.S. Nowick and B.S. Berry, i n " A n e l a s t i c R e l a x a t i o n i n C r y s t a l l i n e S o l i d s " , Academic Press, New York and London (1972), 464-482

11 N.G. Pace and G.A. Saunders, P h i l . Hag.

22,

73 (1970)

12 G. Guenin, S. Hautecler, R. Pynn, P.F. Gobin, S c r i p t a [ l e t .

13,

492 (1979) 13 S. Hoshino, G. Shirane, 11. Suezawa, T. K a j i l a n i , Jap. J. Appl. Phys.

14,

1223 (1975)

14 K. Sugimoto, T. I l o r i , S. Shiode, Met. Sc. J.

L,

103 (1973)

Nominal composition (wt.%)

2

51.7

44.9

3.4

<

100

K

3

53.5

1.5

( 1 0 0 K

4

29.3

44.7

350

5

49

150

TABLE

I :

Composition and Ms temperature

Fig.

9

:

Internal friction Q

-

'

measured during cooling on al-

loy

1

(measurment frequency:

i 0-

100 200 300 400 4

1

HZ)

and on alloys

3

-

5

TEMPERATURE ( K )

(measureirient frequency:

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to