• Aucun résultat trouvé

DIAGNOSTICS OF THE LASER-LIQUID INTERACTION

N/A
N/A
Protected

Academic year: 2021

Partager "DIAGNOSTICS OF THE LASER-LIQUID INTERACTION"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00220584

https://hal.archives-ouvertes.fr/jpa-00220584

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

DIAGNOSTICS OF THE LASER-LIQUID

INTERACTION

D. Emmony

To cite this version:

(2)

DIAGNOSTICS O F THE LASER-LIQUID INTERACTION

D.C. Emmony

Department o f Physics, Loughborough University o f Technotogy, Leicestershire, U.K.

Abstract.- The interaction of TEA C02 laser pulse with a free water surface has been studied using shadowgraphy and optical probe techniques.

INTRODUCTION

A number o f workers have s t u d i e d t h e i n t e - r a c t i o n o f l a s e r l i g h t w i t h l i q u i d s anc? (1) i d e n t i f i e d d i f f e r e n t a b s o r p t i o n reqimes

.

I n s t r o n g l y a b s o r b i n g l i q u i d s and w i t h h i g h l a s e r r a d i a t i o n f l u x e s t h e ?recess i s d o ~ i n a t e z by v a p o r i z a t i o n of t h e l i q u i d a t t h e s u r f a c e whereas a t low l i g h t i n t e n s i - t i e s o r i n weakly a b s o r b i n g l i q u i c t s t h e p r o c e s s l e a d s t o

heat in^

of t h e l i q u i d and expansion g i v i n q r i s e t o l e s s v i o l e n t t h e r m o e l a s t i c e f f e c t s i n t h e body o f t h e l i q u i d . The a b s o r p t i o n c o e f f i c i e n t of w a t e r a t 3

10.6pm

i s

s 1 0 cm-I and even modest l a s e r e n e r g i e s (-mJ) l e a d t o s t r o n g i n t e r a c t i o n s when a l a s e r p u l s e i s focused t o a s m a l l a r e a on a f r e e w a t e r s u r f a c e . Shock waves a r e q e n e r a t e d b o t h i n t h e l i q u i d and i n t h e a i r above. I n p r i n c i p l e i t s h o u l d b e p o s s i b l e t o e q u a t e t h e i n c i d e n t energy i n t h e l a s e r p u l s e t o t h e l i s s i p a t i v e p r o c e s s e s i n t h e l i q u i d and gaseous r e g i o n s . The measurement of shock wave p a r a n - e t e r s i n s m a l l 3 d i m e n s i o n a l e v e n t s o f t h e o r d e r 0

-

l O m m i s n o t s t r a i g h t f o r -

ward. High s p e e d photography o f t h e s u r - f a c e r e g i o n w i t h arqon s p a r k , Q-switched ruby l a s e r anc? n i t r o g e n l a s e r p u l s e s shows t h e d e v e l o p n e n t o f t h e c a r b o n d i o x i d e l a s e r q e n e r a t e d shock s t r u c t u r e . Two o p t i c a l probe t e c h n i q u e s have been developed t o s t u d y t h e shock f r o n t s t r u c - t u r e s . The S c h l i e r e n probe which depends upon t h e d e f l e c t i o n of a narrow l a s e r beam, h a s been used t o d e t e r m i n e t h e shock wave p r o f i l e i n t h e w a t e r ( 2 ) and i n t h e a i r above t h e s u r f a c e . A l a s e r probe i n t e r f e r o m e t e r measures t h e t i m e develop- ment o f t h e a i r shock. EXPERIMERTS A TEA C02 l a s e r ( 3 ) w i t h a t o t a l p u l s e energy o f 50mJ i n 8011s FWHM was f o c u s e d by a gernanium l e n s a t normal i n c i d e n c e on t o t h e f r e e s u r f a c e of w a t e r c o n t a i n e d i n a c u b i c g l a s s c e l l . The f o c a l s p o t d i a m e t e r was 0.3n-rn w i t h c o r r e s p o n d i n q e n e r g y and power d e n s i t i e s o f 50scrn-~ and 6 x 1 0 * ~ c m - ~ . These f i q u r e s a r e p o r e t h a n an o r d e r of magnitude l a r g e r t h a n 3 3 t h e v a p o r i z a t i o n t h r e s h o l d ( 2 . 6

x

1 0 Jcm ) when t h e a b s o r p t i c n c o e f f i c i e n t o f w a t e r 16

(3)

C9-232 JOURNAL DE PHYSIQUE

a t 10.6pm (870cm-I) i s t a k e n i n t o a c c o u n t .

A Blumlein e x c i t e d n i t r o q e n l a s e r ( 4 ) w i t h a p u l s e d u r a t i o n o f < 2 . 5 n s was used a s a l i g h t s o u r c e f o r hiGh speed shadow photo- graphy. T h i s l a s e r i s s u p e r a d i a n t w i t h o n l y one m i r r o r which l e a d s t o a r a t h e r d i v e r g e n t beam,

=

2O, and c o r r e s p o n d i n g unsharp image. The image q u a l i t y i s c o n s i d e r a b l y improved by u s i n p a f o c u s e d shadow system which i n t h e o r y h a s SchlTeren p r o p e r t i e s due t o t h e l i m i t e d a p e r t u r e o f t h e l e n s , f i g u r e 1. The p l a n e of i n t e r e s t L a s e r

F

,

Lens camera

f

N 2 l a s e r

T

I

Water c e l l DELAY F i g u r e I Shadowgraph arrangement i s f o c u s e d on t h e f i l m p l a n e o f a 35mm s i n g l e l e n s r e f l e x camera. The carbon d i o x i d e l a s e r was t r i g g e r e d by t h e camera s h u t t e r and a v a r i a b l e d e l a y u n i t was used t o g i v e e x p o s u r e s a t d i f f e r e n t t i m e s a f t e r t h e l a s e r i n p a c t . M u l t i p l e e x p o s u r e shadowgraphs were o b t a i n e d by u s i n g up t o t h r e e n i t r o g e n l a s e r s i n s e r i e s ( 4 ) . How- e v e r , a l t h o u g h t h e n i t r o q e n l a s e r does n o t work a s an i d e a l Blumlein, t h e d e l a y between i n d i v i d u a l l a s e r s f o r p r a c t i c a l t r a n s m i s s i o n l i n e dimensions was o n l y 20ns which i s t o o s m a l l t o r e c o r d d i s p l a c e m e n t s o f t h e w a t e r shock which o n l y t r a v e l s 0.03mm i n t h i s t i m e . Delays up t o 300ns between t h e i n d i v i d u a l i l l u m i n a t i n g n i t r o g e n l a s e r s were obtainec? by u s i n g c o a x i a l c a b l e d e l a y l i n e s . The S c h l i e r e n probe t e c h n i q u e h a s been d e s c r i b e d e l s e - w h e r e ( 2 ) . The p r i n c i p l e o f t h e method i s t h a t t h e d e f l e c t i o n of a r a y o f l i g h t w h i c h i s t r a v e r s e d by an unchanging r e f r a c t i v e i n d e x p r o f i l e may b e u s e d t o c a l c u l a t e t h a t p r o f i l e . I n t h e p r e s e n t e x p e r i m e n t a f o c u s e d He-Ne l a s e r beam i s a r r a n g e d t o l i e i n t h e p l a n e o f i n c i d e n c e o f t h e i n t e r - a c t i n g C02 l a s e r beam. The beam d e f l e c - t i o n was measured by a k n i f e edge and h i g h speed p h o t o d e t e c t o r combination. By

s u i t a b l e c h o i c e o f r e l a y l e n s e s d e f l e c - t i o n s o f 1 x d e q r e e s have been meas- u r e d i n t i m e s o f z 5 n s . The probe beam d e f l e c t i o n a s a f u n c t i o n of t i m e was r e c o r d e d on a f a s t s t o r a g e o s c i l l o s c o p e . The r e f r a c t i v e i n d e x p r o f i l e o f t h e shock v7as o b t a i n e d by modeling and computer matching. The probe arrangement a l s o o f f e r s a s i m p l e t e c h n i q u e f o r measurement of t h e shock f r o n t d i s p l a c e m e n t w i t h t i m e . The l a s e r probe h a s been f u r t h e r m o d i f i e d

t o form an i n t e r f e r o m e t e r a l l o w i n g m e a s u r e ment o f t h e o p t i c a l p a t h l e n g t h a s a

f u n c t i o n o f t i m e d i r e c t l y r a t h e r t h a n t h e complex computer i t e r a t i o n p r o c e d u r e . The i n t e r f e r o m e t e r i s e s s e n t i a l l y a Ifichelson arranqement. I n t h e c o n v e n t i o n a l

Michelson i n t e r f e r o m e t e r p a r a l l e l beams I

(4)

1

1

S p a t i a l f i l t e r C 0 2 l a s e r LULLLW

0

He Ne L a s e r Si / The q u a s i c o h e r e n t p r o p e r t i e s of t h e n i t r o q e n l a s e r l e a & t o d i f f r a c t i o n and i n t e r f e r e n c e e f f e c t s on t h e shadowqraphs. I n p a r t i c u l a r t h a t p a r t of t h e h e m i s p h e r i - c a l w a t e r shock o p o s i t e t h e s u r f a c e i s n o t c l e a r l y d e f i n e d and t h e p h o t o c r a p h s a r e n o t e a s i l y i n t e r p r e t e d . A S c h l i e r e n probe r e c o r d i n g o f t h e d e f l e c - t i o n due t o t h e a i r shock

i s

shown i n f i g u r e 111.

I ,

,

F i g u r e I1 Probe Michelson i n t e r f e r o m e t e r Two camera l e n s e s were used t o produce t h e probe beam. The l e n s e s a r e p o s i t i o n e d s o t h a t t h e two f o c i i a r e c o i n c i d e n t which i m p l i e s t h a t t h e m o d i f i e d i n t e r f e r o m e t e r i s n o t s e n s i t i v e t o a n g u l a r movements o f

/

L1 \ l a t e r c e l l

t h e probe beam about t h e f o c u s . The i n t e r f e r o m e t e r was a d j u s t e d s o t h a t t h e recon?bined w a v e f r o n t s were p a r a l l e l , t h a t i s a s i n g l e f r i n g e f i l l e d t h e f i e l d of t h e f i n a l l e n s b e f o r e b e i n g f o c u s e d on t h e f a s t s i l i c o n p h o t o d i o d e . The s i g n a l was r e c o r d e d u s i n g t h e same a m p l i f i e r and s t o r a g e o s c i l l o s c o p e a s i n t h e S c h l i e r e n probe e x p e r i m e n t .

A Q-switched ruby l a s e r was used a s t h e l i g h t s o u r c e i n a Kach Zehnder i n t e r f e r o - m e t e r t o o b t a i n i n t e r f e r o g r a m s of t h e w a t e r and a i r shocks. The p u l s e d u r a t i o n v a s 40ns which i s a d e q u a t e f o r r e c o r d i n q t h e a i r shock wave b u t t o o l o n q t o a l l o w a c c u r a t e measurements on t h e w a t e r shock wave. D i r e c t p r e s s u r e measurenents on t h e

shock waves above and below t h e s u r f a c e were c a r r i e d o u t u s i n g l i t h i u m n i o b a t e p i e z o e l e c t r i c p r e s s u r e t r a n s 6 u c e r s .

F i g u r e I11

The a i r shock h a s a f i n i t e r i s e t i m e o f 200ns. The computer d e r i v e d d e f l e c t i o n curve assuming a s t e ~ shock f r o n t and r e f r a c t i v e i n d e x , n r , a t a d i s t a n c e

r

f o l l o w i n q t h e e x p r e s s i o n 3 nr = n

+

(nm

-

no) ( r / R ) 0 g i v e s t h e b e s t f i t w i t h t h e e x p e r i m e n t a l d e f l e c t i o n , F i q u r e I V . Here n and no a r e

m

t h e maximum and ambient r e f r a c t i v e i n d i c e s r e s p e c t i v e l y and R

i s

t h e r a d i u s of t h e shock f r o n t . The decay of r e f r a c t i v e i n d e x i s g i v e n i n F i g u r e V.

The shock f r o n t d i s p l a c e m e n t a s a f u n c t i o n of t i m e i s shown i n F i g u r e V I . When t h e s e r e s u l t s a r e d i s p l a y e d on l o g a r i t h m i c s c a l e s t h e g r a d i e n t i s 0.65.

(5)

C9-234 JOURNAL DE PHYSIQUE

i n t e g r a t e d o p t i c a l p a t h l e n g t h t o b e

(6)

o r d s t h e f r i n g e p a t t e r n from t h e i n t e r - f e r o m e t e r a s t h e o p t i c a l p a t h l e n g t h chanqes w i t h time. T h a t i s a s t h e shock wave expands t h r o u g h t h e probe beam. I n p r i n c i p l e t h e r e c o r d i n g s a r e r e l a t i v e l y

s i w l e t o i n t e r p r e t b u t t h e shock f r o n t rise t i n e and r a p i d l y changinq o p t i c a l p a t h n e a r s h a l l o w c h o r d s make t h e a n a l y s i s d i f f i c u l t . The y - a x i s o f t h e o s c i l l o s c o p e r e c o r d s t h e i n t e r f e r o m e t e r f r i n g e i n t e n - s i t y which f o l l o w s t h e o p t i c a l p a t h l e n q t h chanqes a s t h e shock wave expands throuph t h e beam. The

start in^

p o i n t o f t h e t r a c e depends upon t h e low frequency q u i e s c e n t s t a t e o f t h e i n t e r f e r o n e t e r . The two extremes b e i n c , A, c o n s t r u c t i v e o r B des- t r u c t i v e . I n t h e example shown h e r e t h e f r i n y e p a t t e r n i s between t h e s e two ex- tremes which h e l p s t o renove a m b i q u i t i e s and i s n e a r t h e n o s t s e n s i t i v e p a r t of t h e i n t e r f e r o m e t e r r e s p o n s e . The t o t a l o p t i - c a l p a t h l e n g t h i n c r e a s e s t o p o i n t C and t h e n f a l l s . P o i n t C c o r r e s p o n d s t o t h e naxinum o p t i c a l p a t h l e n q t h which i s t h e s u n o f t h e c o n t r i b u t i o n s of t h e r e f r a c t i v e i n d e x a l o n g t h e p a t h through t h e shock. The r i s e and f a l l i n o p t i c a l p a t h l e n q t h i s e a s i l y u n d e r s t o o d when t h e shock f r o n t i s c o n s i d e r e d a s a s p h e r i c a l s h e l l . IS.ea- l l y t h e number o f f r i n g e s t o t h e p o i n t C s h o u l d e q u a l t h o s e a f t e r w a r d s b u t t h e o p t i c a l p a t h i s f u r t h e r c o m p l i c a t e d by t h e a r r i v a l o f t h e vapour plume. I n o r d e r t o o b t a i n t h e r a d i a l d i s t r i b u t i o n o f t h e r e f r a c t i v e i n d e x f r o n t h e i n t e r f e r o - n e t e r measurements some form o f i n v e r s i o n t e c h n i q u e must be used. I n t h e c a s e o f t h e

F i q u r e X F r i n q e s h i f t w i t h t i m e and shock r a d i u s .

two diniensional Kach Zehnder i n t e r f e r o a r a m t h i s i s r e l a t i v e l y s i r . p l e whereas i n t h e probe i n t e r f e r o m e t e r t h e chanqinq p r o f i l e must be t a k e n i n t o a c c o u n t . A f u l l des- c r i p t i o m o f t h i s t i m e dependent i n v e r s i o n w i l l be g i v e n e l s e w h e r e . The maximm r e f r a c t i v e i n d e x change i s 3.8 x a t 2mm above t h e w a t e r s u r f a c e and 2.3 x a t 4mm. The maxinum y e s s u r e i n t h e shock wave a t 0 . 5 m above t h e w a t e r s u r f a c e i s

6 5

4 x 1 0 Pa anc? t h i s f a l l s t o 2 x 1 0 Pa a t

4rn..

The w a t e r shock wave i s much t h i n n e r t h a n t h e a i r shock wave, t h e i n i t i a l p r e s s u r e p u l s e i s 30pm and t h e t o t a l t h i c k n e s s i s 100rm. P r e l i m i n a r y measurenents u s i n g l i t h i u m n i o b a t e p i e z o e l e c t r i c p r e s s u r e gauges i n d i c a t e t h a t t h e r e s o l u t i o n of t h e o p t i c a l probe t e c h n i q u e s may b e s u p e r i o r where s ~ h e r i c a l geometry i s i n v o l v e d . However t h e r e i s qood aqreement between t h e p r e s s u r e t r a n s d u c e r and t h e o p t i c a l d i a g n o s t i c t e c h n i q u e s d e s c r i b e d above. CONCLUSIOIGS AND DISCUSSION

(7)

C9-236 JOURNAL DE PHYSIQUE

which i s d i f f i c u l t t o measure because o f t h e dimensions and time s c a l e of t h e e v e n t . S i n g l e exposure s h o r t d u r a t i o n shaeowgraphy shows t h e main f e a t u r e s of t h e e v e n t b u t i n t e r p r e t a t i o n

i s

n o t s i m p l e . The r a j o r i t y o f t h e work d e s c r i b e d h e r e i s concerned w i t h t h e a i r shock wave. The d i s p l a c e r e n t

-

t i m e

r e s u l t s i n d i c a t e t h a t t h e shock wave cannot b e d e s c r i b e d by b l a s t wave t h e o r y where t h e power of t h e t i r e dependence i s 0.4 compared w i t h t h e measures v a l u e o f 0 . 6 5 .

There i s good agreen?ent between t h e probe d e f l e c t i o n , Each Zehnder and probe i n t e r - f e r o m e t e r r e s u l t s i n s p i t e o f t h e u s e o f a c o n s t a n t v a l u e f o r t h e maxinurr. v a l u e f o r t h e r e f r a c t i v e i n d e x , nm i n t h e d e f l e c t i o n c a l c u l a t i o n s .

ACKETOWLE DGEMENT S

The ~ u t h o r would l i k e t o acknowledqe t h e a s s i s t a n c e o f G . P . Davidson, E . G e r r i t s o n , T. Geerken and L.A. Mahmood. The work v:as s u p p o r t e d by g r a n t s from t h e S c i e n c e Research Council an2 t h e Procurement

E x e c u t i v e ( M O D ) . The l o a n o f t h e C02 l a s e r by RSPE i s g r a t e f u l l y acknowledned.

REFERENCES

(1) P . W . S i g r i s t and F.K. Kneubuhl, J . Acoust. 80c. &n.

64,

1652, 1978.

( 2 ) G.P. Oavidson and D . C . Emmony, J . Phys. E .

2 ,

92, 1980.

( 3 ) D.S. S t a r k , P . H . Cross and 11. P o s t e r , IEEE J . Cuantun E l e c t r o n . Q.E.11, 774, 1975.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to