• Aucun résultat trouvé

ACOUSTIC SHEAR IMPEDANCE OF SUPERFLUID 3He-B

N/A
N/A
Protected

Academic year: 2021

Partager "ACOUSTIC SHEAR IMPEDANCE OF SUPERFLUID 3He-B"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00217494

https://hal.archives-ouvertes.fr/jpa-00217494

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

ACOUSTIC SHEAR IMPEDANCE OF SUPERFLUID

3He-B

Hiromichi Ebisawa

To cite this version:

(2)

JOURNAL DE PHYSIQUE Colloque

C6,

supplPment au no

8,

Tome

39,

aolit

1978,

page

~ 6 - 4

ACOUSTIC SHEAR IMPEDANCE OF SUPERFLUID

3He-B Hiromichi Ebisawa

Department

of

Applied Science

Tohoku University, Sendai, Japan

R&sum&.- Une e x p r e s s i o n de lfimp&dance a c o u s t i q u e du mode t r a n s v e r s e e s t obtenue dans l e kCgime

Hw

<< 28 e t w.r = pour l a phase B de 3 ~ e s u p e r f l u i d e .

Abstract.- An e x p r e s s i o n f o r t h e a c o u s t i c s h e a r impedance of t h e s u p e r f l u i d B phase of 3 ~ e i s o b t a i n e d f o r

yw

<< 2A and w r = m

.

Recently evidences of e x i s t e n c e of t r a n s - v e r s e zero sound a r e r e p o r t e d

111

i n t h e normal and i n t h e s u p e r f l u i d phases of 3 ~ e . I n t h e s u p e r f l u i d phase t h e o b s e r v a t i o n i s based on t h e measurement o f t h e t r a n s v e r s e a c o u s t i c impedance.

T h e o r e t i c a l l y , o n l y t h e d i s p e r s i o n r e l a - t i o n i s s t u d i e d i n t h e s u p e r f l u i d phases by Combes- cot-Combescot 121, Bolton 131, Maki-Ebisawa 141 and W'6lfle 151. A s Landau p r e d i c t e d , t h e t r a n s v e r s e zero sound can propagate i n t h e Fermi l i q u i d i f t h e Landau parameter s a t i s f i e s F , > 6 . The v e l o c i t y de- c r e a s e s from t h e normal s t a t e v a l u e a s temperature goes down through t h e c r i t i c a l temperature, e x c e p t n e a r t h e r e g i o n of resonance of t h e o r d e r parameter c o l l e c t i v e mode where t h e v e l o c i t y h a s a s t r u c t u r e and t h e a t t e n u a t i o n has a peak, u n t i l t h e sound c a n no longer propagate because F1 i s e f f e c t i v e l y redu- ced 12-51.

We e x p e c t t h a t , i n t h e r e g i o n where t h e sound can propagate, t h e a c o u s t i c impedance behaves j u s t i n t h e same f a s h i o n a s t h e v e l o c i t y does on t h e analogy o f c l a s s i c a l formula Z = p c where p

i s t h e d e n s i t y and c i s t h e v e l o c i t y . To s e e t h i s d i r e c t l y i t i s i n t e r e s t i n g t o g e t an e x p r e s s i o n of t h e impedance. However t h e impedance f o r t h e strong- l y damped mode i s determined by t h e q u a s i p a r t i c l e s n e a r t h e w a l l of t h e c o n t a i n e r through the Landau damping. So t h e s t u d y of t h e impedance g i v e s some i n f o r m a t i o n s about t h e n a t u r e of o r d e r i n g n e a r t h e w a l l i f i t i s d i f f e r e n t from t h a t i n t h e bulk a t a l l . We n o t i c e t h a t t h e p e n e t r a t i o n depth (may be o r d e r of vF/w%l-lO~, u s u a l l y ) i s of n e a r l y t h e same o r d e r a s t h e d i p o l e h e a l i n g l e n g t h .

For t h e f i r s t s t e p of works f o r t h a t pur- pose, I p r e s e n t h e r e an e x p r e s s i o n of t h e a c o u s t i c impedance i n t h e B phase f o r t h e frequency range

2and wr>>l under a simple assumption on boun- dary c o n d i t i o n s .These r e s t r i c t i o n s on t h e frequency c o n f i n e our c o n s i d e r a t i o n t o t h e temperature range below t h e r e g i o n of i n t e r e s t i n g p o s s i b l e s t r u c t u r e o f t h e impedance and only t o t h e r e a l p a r t . Fur- theremore t h e Landau parameter i s n e g l e c t e d except F and F 1 f o r s i m p l i c i t y .

0

The a c o u s t i c impedance i s t h e r a t i o of t h e momentum flow t o t h e v e l o c i t y of t h e l i q u i d ans i s

c a l c u l a t e d a t t h e boundary between t h e l i q u i d and t h e t r a n s d u c e r . The theory of t h e impedance i n t h e normal Fermi l i q u i d i s developed by Bekarevich- Khalatnikov / 6 / and Flowers-Richardson-Williamson 171. They solved t h e l i n e a r i z e d Landau t r a n s p o r t e q u a t i o n i n a h a l f space w i t h a p p r o p r i a t e boundary c o n d i t i o n s . Using t h e Wiener-Hopf f a c t o r i z a t i o n , they o b t a i n e d e x a c t s o l u t i o n s . I n t h e s u p e r f l u i d phase, t h e k i n e t i c e q u a t i o n i s matrix-formed ( s e e I 8 1 where the o s c i l l a t i o n of t r a n s v e r s e c u r r e n t i s

coupled with t h e f l u c t u a t i o n of o r d e r parameter. I n t h e p r e s e n t c a s e , Mw<<2A, t h e e q u a t i o n i s much s i m p l i f i e d a s i s d e r i v e d i n r e f e r e n c e s / 2 / and 151. I n t h e e q u a t i o n , t h e v e l o c i t y of q u a s i p a r t i c l e s vF i n ~ a l a r i s reduced t o vF Sk/Ek where E 2 = 5 k 2 + ~ 2 , and d e v i a t i o n s of t h e d i s t r i b u - k t i o n f u n c t i o n s a r e p r o p o r t i o n a l t o - f ' ( ~ - a f ( E )/aE ) k k

where f(Ek) i s t h e Fermi d i s t r i b u t i o n f u n c t i o n . I use t h e boundary c o n d i t i o n t h a t Bogolons w i t h mo-

mentum d i r e c t e d i n s i d e t o t h e l i q u i d a t t h e boun- d a r y have t h e e q u i l i b r i u m d i s t r i b u t i o n on t h e moving frame w i t h a v e l o c i t y u p a r a l l e l t o t h e w a l l , i . e .

-

m:vFft, and t h e t o t a l mass flow i s mupY, where Y i s Yoshida f u n c t i o n given below e q u a t i o n

( 6 )

-

The impedance i s given by 3+FlY

Z = pVF

7

(SO-1

+

@ )

1 (1)

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1978602

(3)

dx tan-' ( A ~ / A ~ ) / X ~

X X+I

w (X) =

7

l o g

-

x-

1

-

I

(5)

where

2

s i s t h e s o l u t i o n of A(s)=O. I f t h e r e i s no s o l u t i o n t h e n so-1 should be d i s r e g a r d e d i n e q u a t i o n ( I ) . These e x p r e s s i o n s a r e simple exten- s i o n of those given i n r e f e r e n c e s / 6 / and 171. We should n o t i c e t h a t o t h e r assumptions on t h e boun- dary c o n d i t i o n might give more complicated o r even no e x a c t s o l u t i o n . Numerical e v a l u a t i o n o f the impedance h a s n o t been f i n i s h e d .

F i n a l l y I give some remarks on t h e next s e v e r a l s t e p s . ( i ) For t h e A phase, t h e impedance depends s t r o n g l y on the d i r e c t i o n of & r e l a t i v e t o t h e w a l l . I t is r a t h e r e a s y t o perform some a n g u l a r i n t e g r a l s i n t h e case p e r p e n d i c u l a r t o t h e w a l l . ( i i ) A t temperatures where c o l l e c t i v e modes a r e e x c i t e d , i t seems n o t e a s y t o g e t any a n a l y t i c so- l u t i o n of t h e k i n e t i c e q u a t i o n f o r two, a t l e a s t , unknown f u n c t i o n s . ( i i i ) I n c l u s i o n of the e f f e c t of q u a s i p a r t i c l e c o l l i s i o n s i s e a s y i f we adopt a r e l a x a t i o n time approximation and i n f a c t i t h a s been done although we remember t h a t r e s u l t s t h u s c a l c u l a t e d i n t h e normal Fermi l i q u i d a r e u n s a t i s - f a c t o r y i n e x p l a i n i n g e x p e r i m e n t a l r e s u l t s on t h e imaginary p a r t of t h e impedance.

References

/ I / Roach, P a t R., K e t t e r s o n , J.B., J. Low Temp. Phys.

5

(1976) 637, Phys. Rev. L e t t .

36

(1976) 736.

/ 2 / Combescot, M . , Combescot, R . , Phys. L e t t .

58A

(1976) 181.

/ 3 / Bolton, J.P.R., J . Phys. C

9

(1976) L 565. / 4 / Maki, K., Ebisawa, H., J. Low Temp. Phys.

2

( 1 977) 627.

151 Walfle, P . , Sound Propagation and K i n e t i c Coef- f i c i e n t s i n S u p e r f l u i d 3 ~ e , p r o g r e s s i n Low Temperature Physics Vol. V I I .

161 Bekarevich, I . L . , Khalatnikov, I . M . , Soviet Phys.- JETP

12

(1961) 1187.

/ 7 / Flowers, E.G., Richardson, R.W., Williamson, S . J . , Phys. Rev. L e t t . 2_5 (1976) 309.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to