• Aucun résultat trouvé

ALUMINO-SILICATE AEROGELS

N/A
N/A
Protected

Academic year: 2021

Partager "ALUMINO-SILICATE AEROGELS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00229497

https://hal.archives-ouvertes.fr/jpa-00229497

Submitted on 1 Jan 1989

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ALUMINO-SILICATE AEROGELS

F. Chaput, André Lecomte, A. Dauger, J. Boilot

To cite this version:

F. Chaput, André Lecomte, A. Dauger, J. Boilot. ALUMINO-SILICATE AEROGELS. Journal de

Physique Colloques, 1989, 50 (C4), pp.C4-137-C4-142. �10.1051/jphyscol:1989421�. �jpa-00229497�

(2)

R E W E DE PHYSIQUE APPLIQu~E

Colloque C4, Supplement au n04, Tome 24, avril 1989

ALUMINO-SILICATE AEXOGELS

F. CHAPUT, A. LECOMTE*, A. DAUGER* and J.P. BOILOT

Groupe de Chimie du Sofide, Laboratoire de Physique de La matiere Condensee, Ecole Polytechnique, F-91128 Palaiseau cedex, France

" ~ c o l e Nationale Superieure de Ceramique Industrielle, F-87065 Limoges Cedex, France

RESUME

-

Des aerogels dlalumino-silicates, de densite comprise entre 50 et 250 kg/m3, ont BtB Blabores B partir du prBcurseur mixte

(Bu0) 2Al-O-Si (OEt) 3.

La diffusion centrale des rayons X montre que les structures des aerogels et des alcogels d'alumino-silicates sont form6es d'unitBs dlementaires dont l'assemblage par un mecanisme d'agregation conduit B des particules fractales en masse. L1auto-similarit6 est mise en 6vidence dans les aerogels pour un large domaine de densite.

ABSTRACT

-

Alumino-silicate aerogels have been prepared from the (BuO) 2Al-O-Si (OEt) double precursor with different densities (from 50 to 250 kg/m3).

SAXS study indicates that both alumino-silicate alcogel and aerogel structures can be represented by primary units which stick together into mass-fractal clusters (D = 1.8-1.9) by a mechanism of cluster-cluster aggregation. Self similarity is displayed in the alumino-silicate aerogels in a large range of densities.

We have previously shown /1/ that alumino-silicate alcogels can be prepared in the H20, H O ~ P ~ , (BuO) 2Al-O-Si (OEt) ternary phase diagram within a large range of oxide concentrations. The gelation time is governed by the initial water concentration, showing that the hydrolysis of Si-OR groups is the rate-determining process for the gelation.

The alcogel structure typically contains more than 90% by volume fine pores confining alcohol. To prevent damage to the gel structure caused by interfacial forces, the alcohol removal must be done under supercritical conditions. The resulting low density solid material is called aerogel and is now well known in the pure silica system /2-4/.

In this paper, we report the preparation of alumino-silicate aerogels with different densities and structural results obtained from alcogels and aerogels by small angle X-ray scattering (SAXS).

2

- EXPERIMENTAL

i-Gelation and drying

Alcogels have been prepared in the H20

-

H O ~ P ~

-

( B u O ) ~ A ~ - O - S ~ (OEt) ternary phase diagram. A mixture of isopropanol and water is slowly poured into a mixture of precursor and isopropanol.The initial composition, noted 1.4.2 corresponds to one volume of water, four of solvent and two of precursor. Other compositions are obtained by dilution with 2-propanol.

Samples were kept in sealed glass containers at 2S°C and the gel time was defined by observing the stiffness after tilting the container. For all the Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1989421

(3)

s a m p l e s , no s i g n i f i c a n t change o f volume i s n o t e d a t t h e g e l p o i n t .

S u p e r c r i t i c a l d r y i n g o f a l u m i n o - s i l i c a t e a l c o g e l s , i n an a u t o c l a v e system ( 6 5 b a r s

-

245OC) l e a d s t o a l u m i n o - s i l i c a t e a e r o g e l s which e x h i b i t d i f f e r e n t d e n s i t i e s . The a p p a r e n t d e n s i t y (p) measured by Hg v o l u m e t r y v a r i e s from 50 t o 250 kg/m3.

ii-SAXS method

S m a l l a n g l e X-ray S c a t t e r i n g (SAXS) d a t a w e r e r e c o r d e d w i t h a s l i t t y p e camera (CuKa w a v e l e n g t h ) . The sample t o d e t e c t o r d i s t a n c e was 500mm and t h e s c a t t e r e d i n t e n s i t y was c o u n t e d w i t h a l i n e a r p o s i t i o n s e n s i t i v e c o u n t e r . The s c a t t e r i n g v e c t o r ~ = 4 l X s i n e / h where 8 i s t h e Bragg a n g l e , r a n g e s from 6 . 1 0 - ~ t o 2 . 1 0 - I A-l. E x p e r i m e n t a l r e s u l t s a r e c o r r e c t e d f o r p a r a s i t e s c a t t e r i n g and n o r m a l i s e d t o e q u i v a l e n t s a m p l e t h i k n e s s , i n c i d e n t i n t e n s i t y a n d c o u n t e r e f f i c i e n c y . To s t u d y t h e growth p r o c e s s , a sample c e l l i s u s e d w i t h 0,025 mm

"Mylar" windows and 0 , s t o l m m p a t h l e n g t h . Concerning SAXS measurements from a e r o g e l s a m p l e s , s l i c e s of a b o u t 2mm i n t h i k n e s s a n d l O m m i n d i a m e t e r were u s e d .

S c a t t e r i n g i n t h e G u i n i e r r e g i o n ( l o w a n g l e s ) d e p e n d s on t h e c h a r a c t e r i s t i c d i m e n s i o n R o f t h e s c a t t e r i n g e n t i t i e s a n d from t h e i n i t i a l d e c a y o f t h e s c a t t e r e d i n t e n s i t y I ( K ) , o n e c a n d e d u c e t h e e l e c t r o n i c r a d i u s o f g y r a t i o n R u s i n q t h e f o l l o w i n g f o r m u l a / 5 / :

3

(K)=n N e x p . ( - K ~ R ~ ~ / ~ ) (1)

( R = ( 3 / 5 ) 'I2 x f? f o r s p h e r i c a l p a r t i c l e s )

where 'K i s t h e s c a t t e r i n g wave v e c t o r , N i s t h e number of s c a t t e r i n g p a r t i c l e s a n d n t h e number o f e l e c t r o n s i n e a c h p a r t i c l e ( n =p V where p i s t h e electronic P d e n s i t y o f p a r t i c l e s of volume V )

.

P P P P

S c a t t e r i n g i n t h e P o r o d r e g i o n d e f i n e d a s R R >> 1 >> Ka, where t h e monomer s i z e i s a , d e p e n d s on t h e g e o m e t r i c s t r u c t u r e o f t h e s c a t t e r i n g e n t i t i e s / 5 / . The s c a t t e r e d i n t e n s i t y d e c a y s a s power l a w I ( K ) - K - ~ a n d t h e r e f o r e , i n a Log-Log p l o t of I ( K ) v e r s u s t h e s c a t t e r i n g v e c t o r , t h e s l o p e i s s e n s i t i v e t o t h e geometry o f t h e s c a t t e r e r s . F o r p o l y m e r - l i k e s t r u c t u r e s / 6 / ( m a s s - f r a c t a l o b j e c t s ) t h e c l a s s i c power-law e x p o n e n t x o b s e r v e d i n t h e P o r o d r e g i m e i s t h e f r a c t a l d i m e n s i o n D which r e l a t e s t h e s i z e R of t h e o b j e c t t o i t s mass M - R ~ .

i-Growth o f a l u m i n o - s i l i c a t e a l c o g e l s

N u c l e a r m a g n e t i c r e s o n a n c e / 7 / , s m a l l a n g l e X-ray s c a t t e r i n g / 8 / and s m a l l a n g l e n e u t r o n s c a t t e r i n g / 9 / s t u d i e s o f t h e g e l a t i o n f r o m t h e d o u b l e p r e c u r s o r (Bu0) 2Al-O-Si (OEt) have shown t h a t , i n t h e f i r s t s t e p s , a r a p i d f o r m a t i o n o f p a r t i c l e s t a k e s p l a c e by c o n d e n s a t i o n b e t w e e n A1-OH g r o u p s . T h e s e u n i t s formed o f A1-0-A1 l i n k a g e s a r e t h e n a g g l o m e r a t e d by a c l u s t e r a g g r e g a t i o n p r o c e s s c h e m i c a l l y l i m i t e d by t h e h y d r o l y s i s o f t h e Si-OR g r o u p s .

C o n c e r n i n g SAXS c u r v e s , t w o regimes a r e o b s e r v e d on t h e Porod p l o t s : -a power law regime w i t h a s l o p e o f 1 . 8 i n t h e (Rg/2)-10

A

l e n g t h r a n g e . -a d e v i a t i o n from t h i s power law ( s l o p e o f 2 . 6 ) i n t h e domain from 4 t o 8A.

T h i s b e h a v i o r i s i n d e p e n d e n t of t h e p r e c u r s o r c o n c e n t r a t i o n and, f o r a g i v e n c o n c e n t r a t i o n and a g i v e n p o l y m e r i z a t i o n s t a t e , it d o e s n o t d e p e n a on f u r t h e r d i l u t i o n . I n f a c t , t h e s l o p e o f 1 . 8 i s o b s e r v e d , a t l e a s t n e a r t h e g e l p o i n t , o v e r a d e c a d e o f r e c i p r o c a l s p a c e ( A v e r y c l o s e v a l u e o f 1 . 9 h a s b e e n o b t a i n e d from S.A.N.S s t u d y / 9 / ) . T h e r e f o r e , t h e expo.nent, a t h i g h l e n g t h

s c a l e ( a b o v e 10A). c a n b e r e a s o n a b l y e q u a t e d t o t h e f r a c t a l dimension D . D u r i n g t h e g e l a t i o n , a n o t h e r i n d e p e n d e n t d e t e r m i n a t i o n o f t h e f r a c t a l

(4)

dimension can be realized £om variations of the extrapolated quantity I(K=O) by using the Guinier ap roximation:

I (K=O) = n N'

P (2)

Assuming that n .N is constant, i.e.the total mass in solution remains constant, then ?(K=o) = np and I(K-0) is proportional to the 2-averaged number of atoms in the particles. For a mass-fractal object:

I (K=O) a R D (3)

A plot of Log I(K=O? versus Log R gives for D a value very close to 1.8 consistent with a cluster-cluster growth mechanism /lo/. 9

In agreement with other observations of the gelation on silica and alumino-silicate sol-gel systems and in spite of the small range size explored, the SAXS study indicates that inorganic polymers in alcogels consist in primary polymeric particles, whose density depends on the hydrolitic conditions and on the reactivity of the precursor. These units stick together and form mass fractal clusters by a mechanism of cluster-cluster aggregation.

ii-Structure of alumino-silicate aerogels

Figure 1 contains SAXS data for six samples of different densities. For all the samples, two power-law regimes are seen in the Porod range with slopes of -1.85 and -4 (figure 2)

.

The crossover is ap roximately the same for all the samples and occurs at about K= 7.5.10- corresponding to a length of 13A.

Using a fractal model to interpret the scattering data, the picture that emerges is a scattering from a smooth surface of homogeneous particles at short length scales (<13A) and scattering from a mass fractal of dimension 1.85 at larger scales.

Therefore, as observed for alcogel samples, the SAXS study indicates that the aerogel structure can be represented by a two level structure: It consists in primary dense particles (density pa and size a) attached into mass fractal clusters by a mechanism of cluster-cluster aggregation.

Self similarity previously displayed in the silica system /11/ can be easily shown in the alumino-silicate system:

-

Firstly, each sample has the same fractal dimension and the figure 3 clearly indicates that, in the fractal range, the different samples cannot be distinguished. Moreover, for high density samples a third regime exists at small K consistent with uniform nonfractal long range structure, corresponding to a decrease of the fractal range (R(A) in size) with increasing density.

-

Secondly, from the initial decay of the intensity in the Guinier region, we deduce the electronic radius of gyration Rg. From the Log-Log plot of the radius of gyration versus the apparent density p (figure 4), one finds that the function relating the extension of the fractal domain to the density is the same for all the samples: Rg= 18.7* - O e e 4

Using the mass-f ractal law: p /p = (R/a)g'3, ta;ing the same desciption for P a

primary units and considering as equal the density of the fractal particles and the average density of the sample (pp= p), one finds D=1.81 from the power-law exponent of figure 4, a value close to that determined from figure 2 establishing the mutual self-similarity within a large range of densities.

Moreover, it is important to note that, assuming the existence of spherical mass-fractal particles, the prefactor value (18.7) is consistent with the existence of primary units (13A in size) of density 2.1g/cm3

,

which

is relatively close to the one (2.5 g/cm3) of the usual alumino-silicate glass with the same composition (Al/Si molar ratio=l.) /12/.

-Finally, using equation 3, a plot of Log I(K=O) versus Log R leads for g

(5)

Fig.1

-

Scattered intensities for six alumjno-silicate aerogel samples. The curves are labelled with p in ~ g / r n ~ . Starting from the top, each intensity was divided by two compared to the previous one.

Fig.2

-

Porod plots for alumino-silicate aerogels showing two power-law regimes with slopes of -1.85 and -4. The crossover approximately occurs at

~ = 7 . 5 . a'-A

(6)

Fig.3

-

Scattered intensities at low K and in the intermediary K range for different alumino-silicate aerogel samples (the curves are labelled with p in Kg/m 3 ) showing that each sample has the same fractal dimension and that the different samples cannot be distinguished in the fractal range. Moreover, the fractal range decreases in size with increasing density.

Fig.4

-

Function relating the extension of the fractal domain to the density for alumino-silicate aerogels, revealing that all samples are mutually self-similar.

(7)

D to a value of 1-84, which is another verification of the self-similarity in the alumino-silicate aerogels.

Alumino-silicate alcogels can be prepared from the (Bu0) 2Al-O-Si (OEt) 3 complex precursor in a large range of oxide concentrations. Supercritical drying of alumino-silicate alcogels, in an autoclave system (65bars

-

24S°C)

leads to alumino-silicate aerogels which exhibit different densities (from 50 to 250 kg/m3).

SAXS study indicates that both alumino-silicate alcogel and aerogel structures can be described by a two level structure: It consists in primary units, polymeric particles for alcogels (8A in size) and dense particles for aerogels (density 2.1 g/cm3 and 13A in size), which are attached together into mass fractal clusters by a mechanism of cluster-cluster aggregation. The fractal dimension (D=1.8-1.9) is the same in the two structures.

Self similarity previously displayed in the silica system is also observed in the alumino-silicate aerogels within a large range of densities.

REFERENCES

/1/ Pouxviel, J.C.and Boilot, J.P., J.Mat.Science, in print (1988).

/2/ Kistler, S.S., J.Phys.Chem.3, (1932) 52.

/3/ Woignier, T., Phallipou, J. and Zarzycki, J.Non-Crystalline Solids

fi

(1984) 117.

/4/ Frike, J., J.Non-Crystalline Solids (1987) 1135.

/5/ Guinier, A. and Fournet, G.,Small Angle Scattering of X-rays (John Wiley and Son, N.Y.) (1955).

/6/ Schaeffer, D.W. and Keefer, K.D., Phys.Rev.Lett.3, (1984) 1383, Fractals in Physics, edited by L. Pietronero and E. Tosatti (Elsevier Science Publishers B.V.) (1986) p.39. and Phys. Rev. Letters %,20 (1986) 2199.

/7/ Pouxviel, J.C., Boilot, J.P., Dauger, A.and Huber, L., Better Ceramic Through Chemistry 11, eds C.J. Brinker, D.E. Clark and D.R. Ulrich, MRS Proceedings, (1986) 269.

/8/ Pouxviel, J.C., Boilot, J.P., Lecomte, A. and Dauger, A., J.Physique 48, (1987) 921.

/9/ Pouxviel, J.C., Boilot, J. P., Dauger, A and Wright, A., J.Non-Crystalline Solids (1988) 331 and Better Ceramic Through Chemistry 111, eds C.J.

Brinker, D.E. Clark and D.R. Ulrich, MRS Proceedings,in print (1988).

/lo/ Kolb, M., Botet, R. and Jullien, R., Phys. Rev. Lett.=, (1983) 1123 and J. Phys. Lett.

a,

(1984) L.211.

/11/ Vacher, R., Woignier, T., Pelous, J.and Courtens, E., Phys. Rev.=

(1988) 6500.

/12/ Jantzen, C.M., Schwahn, D.,Schelten J.and Herman H., Physics and Chemistry of Glasses, 22, (1981) 139.

Références

Documents relatifs

The approximately constant value of I(q) over the small angle side of the studied q domain for samples a, c, d implies that the structures of the aerogels have low

This result proves that chemical structure (distances and angles of the chemical bonds) of the iron-adhesive interphase is unsensitive (resistance) to the change of

addition of ammonia rapidly titrates the yttrium atoms to produce yttrium imide (YNH), which is itself titrated away to form yttrium imide-ammonia complexes with up to three

Indications given by the fiber optics sensors and measurements of the pole position were in sufficiently good agreement to determine which of the pressure sensors were inside the

The PAMPRE set-up aims at simulating the reactivity and production of solid aerosols in Titan’s ionospheric conditions through heterogeneous chemistry in a

pneumoniaeH[KLELWLQJUHVLVWDQFH WRFHIWD]LGLPHDYLEDFWDPKDVEHHQREVHUYHGUHFHQWO\LQ,WDO\

The remaining of the paper is organized as follows. The following section is devoted to the technical lemmas we will need. In particular, Section 2.3 contains the three

I observe the historical monthly returns of the custom bond indices, the iBoxx index, benchmark tracker fund and commercial actively managed bond funds over a five