• Aucun résultat trouvé

CALCULATION OF INNER CORE ELECTRON BINDING ENERGIES IN METALS

N/A
N/A
Protected

Academic year: 2021

Partager "CALCULATION OF INNER CORE ELECTRON BINDING ENERGIES IN METALS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00227312

https://hal.archives-ouvertes.fr/jpa-00227312

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CALCULATION OF INNER CORE ELECTRON BINDING ENERGIES IN METALS

A. Zdetsis, C. Nicolaides

To cite this version:

A. Zdetsis, C. Nicolaides. CALCULATION OF INNER CORE ELECTRON BINDING EN- ERGIES IN METALS. Journal de Physique Colloques, 1987, 48 (C9), pp.C9-1071-C9-1074.

�10.1051/jphyscol:19879195�. �jpa-00227312�

(2)

CALCULATION OF INNER CORE ELECTRON BINDING ENERGIES IN METALS

A.D. ZDETSIS and C.A. N I C O L A I D E S *

Department of Physics, University of Crete and Research Center of Crete, PO Box 1527, 711 10 Heraklio, Crete, Greece

'mational Hellenic Research Foundation, GR-501/1 Athens, Greece

A b s t r a c t

-

Employing s t a t e s p e c i f i c t o t a l energy d i f f e r e n c e s between t h e c o r e h o l e and t h e ground Hartree-Fock c l u s t e r s t a t e s . we o b t a i n t h e ASCF b i n d i n a energy o f i n n e r c o r e e l e c t r o n s i n m e t a l s . T h i s ASCF value, enhanced by a t o m i c c o r r e l a t i o n and r e l a t i v i t y e f f e c t s can p r o v i d e i n n e r c o r e e l e c t r o n b i n d i n g e n e r g i e s i n v e r y good agreement w i t h experiment, R e s u l t s have been o b t a i n e d t h u s f a r f o r L i , Be, Mg and Na metals.

A l a r g e amount o f e x p e r i m e n t a l work has been d i r e c t e d t o t h e s t u d y o f c o r e l e v e l b i n d i n g e n e r g i e s d u r i n g t h e l a s t two decades

rl],

because i t was e a r l y r e a l i z e d t h a t these b i n d i n g e n e r g i e s r e f l e c t t h e chemical environment o f t h e atom. A p r o p e r t h e o r e t i c a l u n d e r s t a n d i n g o f these b i n d i n g e n e r g i e s and t h e i r s h i f t s would e x p l o i t a l l t h e w e a l t h o f s p e c t r o s c o p i c i n f o r m a t i o n a v a i l a b l e . O f s p e c i a l i n t e r e s t and importance a r e t h e c o r e e l e c t r o n b i n d i n g e n e r g i e s i n m e t a l s and t h e i r r e l a t i v e s h i f t f r o m t h e a t o m i c s t a t e , T h e i r a c c u r a t e c a l c u l a t i o n , , measurement and subsequent i n t e r - p r e t a t i o n embodies a b r o a d spectrum o f u s e f u l i n f o r m a t i o n about t h e o r i e s o f e l e c t r o - n i c s t r u c t u r e , bonding and dynamics

121.

The t h e o r e t i c a l o n e - e l e c t r o n b i n d i n g energy i s d e f i n e d as:

Eb = Et ( N - I )

-

Et ( N ) ( 1 )

where t t ( N - I ) and E t ( N ) a r e t h e t o t a l e n e r g i e s o f t h e f i n a l and i n i t i a l s t a t e s o f t h e N e l e c t r o n system r e s p e c t i v e l y . F o r metals, i f t h e system i s l o o k e d a t as a whole, t h e r e s u l t i n g c o m p l e x i t y o f t h e many-body problem i s enormous. T h e r e f o r e , s i n c e t h e e a r l y 19701s, a number o f approximate models have been enployed, d i s c a r d - i n g e l e c t r o n c o r r e l a t i o n and a i a i n g a t some reasonable q u a s i - q u a n t i t a t i v e understand- i n g . Several improved models have appeared i n t h e l a t e 1 9 7 0 ' s - e a r l y 1980's which have been b r i e f l y reviewed o r r e f e r e n c e d i n Refs. [I-31. Our p r e s e n t approach, which has been s u c c e s s f u l l y t e s t e d f o r Be b e f o r e [2], i s based on s t a t e s p e c i f i c

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19879195

(3)

C9-1072 JOURNAL DE PHYSIQUE

s e l f - c o n s i s t e n t f i e l d (SCF) c a l c u l a t i o n s a t t h e c l u s t e r Hartree-Fock l e v e l [2], This work i s based on two assumptions:

( 1 ) The c o n t r i b u t i o n s t o t h e e b in equation ( 1 ) come from two sources: F i r s t , from t h e o r b i t a l approximation a t t h e 4SCF Hartree-Fock l e v e l . This implies t h a t , adopting t h e independent p a r t i c l e model, a l l i n t e r a c t i o n s should be computed s e l f - c o n s i s t e n t l y , f o r i n i t i a l and f i n a l m e t a l l i c s t a t e s e p a r a t e l y . In t h i s way, relax- a t i o n e f f e c t s coming from within t h e atom and those coming from t h e s o l i d medium a r e accounted f o r e x p l i c i t l y . Second, from t h e e f f e c t s of e l e c t r o n c o r r e l a t i o n within t h e atom. These e f f e c t s a r e l o c a l i z e d and correspond t o v i r t u a l e x c i t a t i o n s of high energy a s compared t o t h a t of t h e m e t a l l i c e l e c t r o n s . Therefore, t h e i r influence on t h e binding energy of an inner e l e c t r o n i n t h e s o l i d and i n t h e f r e e atom must be almost t h e same.

( 2 ) The s u i t a b i l i t y of a theory depends on t h e physical q u a n t i t y under examina- t i o n . Thus, i n t h e cage of p r o p e r t i e s involving i n n e r e l e c t r o n s , i t i s proposed t h a t even a metal can be approximated well by a s u i t a b l y l a r g e Hartree-Fock c l u s t e r . The c l u s t e r s i z e u s u a l l y i s determined by t h e n e a r e s t and next near neighbors of a r e f e - rence atom i n t h e c r y s t a l geometry of t h e metal.

I t has been i l l u s t r a t e d [4,5] t h a t t h e small c l u s t e r approximation i s adequate enough f o r d e ~ c r i b i n g ~ s e v e r a l l i g h t metals with r e s p e c t t o e l e c t r o n i c , s t r u c t u r a l and phonon q u a n t i t i e s . The I s binding energy of Li besides Be was a l s o c a l c u l a t e d with excel l e n t agreement with experiment 141

.

Here, we p r e s e n t I s binding energy r e s u l t s f o r Be, L i , Na and Mg metals.

The ASCF c l u s t e r binding energy i s obtained from ( 1 ) by replacing Et(N-I) and Et(N) with t h e corresponding t o t a l c l u s t e r e n e r g i e s f o r t h e depopulated and t h e normal (ground) s t a t e s r e s p e c t i v e l y . This i s done by employing a modified version of t h e program UHFABK of A.B. Kunz, which i s capable of s e l e c t i v e l y depopulating occupied o r b i t a l s . The c l u s t e r ASCF value accounts f o r symmetry, exchange and complete r e l a x a t i o n of t h e o r b i t a l s . Contributions of atomiclike e l e c t r o n c o r r e l a t i o n and r e l a t i v i t y e f f e c t s , A E a , ( e s p e c i a l l y f o r heavier atoms) can be incorporated separate1 y by simp1 e superposition t o t h e c l u s t e r ASCF r e s u l t s . The f i n a l c o r r e l a t e d binding energy E:, i s thus given by

The b a s i s f u n c t i o n s e t s used i n t h i s c a l c u l a t i o n , t o g e t h e r with detaiTs about t h e c l u s t e r geometry a r e i n p a r t included in r e f . [2,4,5]. Further d e t a i l s w i l l be published elsewhere,

In Table I , we have summarized t h e main r e s u l t s of t h i s work, concerning t h e I s binding e n e r g i e s t o g e t h e r with c a l c u l a t e d work function and Fermi energy values.

The work f u n c t i o n s , (and i n t u r n Fermi e n e r g i e s ) l i s t e d here a r e obtained by ASCF

(4)

Comparison o f t h e c a l c u l a t e d and measured I s b i n d i n g e n e r g i e s , work f u n c t i o n and Fermi e n e r g i e s f o r some s i m p l e metals.

I

Work F u n c t i o n Is b i n d i n g (eV)

I

Fermi Energy ( e v )

I

enerqy ( e v )

c a l c u l a t i o n 4.10 3.30

Lit:fcqcc)experiment 1

3.99

1

2.38 59.50 59.48

c a l c u l a t i o n Li(:R) experiment

( )

c a l c u l a t i o n Lijfjc)experiment

c a l c u l a t i o n Li/h;")experiment

c a l c u l a t i o n Be e x p e r i m e n t

c a l c u l a t i o n Be[:; l n L x p e r i n e n t

*

R e s u l t s f r o m A.D. Z d e t s i s r e f . [4].

+ The b i n d i n g energy does n o t i n c l u d e t h e a t o m i c l i k e c o r r e c t i o n AEa.

5.0

-

5.1 3.81 3.6

- 15.0 11.4-14.1

c a l c u l a t i o n

Na( experiment

c a l c u l a t i o n

Mg experiment

$ From A.D. Z d e t s i s , t h i s volume.

14,5

--

s t a t e s p e c i f i c d i f f e r e n c e s . The Koopman's v a l u e s a r e w e l l o v e r e s t i m a t e d due t o poor screening. The " e x p e r i m e n t a l " Fermi e n e r g i e s a r e t a k e n from band s t r u c t u r e c a l c u l a - t i o n s i n t h e l i t e r a t u r e . The r e s u l t s f o r L i , p r e s e n t e d i n ref.[4] a r e g i v e n f o r s e v e r a l competing c r y s t a l s t r u c t u r e s . The n o r n a l f o r m o f L i i s t h e c u b i c bcc s t r u c t u r e which a t q u i t e l o w temperatures transforms i n t o a compiex 9R phase [4]

.

The r e s u l t s f o r Be t h i n f i l m have been p r e s e n t e d i n t h i s volume a t a d i f f e r e n t c o n t e x t . AS we move i n t o h e a v i e r atoms, w i t h d - o r b i t a l s (Na, Mg) t h e l a r g e number o f b a s i s f u n c t i o n s makes necessary l a r g e amount o f c o n t r a c t i o n s i n t h e b a s i s s e t , p r o d u c i n g t h u s a p o o r e r agreement w i t h experiment. To improve t h i s agreement, w i t h a moderate s i z e computer, w i l l t a k e a r a t h e r l a r g e amount o f computer t i m e and i s n o t w a r r a n t e d a t t h i s time.

4.1 - 3.8

- 4.0

- 3.5 3.9

3.9 3.23 18.0 14.1

The means o f i m p r o v i n g t h e s e r e s u l t s is,nontheless, s t r a i g h t f o r w a r d and n o t 60.86

- 61.40

- 60.44

- 115.4 115.2-115.6 2.25

--

114.7

-

3.6 2.3 4.9 3.7

1072.2 1074.0 1304.1 1306.7

(5)

C9-1074 JOURNAL

DE

PHYSIQUE

e x p e n s i v e , e s p e c i a l l y f o ~ a l a r g e s i z e computer system.Needless t o say, t h a t even w i t h o u t any f u r t h e r improvement, t h e p r e s e n t r e s u l t s a r e r e a l l y i m p r e s s i v e .

F u t u r e work on more c o m p l i c a t e d systems w i l l t e s t t h e v a l i d i t y and p r a c t i c a l i t y o f t h e p r e s e n t scheme.

References

[ll B. Johansson and N. Flartensson, Phys. Rev. 821 (1980) 4427; and r e f e r e n c e s t h e r e i n

[2] C.A. N i c o l a i d e s , A.D. Z d e t s i s and A.N. A n d r i o t i s , S o l i d S t a t e Commun. 42 (1982) 227

[3] P.H. C i t r i n and G.K. Wertheim, Phys. Rev. B27 (1983) 3176 [4] A.D. Z d e t s i s , Phys. Rev. B34 (1986) 7666

[5] A.D. Z d e t s i s , Phys. Rev. B35 (1987) 5868

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to