• Aucun résultat trouvé

LASER-ENHANCED IONIZATION SPECTROMETRY FOR TRACE METAL ANALYSIS

N/A
N/A
Protected

Academic year: 2021

Partager "LASER-ENHANCED IONIZATION SPECTROMETRY FOR TRACE METAL ANALYSIS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00223284

https://hal.archives-ouvertes.fr/jpa-00223284

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LASER-ENHANCED IONIZATION SPECTROMETRY FOR TRACE METAL ANALYSIS

G. Turk, J. Travis, J. Devoe

To cite this version:

G. Turk, J. Travis, J. Devoe. LASER-ENHANCED IONIZATION SPECTROMETRY FOR TRACE METAL ANALYSIS. Journal de Physique Colloques, 1983, 44 (C7), pp.C7-301-C7-309.

�10.1051/jphyscol:1983727�. �jpa-00223284�

(2)

JOURNAL D€ PHYSIQUE

Colloque C7, supplCment. a u nO1l, Tome 44, novembre 1983 page C7-301

LASER-ENHANCED I O N I Z A T I O N SPECTROMETRY FOR TRACE M E T A L A N A L Y S I S

G.C. Turk, J.C. Travis and J.R. DeVoe

Center f ~ r Ancr Z y t i c a l Chemistry, U . S . !lJational Rurenu o f Standards, k s h i n y t o n , D.C. 2 0 2 3 4 , U.S.A.

La spectrom6trie laser par augmentation de l'ionisation est une application de la spectromEtrie optogalvanique pour l'analyse quantitative des 61Ements rn@tal.

liques?il'btat d e traces dans les flammes. Cette communication passe en revue la LittCrature scientifique B ce sujet et r&sume les performances de cette mEthode dans son Gtat de d6veloppement actuel.

Abstract

Laser-enhanced ionization spect rometry is an application of optogalvanic s p e c t r o s c o p y for q u a n t i t a t i v e a n a l y s i s of t r a c e c o n c e n t r a t i o n s of m e t a l l i c e l e m e n t s in flames. T h i s paper r e v i e w s t h e s c i e n t i f i c l i t e r a t u r e o n t h i s subject, and summarizes the performance of the method i n its present state of development.

I

-

Development o f t h e Method

D u r i n g t h e past decade considerable e f f o r t has been devoted by researchers i n t h e f i e l d o f a n a l y t i c a l chemistry r e g a r d i n g t h e use o f t u n a b l e dye l a s e r s as a l i g h t s o u r c e f o r s p e c t r o c h e m i c a l a n a l y s i s . One o f t h e f r u i t s o f t h i s r e s e a r c h has been t h e development o f a t o t a l l y new and unique technique f o r spectrochemical a n a l y s i s c a l l e d l a s e r - e n h a n c e d i o n i z a t i o n ( L E I ) s p e c t r o m e t r y . I t i s an a p p l i c a t i o n o f o p t o g a l v a n i c s p e c t r o s c o p y f o r q u a n t i t a t i v e a n a l y s i S o f t r a c e c o n c e n t r a t i o n s o f m e t a l l i c elements i n flames. As w i t h t h e more t r a d i t i o n a l forms o f f l a m e analysis, s o l u t i o n s o f samples t o be a n a l y z e d a r e a s p i r a t e d i n t o t h e f l a m e , where t h e y a r e v a p o r i z e d and decomposed t o a t o m i c form. U s i n g a t u n a b l e dye l a s e r f o r d i s c r e t e p h o t o - e x c i t a t i o n o f t h e element of i n t e r e s t r e s u l t s i n a s i g n i f i c a n t p e r t u b a t i o n o f t h e t h e r m a l e n e r g y l e v e l d i s t r i b u t i o n o f t h o s e atoms. The enhanced r a t e o f c o l l i s i o n a l i o n i z a t i o n o f t h e r e s u l t i n g e x c i t e d s t a t e atoms r e l a t i v e t o t h e ground s t a t e i s t h e b a s i s o f t h e t e c h n i q u e , and t h e s o u r c e o f t h e name

--

l a s e r - e n h a n c e d i o n i z a t i o n . T h i s enhanced r a t e o f i o n i z a t i o n can be detected d i r e c t l y w i t h i n t h e f l a m e w i t h electrodes c o n f i g u r e d as an e l e c t r i c a l probe. The non-optical n a t u r e o f s i g n a l d e t e c t i o n renders

LE1

unique among t h e methods o f spectrochemical analysis.

P r o b l e m s a s s o c i a t e d w i t h o p t i c a l d e t e c t i o n methods, such as i n t e r f e r e n c e f r o m s c a t t e r e d l a s e r r a d i a t i o n , a r e avoided. Laser-enhanced i o n i z a t i o n i s a p r i m e example o f a method o f a n a l y s i s made p o s s i b l e by t h e advent o f t h e laser, and which i s w e l l s u i t e d t o t a k e f u l l advantage o f many d e s i r a b l e p r o p e r t i e s , o f t h e l a s e r as a s p e c t roscopic t o o l .

The f i r s t experiments on optogal vanic spectroscopy i n flames were performed i n 1976 by Green, K e l l e r , Schenck, T r a v i s , and L u t h e r , a t t h e U.S. N a t i o n a l Bureau o f S t a n d a r d s (NBS) (1). U s i n g a chopped c o n t i n u o u s wave dye l a s e r an o p t o g a l v a n i c s i g n a l was observed f o r Na i n an a i r - a c e t y l e n e f l a m e when t h e l a s e r was tuned t o t h e t h e Na D-lines. D e t e c t i o n o f sodium s o l u t i o n concentrations a t t h e ng/mL l e v e l was

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983727

(3)

JOURNAL DE PHYSIQUE

accomplished using a s i m p l e d e t e c t i o n system c o n s i s t i n g o f a p a i r o f biased tungsten rods w i t h i n t h e flame, a picoammeter, and a l o c k - i n a m p l i f i e r .

Turk, e t a1 (2,3,4) measured l i m i t s o f d e t e c t i o n f o r 18 elements by LE1 u s i n g a frequency doubled flashlamp pumped dye laser. I n many cases these d e t e c t i o n l i m i t s were o r d e r - o f - m a g n i t u d e i m p r o v e m e n t s o v e r what c o u l d be a c h i e v e d by most o t h e r methods o f analysis, p a r t i c u l a r l y f o r l o w e r i o n i z a t i o n p o t e n t i a l elements such as t h e a l k a l i and Group 111-A metals. D e t e c t i o n l i m i t s f o r h i g h (

>

7 eV) i o n i z a t i o n p o t e n t i a l elements were q u i t e poor. Mu1 t i p l ic a t iv e i n t e r f e r e n c e e f f e c t s were noted i n s i t u a t i o n s where t h e element o f i n t e r e s t was present i n s o l u t i o n s which contained a l k a l i m e t a l s , even a t t h e r e l a t i v e l y l o w c o n c e n t r a t i o n l e v e l o f 1 0 ~ g / m L . T h i s i n t e r f e r e n c e caused enhancement, depression o r complete l o s s o f t h e a n a l y t e s i g n a l depending on t h e c o n c e n t r a t i o n o f a l k a l i m e t a l p r e s e n t . I t was a t t r i b u t e d t o changes i n t h e e l e c t r i c f i e l d g r a d i e n t s between t h e electrodes caused by t h e normal c o l l i s i o n a l i o n i z a t i o n o f a l k a l i metals i n t h e a i r - a c e t y l e n e flame.

Because a l k a l i metals a r e a common c o n s t i t u e n t o f many o f t h e samples which one may wish t o analyze u s i n g LEI, i n t e r f e r e n c e s caused by t h e presence o f such metals i s o f concern. F o r t h i s r e a s o n much e f f o r t has been d e v o t e d t o t h e u n d e r s t a n d i n g and r e d u c t i o n o f t h i s inteference. Green and h i s research group a t t h e U n i v e r s i t y o f Arkansas i n p a r t i c u l a r have made d e t a i l e d s t u d i e s c h a r a c t e r i z i n g t h e e x t e n t and b e h a v i o r o f t h e a l k a l i m e t a l i n t e r f e r e n c e (5-7). Turk (8) has d e s c r i b e d an e l e c t r o d e d e s i g n u t i l i z i n g a w a t e r - c o o l e d c a t h o d e w i t h i n t h e f l a m e w h i c h a1 l o w s alignment o f t h e l a s e r beam c l o s e t o t h e cathode. T h i s design has reduced t h e a l k a l i i n t e r f e r e n c e t o t h e p o i n t where i t s h o u l d no l o n g e r be a m a j o r i m p e d i m e n t t o t h e development o f LE1 as an a n a l y t i c a l technique.

Fundamental s t u d i e s regarding t h e mechanisms o f p r o d u c t i o n and d e t e c t i o n o f LE1 have been an important aspect o f t h e development of LE1 analysis. T r a v i s

,

e t al., ( 9 ) d e v e l o p e d t h e model f o r LE1 i o n p r o d u c t i o n based upon o p t i c a l and c o l l i s i o n a l p r o c e s s e s w i t h i n t h e flame. T h i s model was used t o g e n e r a t e a s e m i - e m p i r i c a l e q u a t i o n w h i c h can b e used t o p r e d i c t LE1 s e n s i t i v i t y f o r an e l e m e n t u s i n g a p a r t i c u l a r e x c i t a t i o n wavelength f r o m a f l a s h l a m p pumped dye laser. Smyth, e t al., (10) have extended t h i s model t o evaluate expected LE1 s i g n a l s from h i g h - l y i n g (n=4- 12) d l e v e l s o f sodium i n an air-hydrogen flame. Van Dyke and Alkemade (11,12) have made comparisons between simultaneously measured l a s e r induced fluorescence and LE1 s i g n a l S o f sodi urn i n a hydrogen-oxygen-argon flame.

The d e t a i l s o f how LE1 i s detected by t h e probe e l e c t r o d e s and r e g i s t e r e d as a c u r r e n t i n an e x t e r n a l c i r c u i t depend on t h e t y p e o f l a s e r e x c i t a t i o n b e i n g u t i l ized. F o r c o n t i n u o u s wave l a s e r e x c i t a t i o n , Schenck, e t al., (13) have s t u d i e d t h e s p a t i a l and t e m p o r a l c h a r a c t e r i s t i c s o f t h e LE1 s i g n a l . S i g n i f i c a n t agreement between experimental r e s u l t s and t h e o r e t i c a l p r e d i c t i o n s based on a one- dimensional model f o r charge c o l l e c t io n was demonstrated.

F o r p u l s e d LEI, B e r t h o u d , e t al., (14) have s t u d i e d t h e e f f e c t o f l a s e r beam p o s i t i o n , a p p l i e d p r o b e p o t e n t i a l , and f l a m e c o m p o s i t i o n on t h e shape o f t h e LE1 pulse f o r sodium i n t h e a i r - a c e t y l e n e flame u s i n g a n i t r o g e n pumped dye laser. They describe s i g n a l d e t e c t i o n w i t h a model based on c a p a c i t i v e e f f e c t s and d i r e c t charge c o l l e c t i o n . S i m i l a r measurements have been made by H a v r i l l a , e t al., (15) f o r i r o n LE1 w i t h a Nd:YAG pumped dye laser. The authors compare experimental r e s u l t s w i t h p r e d i c t i o n s o f pulse shapes based on a model o f charge i n d u c t i o n from t h e motion of a p o i n t charge p a i r created i n t h e flame by LEI. I n a d i f f e r e n t work (16) comparison o f s i g n a l d e t e c t i o n c h a r a c t e r i s t i c s o f p u l s e d and c o n t i n u o u s wave LE1 was made.

E x p e r i m e n t s d e m o n s t r a t e d t h a t c o n t i n u o u s wave LE I i S l e s s s u c c e p t i b l e t o i n t e r f e r e n c e e f f e c t s re1 ated t o t h e s i g n a l d e t e c t i o n process.

The fundamental d e t e c t i o n l i m i t o f t h e LE1 technique i s discussed i n papers by Matveev, e t a1.(17), and by T r a v i s (18). A d e s c r i p t i o n o f various sources o f noise encountered f o r LE1 w i t h a f l a s h l a m p pumped dye l a s e r i s a v a i l a b l e i n r e f e r e n c e (4).

A v e r y i m p o r t a n t advance i n t h e development o f a n a l y t i c a l LE1 was t h e

(4)

i m p l e m e n t a t i o n o f s t e p w i s e e x c i t a t i o n . The use o f t w o t u n a b l e l a s e r s t o s e q u e n t i a l l y e x c i t e t h e atom o f i n t e r e s t t o h i g h e r e n e r g y l e v e l s y i e l d s g r e a t l y i m p r o v e d d e t e c t i o n l i m i t s , p a r t i c u l a r l y f o r e l e m e n t s w i t h h i g h i o n i z a t i o n p o t e n t i a l S. I n a d d i t i o n , t h e r e q u i remevt o f a doubl e-resonance renders t h e method extremely selective. The f i r s t experiments i n t h i s area were performed a t Moscow S t a t e U n i v e r s i t y by Gonchakov, e t a1.,(19) f o r sodium. Subsequent p u b l i c a t i o n s on t h e subject have appeared f r o m t h e Moscow group (20,21), and t h e NBS group (22,23).

E x c e l l e n t l i m i t o f d e t e c t i o n f o r s i x elements w i t h i o n i z a t i o n p o t e n t i a l s between 7 and 10 eV were achieved u s i n g dual dye l a s e r s pumped by a frequency doubled and/or t r i p l e d Nd:YAG l a s e r (23). A d e m o n s t r a t i o n o f t h e use o f t h e d o u b l e - r e s o n a n c e s e l e c t i v i t y advantage o f stepwise e x c i t a t i o n t o c o r r e c t f o r an atomic l i n e overlap i n t e r f e r e n c e i s presented i n reference (23).

E x p e r i m e n t s w h i c h u t i l i z e a n i t r o g e n l a s e r t o p h o t o i o n i z e r a t h e r t h a n c o l l i s i o n a l l y i o n i z e e x c i t e d s t a t e sodium ions produced by s i n g l e s t e p e x c i t a t i o n i n a f l a m e w i t h a dye l a s e r have been r e p o r t e d by Van D i j k , e t a1.,(24), and a l s o i n a g r a p h i t e f u r n a c e a t o m i z e r by Gonchakov, e t a1.(25). The l a t t e r p u b l i c a t i o n a l s o describes a method which u t i l i z e s t h e fundamental r a d i a t i o n o f a Nd:YAG l a s e r as a p h o t o i o n i z a t i o n source f o r sodium f o l l o w i n g stepwise t u n a b l e l a s e r e x c i t a t i o n .

F o r f u r t h e r background i n f o r m a t i o n on t h e s u b j e c t o f laser-enhanced i o n i z a t i o n spectrometry t h e reader i s r e f e r r e d t o several review a r t i c l e s which have appeared on t h e subject (26-28).

I 1

-

Present Status o f t h e Method

Laser-enhanced i o n i z a t i o n spectrometry i s now being t e s t e d a t t h e NBS Center f o r A n a l y t i c a l C h e m i s t r y f o r use as a t e c h n i q u e f o r c e r t i f i c a t i o n o f S t a n d a r d R e f e r e n c e M a t e r i a l s (SRM's). Much i s b e i n g l e a r n e d as e x p e r i e n c e i s g a i n e d u s i n g LE1 f o r a n a l y s i s o f r e a l samples. F i g u r e 1 summarizes t h e i n s t r u m e n t a t i o n which a t t h e present t i m e has proven t o be best s u i t e d f o r a n a l y t i c a l LE1 spectrometry.

F i g u r e 1. Schematic o f experimental system f o r a n a l y t i c a l LE1 spectrometry.

Pulsed Flame High Voltage (-)

Dye Laser

I I I I I

- -

Pre-

I

Trigger Amp

Pulse Amplifier

L

- - I

Active Filter v

Trig. Sig.

Chart Boxcar

Recorder Averager

(5)

C7-304 JOIJRNAI- DE PHYSIQUE

Stepwise l a s e r e x c i t a t i o n i s e s s e n t i a l f o r most a n a l y t i c a l work because o f i t s h i g h s e n s i t i v i t y and s e l e c t i v i t y . The p u l s e d l a s e r s y s t e m c o n s i s t s o f a s i n g l e Nd:YAG l a s e r pumping t w o independently t u n a b l e dye lasers. A pumping pulse energy o f 70 mJ o f second harmonic and 30 mJ o f t h i r d harmonic l i g h t has proven adequate f o r most s i t u a t i o n s , even a f t e r beam s p l i t t i n g t o t w o dye l a s e r s f o r s t e p w i s e e x c i t a t i o n . I n f a c t , t h e a n a l y t e s i g n a l response t o l a s e r power i s o f t e n saturated, and f u r t h e r increases i n l a s e r power o n l y a c t t o increase background s i g n a l s f r o m m u l t i - p h o t o n i o n i z a t i o n (MPI) o f f l a m e gases, o r o f f - r e s o n a n c e LE1 s i g n a l s f r o m sample species. S i t u a t i o n s have arisen, however, where more l a s e r pump power would be h e l p f u l i n o r d e r t o enhance t h e wavelength coverage and f l e x i b i l i t y o f t h e system by broadening t h e dye t u n i n g curves. The dye l a s e r s are transverse-pumped w i t h an o s c i l l a t o r and a s i n g l e stage a m p l i f i e r , capable o f 30 % conversion e f f i c i e n c y a t optimum wavelengths. The output o f one o f t h e dye l a s e r s i s frequency doubled and used for t h e f i r s t s t e p o f t h e stepwise e x c i t a t i o n scheme. Frequency doubling o f t h e o t h e r dye l a s e r has not been needed since, f o r a l l o f t h e elements s t u d i e d t h u s f a r , t h e r e q u i r e d second step l i n e has been i n t h e v i s i b l e r e g i o n o f t h e spectrum.

The t w o l a s e r beams are a l i g n e d c o l l i n e a r l y w i t h i n t h e flame, 1-2 mm below t h e s u r f a c e o f t h e w a t e r - c o o l e d c a t h o d e (8). A -1500 V p o t e n t i a l i s a p p l i e d t o t h e cathode. The burner head serves as t h e anode, and i s a t nominal ground p o t e n t i a l , except f o r t h e small p o t e n t i a l drop generated across t h e 10 k ohm r e s i s t o r which connects t h e burner t o ground as a path f o r dc flame i o n i z a t i o n current. Pulsed LE1 c u r r e n t i s coupled f r o m t h e anode t o t h e p r e a m p l i f i e r w i t h a 0.03 uF capacitor.

The f l a m e i s a commercially a v a i l a b l e u n i t , commonly used i n atomic absorption spectrometry, which u t i l i z e s a pneumatic nebul i z e r f o r s o l u t i o n i n t r o d u c t i o n i n t o t h e f l a m e gas mixture. The o p t i c a l path l e n g t h o f t h e f l a m e i s 5 cm. I n most cases a i r - a c e t y l e n e i s used as t h e o x i d a n t - f u e l mixture, which burns a t a temperature o f about 2500 K. Many elements form r e f r a c t o r y oxides i n t h e a i r - a c e t y l e n e flame, and r e q u i r e t h e h o t t e r (3000 K ) n i t r o u s o x i d e - a c e t y l e n e f l a m e t o a c h i e v e e f f i c i e n t a t o m i z a t i o n . E x p e r i e n c e u s i n g LE1 w i t h t h i s f l a m e i s l e s s e x t e n s i v e . Green (30) has r e c e n t l y measured several l i m i - t s o f d e t e c t i o n i n , t h e n i t r o u s o x i d e - a c e t y l e n e f l a m e and found values as low as 100 pg/mL.

Many years o f experience i n a n a l y s i s u s i n g atomic absorption and emission have demonstrated t h e Acetylene flame w i t h e i t h e r a i r o r n i t r o u s oxide as oxidant t o be t h e most p r a c t i c a l i n terms o f good atomization, s t a b i l i t y , and freedom from i n t e r - element i n t e r f e r e n c e effects. It i s o f t e n t e m p t i n g t o consider t h e use o f c o o l e r f l a m e s w i t h l o w e r i o n i z a t i o n backgrounds as a l t e r n a t i v e atom r e s e r v o i r s f o r LEI.

Such flames would have l o w e r backgound n o i s e levels, and probably l o w e r l i m i t s o f d e t e c t i o n . However, i n most cases, t h e i o n i z a t i o n background i n t r o d u c e d t o t h e f l a m e f r o m t h e sample exceeds t h a t o f t h e n a t u r a l f l a m e c o n s t i t u e n t gases. T h i s f a c t , and t h e i n t e r - e l ement i n t e r f e r e n c e s common t o c o o l e r f l a m e s makes t h e i r general a n a l y t i c a l use i m p r a c t i c a l .

The preampl i f i e r used f o r a n a l y t i c a l LE1 i s a 1V/pA c u r r e n t - t o - v o l t a g e c o n v e r t e r as d e s c r i b e d i n r e f e r e n c e (31). An u p p e r f r e q u e n c y c u t o f f o f approximately 1 MHz i s experienced, which i n t e g r a t e s t h e s i g n a l pulse, which has a n a t u r a l c o l l e c t i o n t i m e p r o f i l e o f approximately 100 ns. Faster, b u t l o w e r gain, p r e a m p l i f i e r s have been u t i l i z e d t o measure LE1 p u l s e shapes (14,15), b u t p o o r s i g n a l - t o - n o i s e r a t i o s degrade d e t e c t i o n l i m i t s . I n t e g r a t i o n o f t h e LE1 p u l s e by t h e slower, h i g h g a i n p r e a m p l i f i e r has proven t o be b e n e f i c i a l , s i n c e pulse shapes i n t h e 100 ns t i m e p e r i o d have been shown t o b e much more s e n s i t i v e t o changes i n a l k a l i metal m a t r i x c o n c e n t r a t i o n than t h e area o f t h e LE1 pulse (14,15).

F u r t h e r f i l t e r i n g o f l o w e r frequency f l a m e n o i s e a f t e r t h e p r e a m p l i f i e r w i t h a 10 kHz-l MHz a c t i v e f i l t e r i s b e n e f i c i a l , p a r t i c u l a r l y f o r samples which increase t h e dc f l a m e i o n i z a t i o n c u r r e n t . F i n a l s i g n a l p r o c e s s i n g i s w i t h a 1 us g a t e d i n t e g r a t o r . A 10 us t i m e constant, which gives a t i m e constant i n r e a l - t i m e o f 1 second a t t h e l a s e r p u l s e r e p e t i t i o n r a t e o f 10, Hz, i s t y p i c a l l y used.

T a b l e I c o n t a i n s a l i s t o f t h e b e s t l i m i t s o f d e t e c t i o n by LE1 p u b l i s h e d t o

(6)

d a t e f o r 3 1 elements. I n f o r m a t i o n r e g a r d i n g t h e flame, e x c i t a t i o n wavelength(s), and l a s e r u t i l i z e d i s a l s o included. Many o f these d e t e c t i o n l i m i t s , p a r t i c u l a r l y those done using stepwise e x c i t a t i o n , o r some o f t h e elements w i t h low i o n i z a t i o n p o t e n t i a l s , a r e order-of-magnitude o r g r e a t e r improvements over what can be achieved w i t h most o t h e r methods o f analysis. Considerable improvement can be expected f o r many o f t h e elements which have n o t y e t been done u s i n g stepwise e x c i t a t i o n .

TABLE I LE1 L i m i t s o f D e t e c t i o n

Element 1 s t o r S i n g l e 2nd Step

as er^ lame^ LODC

Reference Step Wavelength Wavelength

(nm) (nm) (ng/mL

a ~ = f l ash1 amp pumped dye l aser, Y=Nd:YAG pumped dye l aser, N=nitrogen pumped dye laser, K=krypton i o n pumped cw dye l a s e r . b ~ = a i r - a c e t y l ene, N=nitrous oxide-acetyne, H=ai r-hydrogen,

P=propane-butane-air

' l i m i t o f d e t e c t i o n based on t h r e e times t h e standard d e v i a t i o n o f a s i n g l e measurement f o r a s i g n a l e q u i v a l e n t t o t h e background.

G.C. Turk, new data

(7)

C7-306 JOURNAL DE PHYSIQUE

Experience using LE1 f o r t r a c e metal a n a l y s i s o f r e a l samples i s increasing, but remains small i n comparison t o t h e considerable experience gathered w i t h t h e m e t h o d s o f a n a l y s i s p r e s e n t l y r e l i e d u p o n b y i n d u s t r y i n a m u l t i t u d e o f a p p l i c a t i o n s . T a b l e I 1 summarizes p u b l i s h e d d a t a on LE1 a p p l i c a t i o n s . M o s t o f t h i s work i s w i t h a l l o y samples, i n which a l k a l i metal concentrations a r e l e s s t h a n 1 pg/mL. The double-resonance s e l e c t i v i t y advantage o f s t e p w i se e x c i t a t i o n LE1 can be v e r y h e l p f u l i n e n s u r i n g a c c u r a t e r e s u l t s f r o m t h e complex s p e c t r u m o f t e n encountered i n such samples. I n a d d i t i o n t o t h e measurements mentioned i n Table 11, unpublished r e a l analyses done a t NBS u s i n g LE1 i n c l u d e t h e d e t e r m i n a t i o n of: Mn i n r i v e r s e d i m e n t (SRM 1645); N i i n f l a s h o i l d i s t i l l a t e and f u e l o i l (SRM 1634a); N i i n stearates; CO i n i n c o l o y s and inconels; CO i n h i g h a l l o y s t e e l (SRM 1289); and Cd, CO, Cu, Mn, N i , and Pb i n s y n t h e t i c f r e s h .water (SRM 1643a).

TABLE I 1 Sample Analyses by LE1

SAMPLE ELEMENT REFERENCE

High Temperature Ni-based A1 l oy I n

Low A l l o y S t e e l s (SRM 361,362,363) Mn (3

Pb, Sn (3)

Unalloyed Copper (SRM 396) Sn (23

Semi conductor A1 l oy I n (23)

Pine Needles (SRM 1575) Rb (21

(16)

One problem f r e q u e n t l y encountered i n t h e use o f LE1 f o r a n a l y s i s i s s p e c t r a l interference. These i n t e r f e r e n c e s f a l l i n t o t h r e e categories: (1) MP1 o f f l a m e gas m o l e c u l e s ; ( 2 ) broadband LE1 o f u n d i s s o c i a t e d sample m o l e c u l e s , and; ( 3 ) o f f - resonance LE1 o f sample m a t r i x atoms. For stepwise e x c i t a t i o n , e i t h e r o r b o t h o f t h e l a s e r e x c i t a t i o n wavelengths may be t h e source o f an interference. Occasionally t h e r e i s an i n t e r a c t i o n between t h e t w o w a v e l e n g t h s w h i c h a f f e c t s t h e s p e c t r a l background. Unused l a s e r r a d i a t i o n , such as t h e fundamental l i g h t o f a frequency doubled laser, should be e l i m i n a t e d from t h e f l a m e i f possible.

M u l t i - p h o t o n i o n i z a t i o n o f NO (32,33) and PO ( 3 4 ) i n flames has been reported.

The process i s a f u n c t i o n o f l a s e r i r r a d i a n c e r a i s e d t o t h e power o f t h e number o f p h o t o n s r e q u i r e d f o r i o n i z a t i o n , and h i g h peak power, f o c u s s e d l a s e r s a r e used t o i n d u c e MPI. However, t h e u n f o c u s s e d beam o f t h e f r e q u e n c y d o u b l e d dye l a s e r described above i s capable o f i n d u c i n g a MP1 spectrum. T h i s has n o t y e t proven t o be a serious problem. Lowering o f l a s e r power w i l l increase t h e LE1 t o MP1 r a t i o . A d j u s t m e n t o f t h e f u e l t o o x i d a n t r a t i o has a l s o been used i n o u r l a b o r a t o r y t o reduce MP1 backgound by l o w e r i n g t h e equi l i b r i um c o n c e n t r a t i o n o f t h e r e s p o n s i b l e molecule. PO i n t h e f l a m e a r i s e s as a decomposition product o f phosphine, which i s a common c o n t a m i n a n t i n a c e t y l e n e gas tanks. The u s e of p h o s p h i n e - f r e e t a n k s of acetylene removes t h i S p o s s i b l e source o f interfernce.

M o l e c u l a r LE1 spectra f r o m metal oxides and hydroxides have been observed (35).

These s p e c i e s a r e a s o u r c e o f s p e c t r a l i n t e r f e r e n c e when samples b e i n g a n a l y z e d i n t r o d u c e such m o l e c u l e s i n t o t h e flame. The p r e s e n c e o f Ca i n t h e sample has proven troublesome i n t h i s regard. Calcium i s o n l y p a r t i a l l y atomized i n t h e a i r - acetylene flame, and some i s present as CaOH. A broadband LE1 molecular spectrum of CaOH h a s been r e c o r d e d i n t h e w a v e l e n g t h r e g i o n b e t w e e n 558 and 600 nm, w h i c h o v e r l a p s t h e second s t e p e x c i t a t i o n l i n e s used f o r t h e a n a l y s i s o f s e v e r a l elements. The CaOH background can be separated f r o m a n a l y t i c a l s i g n a l by scanning t h e l a s e r across t h e atomic a n a l y s i s l i n e , b u t t h e l i m i t o f d e t e c t i o n i s degraded by t h e n o i s e associated w i t h t h e CaOH signal.

The t h i r d v a r i e t y o f s p e c t r a l i n t e r f e r e n c e t h a t has been encountered i s t h a t f r o m LE1 s i g n a l s produced by m a t r i x elements a t wavelength: whic?, a r e considerably o f f resonance, on t h e p r e s s u r e broadened L o r e n t z i a n w i n g s o f a l i n e . The

(8)

a t t e n u a t i o n i n t r a n s i t i o n p r o b a b i l i t y several nanometers from t h e l i n e c e n t e r might t y p i c a l l y be 7 orders o f magnitude. However, a s t r o n g v i s i b l e resonance l i n e can be o p t i c a l l y s a t u r a t e d a t peak center by a f a c t o r o f 3 o r 4 orders o f magnitude using t h e l a s e r system described above, b u t n o t saturated f a r o f f resonance. This b r i n g s t h e peak-to-wing r a t i o down t o 3 o r 4 orders o f magnitude. A s i t u a t i o n i n which t h e a n a l y t e e l e m e n t i s p r e s e n t i n a sample t o g e t h e r w i t h a n o t h e r e l e m e n t w h i c h i s several nanometers from any o p t i c a l resonance, b u t several orders o f magnitude more c o n c e n t r a t e d , a n d / o r more s e n s i t i v e , i s q u i t e common, and l e a d s t o a s e r i o u s s p e c t r a l i n t e r f e r e n c e f o r LEI, as we1 l as f o r t h e c l a s s i c a l o p t i c a l a n a l y t i c a l methods. F o r stepwise e x c i t a t i o n LEI, o n l y t h e a l k a l i metals have been a problem as i n t e r f e r i n g elements. Because o f t h e l o w i o n i z a t i o n p o t e n t i a l o f these elements, s i n g l e photon LE1 s e n s i t i v i t y i s comparable t o t h a t o f stepwise e x c i t a t i o n f o r o t h e r elements. I n t e r f e r e n c e between h i g h i o n i z a t i o n p o t e n t i a l elements i s l e s s l i k e l y because o f t h e great d i f f e r e n c e i n s e n s i t i v i t y between stepwi se e x c i t a t i o n o f t h e analyte, and s i n g l e photon e x c i t a t i o n o f t h e i n t e r f e r i n g element.

An example o f an off-resonance LE1 s p e c t r a l i n t e r f e r e n c e i s shown i n f i g u r e 2.

The f i g u r e shows t w o LE1 s p e c t r a l scans a c r o s s t h e f i r s t s t e p N i l i n e a t 300.2 nm w i t h t h e second s t e p l a s e r f i x e d a t 561.5 nm. The s m a l l e r l i n e a t 300.36 nm i s another Ni l i n e , which i s not connected t o t h e second step by a common i n t e r m e d i a t e e n e r g y l e v e l . The t w o scans were t a k e n w h i l e a s p i r a t i n g 0.1 ug/mL N i s o l u t i o n s w i t h and w i t h o u t 10 ~ g / m L o f Na present. A background s i g n a l i s observed i n t h e

Wavelength (nm)

F i g u r e 2. Wavelength scans o v e r t h e 1 s t s t e p N i t r a n s i t i o n a t 300.2 nm w i t h 2nd step wavelength f i x e d a t 561.5 nm. Scan (a) was taken w h i l e a s p i r a t i n g a 100 ng/mL Ni s o l u t i o n

,

and scan (b)was taken w h i l e a s p i r a t i n g a s o l u t i o n c o n t a i n i n g 100 ng/mL o f N i t o g e t h e r w i t h 10 ~ g / m L o f Na.

(9)

JOURNAI- D€ PHYSIQUE

p r e s e n c e o f t h e Na. T h i s background i s i n d u c e d by t h e unscanned, s e c o n d - s t e p v i s i b l e wavelength

,

which i s 7 nm away from t h e 3p-4d Na t r a n s i t i o n s near 569 nm, w h i c h g i v e v e r y s t r o n g LE1 s i g n a l s . A p e a k - t o - b a c k g r o u n d measurement makes t h e necessary background c o r r e c t i o n f o r q u a n t i t a t i v e measurement, but t h e degradation i n d e t e c t i o n l i m i t caused by t h e increased background noise i s obvious. The source o f t h i s b a s e l i n e n o i s e i s t h e pulse-to-pulse l a s e r i n t e n s i t y f l u c t u a t i o n , and may be subject t o improvement by n o r m a l i z a t i o n o f t h e LE1 s i g n a l t o l a s e r power on a shot- by-shot bas i s.

These s p e c t r a l i n t e r f e r e n c e s a r e a s e r i o u s impediment t o t h e a p p l i c a t i o n o f LE1 t o t r a c e m e t a l a n a l y s i s , more s e r i o u s t h a n t h e m u l t i p1 i c a t i v e i o n i z a t i o n i n t e r f e r e n c e mentioned e a r l i e r . The troublesome i n t e r f e r i ng elements a r e confined t o t h e f i r s t t w o rows o f t h e p e r i o d i c table. We have found chemical s e p a r a t i o n o f t h e s e i o n s f r o m t h e sample s o l u t i o n t o be n e c e s s a r y i n some cases. A s e p a r a t i o n procedure u t i l i z i n g c h e l a t i n g r e s i n t o separate a l k a l i and a l k a l i n e e a r t h elements from t h e t r a c e elements (36) has proven t o be very e f f e c t i v e as a pre-treatment o f samples f o r LE1 analysis.

The f u t u r e o f LE1 spectrometry looks promising. Increased understanding o f t h e fundamental p h y s i c a l processes i n v o l v e d i n LE1

,

a l o n g w i t h i n c r e a s e d a n a l y t i c a l a p p l i c a t i o n e x p e r i e n c e w i l l c o n t i n u e t h e s t e a d y i m p r o v e m e n t o f t h e method. New advances i n l a s e r t e c h n o l o g y w i l l c e r t a i n l y c o n t i n u e t o occur, a g a i n l e a d i n g t o improved a n a l y t i c a l performance o f LEI. The authors b e l i e v e t h a t LE1 w i l l become an important method o f a n a l y s i s t o be used t o solve d i f f i c u l t problems i n t h e area o f t r a c e metal a n a l y s i s i n complex matrices.

-

References

GREEN, R.B., KELLER, R.A., SCHENCK, P.K., TRAVIS, J.C., LUTHER G.G., J. Am.

Chem. Soc.

98

(1976) 8517.

TURK, G.C., TRAVIS, J.C., DeVOE, J.R., O'HAVER, T.C., Anal. Chem.

50

(1978) 817.

TURK, G.C., TRAVIS, J.C., DeVOE, J.R., O'HAVER, T.C., Anal. Chem.

51

(1979) 1890.

TURK, G.C., Ph.D. d i s s e r t a t i o n , Univ. o f Maryland, 1978.

GREEN, R.B., HAVRILLA, G.J., TRASK, T.O., Appl. Spectrosc.

2

(1980) 561.

HAVRILLA, G.J., GREEN, R.B., Anal. Chem.

52

(1980) 2376.

HAVRILLA, G.J., Ph.0. d i s s e r t a t i o n , West V i r g i n i a Univ. ,1980.

TURK, G.C., Anal. Chem.

53

(1981) 1187.

TRAVIS, J.C., SCHENCK, P.K., TURK, G.C., MALLARD, W.G., Anal. Chem. (1979) 1516.

SMYTH, K.C., SCHENCK, P.K., MALLARD, W.G., Ch. 12 i n

Laser

Probes

f

Combustion Chemistry, ed. by D.R. Crosley, ACS Symposium Series 134-ican Chemical Society, Washington, D.C.) 1980.

VAN DIJK, C.A., ALKEMADE, C.Th.J., Comb. and Flame

38

(1980) 37.

VAN DIJK, C.A., Ph.D. d i s s e r t a t i o n , Univ. o f U t r e c h t , 1978.

(10)

SCHENCK, P.K., TRAVIS, J.C., TURK, G.C., O'HAVER, T.C., J. Phys. Chem.

85

(1981) 2547.

BERTHOUO, T., LIPINSKY J., CAMUS P., STEHLE, J.L., Anal. Chem.

55

(1983) 959.

HAVRILLA, G.J., SCHENCK P.K., TRAVIS J.C., TURK G.C., Anal. Chem., t o be published.

HAVRILLA, G.J., WEEKS, S.J., TRAVIS, J.C., Anal. Chem.

54

(1982) 2566.

MATVEEV, O.I., ZOROV, N.B., KUZYAKOV, Y.Y., Moscow Univ. Chem. B u l l . (Eng.

Transl.)

33

(1978) 23.

TRAVIS, J.C., J. Chem. Ed.

59

(1982) 909.

GONCHACOV, A.S., ZOROV, N.B., KUZYAKOV, Y.Y., MATVEEV, O.I., Anal. L e t t .

12

(1979) 1037.

ZOROV, N.B., KUZYAKOV, Y.Y., MATVEEV, O.I., CHAPLYGIN, V.I., J. Anal. Chem. USSR (Eng. Transl.)

35

(1981) 1108.

SALCEOO TORRES, L.E., ZOROV, N.B., KUZYAKOV, Y.Y., J. Anal. Chem. USSR (Eng.

Transl.)

36

(1982) 1016.

TURK, G.C., MALLARD, W.G., SCHENCK, P.K., SMYTH, K.C., Anal. Chem.

51

(1979)

2408.

TURK, G.C., DeVOE, J.R., TRAVIS, J.C., Anal. Chem.

54

(1982) 643.

VAN OIJK, C.A., CURRAN, F.M., LIN, K.C., CROUCH, S.R., Anal. Chem.

53

(1981) 1275.

GONCHAKOV, A.S., ZOROV, N.B., KUYZYAKOV, Y.Y., MATVEEV, O.I., J. Anal. Chem.

USSR (Eng. Transl.)

34

(1980) 1792.

TRAVIS, J.C., TURK, G.C., GREEN, R.B., Anal. Chem.

54

(1982) 1006A.

TRAVIS, J.C., Proceedings o f t h e NATO Advanced Study I n s t i t u t e No. 82/33

--

" A n a l y t i c a l Laser Spectroscopy" (Plenum Pub1 i s h i n g Co., New York) 1982.

ZOROV, N.B., KUZYAKOV, Y.Y., MATVEEV, O.I., J. Anal. Chem. USSR (Eng. Transl.) 37 (1982) 400.

-

CHAPLYGIN, V.I., KUZYAKOV, Y.Y., ZOROV, N.B., Spectrochim. Acta

%,

Supplement (1983) 386.

PETERS, R.A., GREEN, R.B., 185th N a t i o n a l ACS Meeting, paper no. 209, S e a t t l e , WA, March 24,1983.

HAVRILLA, G.J., GREEN, R.B., Chem. Biomed. Environ. Instrum.

11

(1981) 273.

MALLARD, W.G., MILLER, J.H., SMYTH, K.C., J. Chem. Phys.

76

(1982) 3483.

ROCKNEY, B.H., COOL, T.A., GRANT, E.R., Chem. Phys. L e t t .

87

(1982) 141.

SMYTH, K.C., MALLARD, W.G., J. Chem. Phys. (1982) 1779.

SCHENCK, P.K., MALLARD, W.G., TRAVIS, J.C., SMYTH, K.C., J. Chem. Phys.

69

(1978) 5147.

36. KINGSTON, H.M., BARNES, I.L., BRADY, T.J., RAINS, T.C., CHAMP, M.A., Anal.

Chem.

50

(1978) 2064.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

 Vous devez proposer une expérience en rédigeant un protocole expérimental qui permettrait de vérifier si votre hypothèse est correcte ou non, et la liste du matériel

[r]

Assuming the matrix containing various elements from which the sodium is the most easily ionizable one (Vi = 5.14 eV), it may be shown that a direct photoionization will

Molec- ular content of nascent soot: Family characterization using two-step laser desorption laser ionization mass spectrometry... 2

Trace des droites qui passent par les points indiqués, puis repasse en couleur chaque segment formé :.. Trace la droite (a) qui passe par les points A

The development of matrix assisted laser desorption ionization and related methods dates back to the late seventies when it was shown that the irradiation of small