• Aucun résultat trouvé

Oxide phase characterization in simulated high burn-up UO$_2$ fuels in the early stages of a nuclear severe accident

N/A
N/A
Protected

Academic year: 2021

Partager "Oxide phase characterization in simulated high burn-up UO$_2$ fuels in the early stages of a nuclear severe accident"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: cea-02338951

https://hal-cea.archives-ouvertes.fr/cea-02338951

Submitted on 21 Feb 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Oxide phase characterization in simulated high burn-up

UO_2 fuels in the early stages of a nuclear severe

accident

C. Le Gall, E. Geiger, O. Proux, M. Rovezzi, P.L. Solari, M. Hunault, V.

Klosek, C. Riglet Martial, J. Léchelle, F. Audubert, et al.

To cite this version:

C. Le Gall, E. Geiger, O. Proux, M. Rovezzi, P.L. Solari, et al.. Oxide phase characterization in simulated high burn-up UO_2 fuels in the early stages of a nuclear severe accident. The 2018 MRS Spring Meeting & Exhibit, Apr 2018, Phoenix, United States. �cea-02338951�

(2)

Oxide phase characterization in

simulated high burn-up UO

2

fuels in

the early stages of a nuclear severe

accident

April 2-6, 2018 – Phoenix, Arizona

MRS Spring Meeting 2018

|

Claire Le Gall

CEA Cadarache

|

DEN

|

DEC

|

SA3E

|

LAMIR

C. Le Gall

1

, E. Geiger

2

, O. Proux

3

, M. Rovezzi

3

, P.L. Solari

4

, M. Hunault

4

, V.

Klosek

1

, C. Riglet-Martial

1

, J. Léchelle

1

, F. Audubert

1

, Y. Pontillon

1

,

J.-L. Hazemann

5

1CEA / DEN / DEC, 2 DCCE / RMC Canada, 3OSUG-UGA, 4MARS / SOLEIL Synchrotron, 5Institut Néel / CNRS UGA

MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

(3)

NUCLEAR FUEL FISSION

Fission products

| PAGE 2 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

D. Heinze Ph.D thesis (2010)

Mo Ba

Fission yield: FP most probably producted

Fission occurs in nuclear fuel pellets

UO2 or (U,Pu)O2 fuel in its Zr alloyed cladding

Pressurized Water Reactor (PWR) Fuel assembly

(4)

SEVERE ACCIDENT PHENOMENA

Source term

| PAGE 3 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

Source Term

Nature and quantity of

released radioactive

materials

FP

FP release from the

fuel

J. P. Van Dorsselaere et al., NED 236 (2006) B. R. Sehgal, Nuclear safety in LWR (2012)

Corium formation

Loss of coolant

Cladding

oxidation

(5)

BaMoO

4(s)

Oxide phase

STUDY OF FPs BEHAVIOR

Mechanism suggested in the literature

| PAGE 4 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

G. Nicaise, 8th International Conference on Candu Fuel (2003) G. Nicaise, NT DPAM/SEMIC 2004/37 (2004)

E. Geiger, PhD thesis (2016) H. Kleykamp, J. Nucl. Mater. (1985)

MoO

2(g)

MoO

2(s)

MoO

2(g)

BaZrO

3(s) Oxide phase

Zr

(s)

ZrO

2(s)

BaO

(s)

BaZrO

3(s)

BaO

(g)

Ba

(g)

Mo/Ru

(s)

Mo

(g)

Mo/Ru

(s)

Oxidation

plateau

(1100-1500°C)

High temp.

plateau

(≥ 2300°C)

Temperature

ramp

(400-1100°C)

Temperature

ramp

(1500-2000°C)

Initial State

SIMFuels

(6)

SIMFuels SAMPLES

Fabrication data

| PAGE 5 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

Depleted UO

2

+ 11 oxides

(FPs surrogates)

Sintering at 1650°C

during 2h under pure H

2

Elements

Ba

Ce

La

Mo

Sr

Y

Zr

Rh

Pd

Ru

Nd

Concentration

(at%)

0,26

0,61

0,20

0,51

0,13

0,06

0,60

0,03

0,42

0,64

0,91

Concentrations representative of an irradiated fuel

(7)

SIMFuels SAMPLES

Thermal treatments

| PAGE 6 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

Mo (s ) + R u(s) + Pd(s) + Rh (s) + ZrO 2 (s) + BaZrO 3(s) + UO2(s) Ru(s) + Pd (s) + Rh(s) + ZrO 2(s) + Ba ZrO3 (s) + MoO2 (s) + UO2(s) Ru(s) + Pd(s) + Rh(s) + ZrO2(s) + BaMo O 4(s) + MoO2 (s) + U O 2(s) ZrO2(s) + BaM oO4(s) + MoO 2 (s) + U4 O9(s2 )

Pd(liq) + MoO2(s) + ZrO2(s)

Pd(liq) + UO2(s) + Ru(s) + Pd(s) + Rh(s ) + + Rh(s) + Ru(s) + UO2(s)

Ru(s) + Mo(s) + Rh3U(s)

H2O/ H2 = 50 H2O/H2 = 0.0 2 Pd (l iq ) + R h (s ) + R u (s ) + M o (s ) + Z rO 2 (s ) + B a Z rO 3 (s ) + U O2 (s ) BaZrO 3(s) BaMo O4(s) Ba - O2 - Mo - Zr - Ru - Rh - Pd - U Temperature (°C) R T ln p (O 2 ) ( k J/ m ol O 2 ) 400 600 800 1000 1200 1400 1600 1800 2000 -500 -450 -400 -350 -300 -250 -200 -150 Mo (s ) + R u(s) + Pd(s) + Rh (s) + ZrO2(s) + Ba ZrO3 (s) + UO2(s) Ru(s) + Pd (s) + Rh(s) + ZrO 2(s) + Ba ZrO3(s) + Mo O2(s) + UO 2(s) Ru(s) + Pd(s) + Rh(s) + ZrO2(s) + BaMo O 4(s) + MoO2 (s) + U O 2(s) ZrO2(s) + BaMo O 4(s) + M oO 2(s) + U4O9(s2 )

Pd(liq) + MoO2(s) + ZrO2(s)

Pd(liq) + UO2(s) +

Ru(s) + Pd(s) + R

h(s) +

+ Rh(s) + Ru(s) + UO2(s)

Ru(s) + Mo(s) + Rh3U(s)

H2O/ H2 = 50 H2O/H2 = 0.0 2 Pd (l iq ) + R h (s ) + R u (s ) + M o (s ) + Z rO 2 (s ) + B a Z rO 3 (s ) + U O 2 (s ) BaZrO 3(s) BaMo O4(s) Ba - O2 - Mo - Zr - Ru - Rh - Pd - U Temperature (°C) R T ln p (O 2 ) ( k J/ m ol O 2 ) 400 600 800 1000 1200 1400 1600 1800 2000 -500 -450 -400 -350 -300 -250 -200 -150 R1700 R1000 R900 R700 R400 O1000 O900 O700 O400

BaZrO

3(s)

+ MoO

2(s)

+ ½O

2(g)

BaMoO

4(s)

+ ZrO

2(s)

(8)

(Ba+Sr)/Mo ≈ 1

(Ba+Sr)/Zr ≈ 0.6

O/Zr ≈ 4

CHARACTERIZATIONS

SEM-EDX

| PAGE 7 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

C. Thouzellier internship (2017), H. Kleykamp, J. Nucl. Mater. (1985); E. Geiger et al. ERMSAR proceedings (2015); E Geiger et al. J. Nucl. Mater. (accepted)

Sample as sintered

1000°C, -292 kJ.mol

-1

1700°C, -426 kJ.mol

-1

O/Zr ≈ 2

(Sr+Ba)/Zr ≈ 1

O/Zr ≈ 2.5

Ba

0,8

Sr

0,2

ZrO

3

ZrO

2

Ba

0,9

Sr

0,1

ZrO

3

Mo

Oxide

phase

O/Mo ≈ 5

Ba

0,8

Sr

0,2

ZrO

3

ZrO

2

(Ba, Sr)(Zr, Mo)O

x

(9)

CHARACTERIZATIONS

SEM-EDX

| PAGE 8 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

C. Thouzellier internship (2017), H. Kleykamp, J. Nucl. Mater. (1985); E. Geiger et al. ERMSAR proceedings (2015); E Geiger et al. J. Nucl. Mater. (accepted)

Sample as sintered

1000°C, -292 kJ.mol

-1

1700°C, -426 kJ.mol

-1

O/Mo ≈ 2

Oxide

phase

Metallic

phase

100% Mo

100% Mo

100% Mo

MoO

2

(10)

0 1 2 3 4

5

6 7 8 9

10

11 19975 20025 20075

N

orm(

E)

Energy (eV)

0 1 2 3 4 5 6 7

8

9 10 11 12 19975 20025 20075 Norm( E ) Energy (eV) R1700 T0 SrMoO4 BaMoO4 MoO3 O1000 O900 T0 MoO2 Mo SrMoO4 BaMoO4 MoO3 MoO2 Mo 0 1 2 3 4

5

6 7 8 9

10

11 19975 20025 20075

N

orm(

E)

Energy (eV)

0 1 2 3 4 5 6 7

8

9 10 11 12 19975 20025 20075 Norm( E ) Energy (eV) R1700 T0 SrMoO4 BaMoO4 MoO3 O1000 O900 T0 MoO2 Mo SrMoO4 BaMoO4 MoO3 MoO2 Mo

CHARACTERIZATIONS

X-ray Absorption Spectroscopy at Mo K-edge

| PAGE 9 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

No strong evolution of Mo

XANES reducing conditions

Metallic Mo

0 1 2 3 4

5

6 7 8 9

10

11 19975 20025 20075

N

orm(

E)

Energy (eV)

0 1 2 3 4 5 6 7

8

9 10 11 12 19975 20025 20075 Norm( E ) Energy (eV) R1700 T0 SrMoO4 BaMoO4 MoO3 O1000 O900 T0 MoO2 Mo SrMoO4 BaMoO4 MoO3 MoO2 Mo

Evolution of Mo local

environment from 900°C in

oxidizing conditions

Consistent with Mo oxidation,

MoO

2

formation and the oxide

(11)

0 1 2 3 4 5 6 7 8 9 10 17975 18025 18075 Norm( E ) Energy (eV) 0 1 2 3 4 5 6

7

8 9 17975 18025 18075 Norm (E) Energy (eV) BaZrO3 ZrO2 R1700 T0 Zr BaZrO3 ZrO2 Zr O1000 T0 0 1 2 3 4 5 6 7 8 9 10 17975 18025 18075 Norm( E ) Energy (eV) 0 1 2 3 4 5 6

7

8 9 17975 18025 18075 Norm (E) Energy (eV) BaZrO3 ZrO2 R1700 T0 BaZrO3 ZrO2 O1000 T0 0 1 2 3 4 5 6 7 8 9 10 17975 18025 18075 Norm( E ) Energy (eV) 0 1 2 3 4 5 6

7

8 9 17975 18025 18075 Norm (E) Energy (eV) BaZrO3 ZrO2 R1700 T0 BaZrO3 ZrO2 O1000 T0 | PAGE 10 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

Zr XANES evolution at 1700°C

in reducing conditions

Consistent with the

continuous BaZrO

3

formation and stabilization

0 1 2 3 4 5 6 7 8 9 10 17975 18025 18075 Norm( E ) Energy (eV) 0 1 2 3 4 5 6

7

8 9 17975 18025 18075 Norm (E) Energy (eV) BaZrO3 ZrO2 R1700 T0 Zr BaZrO3 ZrO2 Zr O1000 T0 0 1 2 3 4 5 6 7 8 9 10 17975 18025 18075 Norm( E ) Energy (eV) 0 1 2 3 4 5 6

7

8 9 17975 18025 18075 Norm (E) Energy (eV) BaZrO3 ZrO2 R1700 T0 BaZrO3 ZrO2 O1000 T0

Zr XANES evolution from

1000°C in oxidizing conditions

Destruction of part of the

BaZrO

3

phase and formation of

ZrO

2

?

Consistent with the oxide phase

evolution (Mo reacts with Ba)

CHARACTERIZATIONS

(12)

0 5 10 15 20 25 5 220 5 250 5 280 5 310 5 340 Norm (E ) Energy (eV) BaMoO4 BaZrO3 BaCO3 BaO 1700°C, 10-27 0 5 10 15 20 25 5 220 5 250 5 280 5 310 5 340 Norm (E ) Energy (eV) BaMoO4 BaZrO3 BaCO3 BaO 1700°C, 10-27 | PAGE 11 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

No Ba XANES evolution at

1700°C in reducing conditions

BaZrO

3

XANES analyses of the

O-samples scheduled in April

2018

CHARACTERIZATIONS

HERFD-XANES at Ba L

3

-edge

BaZrO3 BaMoO4 BaCO3 BaO R1700 T0

(13)

BaZrO

3(s) Oxide phase

BaZrO

3(s)

ZrO

2(s)

Mo/Ru

(s)

Mo/Ru

(s)

BaMoO

4(s) Oxide phase | PAGE 12 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

MoO

2(g)

ZrO

2(s)

BaZrO

3(s)

Mo/Ru

(s)

1000°C

400°C – 900°C

1700°C

Initial State

CONCLUSIONS

Evolution of the oxide phase

Oxidizing atmosphere Reducing atmosphere

ZrO

2(s)

To be confirmed

(14)

ESRF:

P. Colomp, O. Proux, M. Rovezzi, J. L. Hazemann

MARS/SOLEIL:

M. Hunault, P. L. Solari

CEA/LLCC:

C. Riglet Martial, D. Drouan, C. Tanguy, V. Klosek, J. Léchelle, G. Jomard

CEA/LCU:

F. Garel, P. Matheron, N. Tarisien, X. Itlis, H. Rouquette, J. Raynal,

J. Lamontagne

CEA/LAMIR:

C. Thouzellier, J.C. Richaud, M. Pontillon, G. Volle, A. Gallais During, Y.

Pontillon, F. Audubert, I. Moysan

Commissariat à l’énergie atomique et aux énergies alternatives Centre de Cadarache| 13108 Saint Paul lez Durance T. +33 (0)4 42 25 70 00

Etablissement public à caractère industriel et commercial | R.C.S Paris B 775 685 019 MRS Spring Meeting 2018, Phoenix, Arizona,

(15)

| PAGE 14 MRS Spring Meeting 2018, Phoenix, Arizona, April 2-6, 2018

5/6

X-RAY ABSORPTION SPECTROSCOPY

Principle

0

1

2

3

4

5

6

7

5200

5250

5300

5350

5400

Norm

µ

(E)

Energy (eV)

XANES

EXAFS

Geometry and

oxidation state

Interatomic distances,

coordination, nature

of nearest neighboors

Incident beam

X-ray fluorescence

Fluorescence

detector

Références

Documents relatifs

We establish (using a fluid limit approach) that the asymptotic, as n → ∞, expected queueing delay is zero when either (i) the number of memory bits grows logarithmically with n and

Constructive F eedback: Learning the Art rivets our attention on many of these interactions and the feedback about the events of teaching they provide teachers...

We have characterized in Theorem 4.9 the matricially γ-bounded H¨ormander calculus in terms of square functions of A.. This gives (almost) equivalent conditions, see Proposition

• S´emantique op´erationnelle (rappel). • Termes et pr´edicats en Prolog. • Relations entre les s´emantiques. .}).. D´efinition: un alphabet (F, P ) consiste de deux ensembles

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

National Commission for Museums and Monuments (NCMM) would put in place a training program and ensure a technical cooperation as well as participatory community development

l’appel, en droit anglais et luxembourgeois à l’encontre de la décision rendue sur opposition ou à la suite de l’annulation. À l’inverse, en droit belge et français,

However, Monte Carlo simulation can provide reference solutions for neutron transport, in that it introduces very few approximations as compared to deterministic solvers: in