• Aucun résultat trouvé

Multi-physics simulations with TRIPOLI-4$^R$ : coupling neutron transport with the CFD code TRUST/TrioCFD

N/A
N/A
Protected

Academic year: 2021

Partager "Multi-physics simulations with TRIPOLI-4$^R$ : coupling neutron transport with the CFD code TRUST/TrioCFD"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: cea-02339456

https://hal-cea.archives-ouvertes.fr/cea-02339456

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Multi-physics simulations with TRIPOLI-4

R

: coupling

neutron transport with the CFD code TRUST/TrioCFD

M. Faucher, D. Mancusi, A. Zoia, P.-E. Angeli, A. Bruneton, P. Ledac

To cite this version:

M. Faucher, D. Mancusi, A. Zoia, P.-E. Angeli, A. Bruneton, et al.. Multi-physics simulations with TRIPOLI-4R: coupling neutron transport with the CFD code TRUST/TrioCFD. International

Congress on Advances in Nuclear Power Plants (ICAPP - 2019), May 2019, Juan-Les-Pins, France. �cea-02339456�

(2)

ICAPP 2019 – International Congress on Advances in Nuclear Power Plants

France, Juan-les-pins – 2019, May 12 │15

Multi-physics simulations with TRIPOLI-4

®

: coupling neutron

transport with the CFD code TRUST/TrioCFD

Margaux Faucher1, Davide Mancusi1, Andrea Zoia1*, Pierre-Emmanuel Angeli2, Adrien Bruneton2, Pierre Ledac2

1Den-Service d‘Etudes des Réacteurs et de Mathématiques Appliquées (SERMA), CEA, Université Paris-Saclay,

91191 Gif-sur-Yvette, France

2Den-Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), CEA, Université Paris-Saclay, 91191

Gif-sur-Yvette, France

* Andrea Zoia, andrea.zoia@cea.fr

KEYWORDS: Monte Carlo, TRIPOLI-4®, CFD, TRUST/TrioCFD, multi-physics

The coupling between neutron transport, fuel thermo-mechanics and thermal-hydraulics is key for the description of fundamental reactivity feedback mechanisms as the Doppler and moderator effects, which are the main counter-reactions responsible for reactor stability. Multi-physics problems in reactor physics, where neutron transport is coupled to other disciplines such as thermal-hydraulics or thermo-mechanics, have mostly been handled so far by deterministic codes. However, Monte Carlo simulation can provide reference solutions for neutron transport, in that it introduces very few approximations as compared to deterministic solvers: in this respect, there is a growing interest for Monte Carlo tools to provide reference multi-physics simulations for reactor physics.

Thermal-hydraulics simulations based on Computational Fluid Dynamics (CFD) finely model the physical exchanges, at the expense of high requirements of computation time and memory; this contrasts with the comparatively faster porous-media-based simulations. However, the computer time required by Monte Carlo simulations, especially in the non-stationary regime, might be even longer than for CFD. Memory requirements for CFD are even more stringent: a few million mesh cells may be required to model a single fuel pin-cell by using a CFD code. Another challenge in the coupling strategy between Monte Carlo and thermal-hydraulics lies in the choice of the algorithm for mapping physical quantities between the volumes of the geometry for Monte-Carlo neutron transport and the very fine spatial meshes of the CFD code.

For all these reasons, the application of Monte Carlo for multi-physics simulations in reactor physics has initially been developed with porous-media codes [1,2,3]. In order to improve the accuracy of thermal-hydraulics modeling, couplings with CFD codes have been recently considered [4,5,6]; however, further investigation is necessary to meet the different challenges listed above: computer time, memory handling and mapping between geometries.

In this work, we present the coupling between a CFD solver and the Monte-Carlo neutron-transport code TRIPOLI-4® [7]. This coupling was made possible by the implementation of a multi-physics interface for TRIPOLI-4. As an external CFD thermal-hydraulics code, we use TRUST/TrioCFD [8,9]. Data exchange between the two codes is performed using the MEDCoupling library [10,11]. As a demonstration, we simulate the stationary state of a PWR pin cell based on SPERT III E-core nuclear reactor [12]. The steady state is approached iteratively: temperatures in the fuel and the moderator computed by TRUST/TrioCFD are given as inputs to TRIPOLI-4 for the following calculation step. Similarly, power distributions computed by TRIPOLI-4 are fed to TRUST/TrioCFD. The iterations stop when appropriate convergence criteria are met. We compare uncoupled and coupled simulations in order to highlight the effects of thermal-hydraulics feedbacks on the neutron flux. This work, combined with uncoupled kinetic method described in [13] is a stepping stone towards the analysis of accidental transients with TRIPOLI-4. Full simulations of the kinetic behaviour of SPERT III E-core coupled with thermal-hydraulics will be considered for future work, in view of comparing simulation results with available experimental measurements.

(3)

ICAPP 2019 – International Congress on Advances in Nuclear Power Plants

France, Juan-les-pins – 2019, May 12 │15

References

1) J. Leppänen, T. Viitanen and V. Valtavirta, Multi-physics Coupling Scheme in the Serpent 2 Monte Carlo Code, Transactions of the American Nuclear Society, 107, 1165-1168 (2012).

2) B. L. Sjenitzer, J. E. Hoogenboom, J. J. Escalanteb and V. Sanchez Espinoza, Coupling of dynamic Monte

Carlo with thermal-hydraulic feedback, Annals of Nuclear Energy, 76, 27-29 (2015).

3) A. Ivanov, V. Sanchez, R. Stieglitz and K. Ivanov, High fidelity simulation of conventional and innovative LWR

with the coupled Monte-Carlo thermal-hydraulic system MCNP-SUBCHANFLOW, Nuclear Engineering

and Design, 262, 264-275 (2013).

4) R. Tuominen, V. Valtavirta, J. Peltola and J. Leppänen, Coupling Serpent and OpenFOAM for neutronics –

CFD multiphysics calculations, PHYSOR (2016).

5) R. Henry, I. Tiselj and L. Snoj, CFD/Monte-Carlo neutron transport coupling scheme, application to TRIGA

reactor, Annals of Nuclear Energy, 110, 36-47 (2017).

6) L. Wang, P. He, G. Sun, L. Hao and J. Song, Research of SuperMC and FLUENT coupling simulation based

on the parametric-surface-represented entity clipping method, PHYSOR (2018).

7) E. Brun, F. Damian, C. Diop, E. Dumonteil, F. Hugot, C. Jouanne, Y. Lee, F. Malvagi, A. Mazzolo, O. Petit et al., Tripoli-4, CEA, EDF and AREVA reference Monte Carlo code, Annals of Nuclear Energy, 82, 151-160 (2015).

8) P.-E. Angeli, U. Bieder and G. Fauchet, Overview of the TrioCFD code: main features, V&V

procedures and typical applications to nuclear engineering, Proc. of 16 th International Topical

Meeting on Nuclear Reactor Thermalhydraulics, Chicago, USA (2015). 9) http://www-trio-u.cea.fr (2017).

10)V. Bergeaud and V. Lefebvre, SALOME. A software integration platform for multi-physics, pre-processing and

visualisation, SNA + MC2010 (2010).

11) https://www.salome-platform.org (2018).

12) R. E. Heffner and T. R. Wilson, SPERT III reactor facility, U.S. Atomic Energy Commission, Idaho Operations Office and Phillips Petroleum Company (1961).

13) M. Faucher, D. Mancusi and A. Zoia, New kinetic simulation capabilities for Tripoli-4: Methods and

Références

Documents relatifs

En sens inverse, les prévisionnistes doivent résister à la tentation, grande s'il s'agit de moyen terme, de sélectionner la politique économique optimale à

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

changements à votre document déjà sauvegardé, on vous demandera si vous voulez sauvegarder les changements apportés à votre document.. Pour fermer votre document, suivez

Dès que vous ajoutez dans votre projet un film contenant des marqueurs de chapitre, le bouton correspondant dans le menu principal mène à un sou menu à partir

The main fMRI data analysis methods available in pyhrf are of two kinds: (i) parcellation tools

لمعلا اذه ىرأ تىح يرخلأاو لولأا نوعلا ناك يذلا لله دملحا هئاطعو هتمظعب اغيلب ادحم لله دملحا يدهج ةرثم يدهلأ ماترحاو رخف لكب مدقتأ نأ نيفرشي اهرمع

The works [12, 18] describe the quantisation conditions for the spectrum by solving the finite difference scalar t − Q equation in non-explicit terms, in the spirit of the

Bevor ich näher auf die einzelnen Beschreibungen eingehe, möchte ich hervorheben, dass dieser Zyklus Steine von sehr verschiedener Größe versammelt: