• Aucun résultat trouvé

ELLIPSOMETRIC STUDY OF THE ICE SURFACE STRUCTURE JUST BELOW THE MELTING POINT

N/A
N/A
Protected

Academic year: 2021

Partager "ELLIPSOMETRIC STUDY OF THE ICE SURFACE STRUCTURE JUST BELOW THE MELTING POINT"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00226314

https://hal.archives-ouvertes.fr/jpa-00226314

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELLIPSOMETRIC STUDY OF THE ICE SURFACE STRUCTURE JUST BELOW THE MELTING POINT

Y. Furukawa, M. Yamamoto, T. Kuroda

To cite this version:

Y. Furukawa, M. Yamamoto, T. Kuroda. ELLIPSOMETRIC STUDY OF THE ICE SURFACE

STRUCTURE JUST BELOW THE MELTING POINT. Journal de Physique Colloques, 1987, 48

(C1), pp.C1-495-C1-501. �10.1051/jphyscol:1987168�. �jpa-00226314�

(2)

JOURNAL DE PHYSIQUE

Colloque C1, supplbment au n o 3, Tome 48, mars 1987

ELLIPSOMETRIC STUDY OF THE ICE SURFACE STRUCTURE JUST BELOW THE MELTING POINT

Y. FURUKAWA, M. YAMAMOTO* and T. KURODA

The Institute of Low Temperature Sciences, Hokkaido University, Sapporo 060, Japan

"~esearch Institute for Scientific Measurements, T0h0ku University, Sendai 980, Japan

&sum6 - L'indice de rdfraction nl et lldpaisseur de la couche de transition (Q.L.L.) h la surface dlun cristal de glace h tdrature juste en-dessous du point de fusion (O°C) ont 6th mesurds h 116quilibre en utilisant une m6thode d'ellipscnn6trie in-situ. Les couches de transition ont dtd-observ6es h des tdratures sdrieures h -2 et -4OC pour les faces f 0001fet ~ 1 0 1 0 ~ respectivement et n1 = 1,330 pour les deux faces. Cette valeur est tres proche de celle de l'eau en volume h 0°C. ~ssoci6 h des observations sur les formes des cristaux de glace prbs du point de fusion, on doit s1attendre h ce que 13 structure de llinterface entre la couche de transition et la glace sur la face {lolo! varie brutalement au-dessous de -Z°C pour devenir plus rugueuse.

Abstract : The r e f r a c t i v e index n l and the thickness d of the t r a n s i t i o n layer ( q u a s i - l i q u i d layer) on the surface of an ice crystal a t temperatures j u s t below the me1 ting point (0°C) were measured in equilibrium, using an in-situ method of el lipso- metry. The t r a n s i t i o n layers were observed a t temperatures above -2 and -4°C f o r (0001)- and {1010}-faces, respectively, and n was 1.330 f o r both faces, which i s very close t o the r e f r a c t i v e index of bulk w a k r a t O°C (nw=1.333). Combined with the observational r e s u l t s about the ice crystal shapes near the melting point, i t was expected t h a t the interface structure between t r a n s i t i o n layer and i c e on the (1010)-face changes from smooth t o rough a t -2°C.

1. Introduction

I t i s known t h a t the ice crystal surface i s covered with a t r a n s i t i o n layer (so-called quasi-liquid layer, hereafter QLL) a t temperatures j u s t below i t s bulk melting point (0°C) in equilibrium. The surface s t r u c t u r e l i k e t h i s i s intimately related t o the physical phenomena such a s the mechanical adhesion[1,2], sintering[3], gas adsorption[4,5], d i e l e c t r i c constant[6], surface e l e c t r i c a l conductivity[7,8], NMR[9], Vol t a effect[lO], photoemission[ll] and surface disorder[12]. A1 though these experimental r e s u l t s show the existence of the t r a n s i t i o n layer on the ice surface, conclusions d i f f e r each other on the physical properties of the layer, i t s thickness and t h e temperature range f o r which i t i s stable. Recently, Beaglehole and NasonC13l showed, by the measurements of the e l l i p t i c i t y c o e f f i c i e n t f o r the reflected l i g h t from the ice surface, t h a t the layer thickness depends on the surface orientations. We consider, however, t h a t there were some problems in t h e i r measure- ments; f i r s t they assumed t h a t the r e f r a c t i v e index of the t r a n s i t i o n layer was equal1 t o t h a t of bulk water, and second the i c e surfaces used were prepared dest- ructively. Consequently, we do not know yet whether the t r a n s i t i o n layer on the i c e surface i s "water-like" indeed and how thick i t i s .

On the other hand, several theoretical works about the t r a n s i t i o n layer have been pub1 ished. Fletcher[l4] indicated t h a t the water layer i s energetically favored a t temperatures above - ( 5 2 3)"C and i t s thickness decreases with decreasing temperature. Kuroda and Lacmann[l5] showed t h a t the QCL on the i c e surface i s thermodynamically s t a b l e above a c r i t i c a l temperature and the habit change of snow c r y s t a l s can be explained by the anisotropy of the thickness of QLL.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987168

(3)

C1-496 JOURNAL DE PHYSIQUE

The aim of t h i s work i s t o measure d i r e c t l y the physical properties and t h e thickness of the t r a n s i t i o n layer on C0001)- and {10'iOI-faces of i c e s i n g l e c r y s t a l , using an ellipsometry. As a r e s u l t , the temperature dependence and t h e anisotropy of t h e layer thickness a r e c l a r i f i e d and the surface s t r u c t u r e of i c e crystal i s discussed i n connection w i t h the habit change of i c e c r y s t a l s observed j u s t below the melting point.

2. Experimental 2.1 El 1 ipsometry

When the l i n e a r l y polarized l i g h t i s reflected a t t h e surface covered with the t r a n s i t i o n layer l i k e QLL (fig. I ) , i t i s changed t o the e l l i p t i c a l l y polarized l i g h t . Then the complex r e l a t i v e amplitude attenuation p, which i s a r a t i o of amplitude r e f l e c t i v i t i e s ( R and Rs) of p- and s-polarizations, i s given by,

P

p = R / R = tanY exp(iA)

P s (1 1

Where, tanY i s related t o the r e l a t i v e amplitude change and A t o the r e l a t i v e phase change. The value p i s extremely s e n s i t i v e t o the r e f r a c t i v e index nl and the thickness d of t h e layer[l6].

A null ellipsometry was operated f o r t h e He-Ne l a s e r beam (X=633nm) i n a walk-in cold room. To measure p of i c e surface a t maximum s e n s i t i v i t y t o n and d, the angle of incidence (o was s e t t o 52.950". The sample was put in a chamher with two small holes t o admit the l a s e r beam. The inside wall of the sample chamber was covered with a t h i n i c e sheet which works a s a vapor source. Temperatures of sample and vapor source were able t o be controlled separately.

2.2 Sample of i c e surface

The sample of i c e surface used i n t h i s experiment was a s l i c e of a negative crystal ( f i g . 2-a), which i s a hole i n a shape of a sharp hexagonal prism grown a t the end of a hypodermic needle inserted in an i c e s i n g l e c r y s t a l , by continuous evacuation of water vapor through the needle 17,181. The surface prepared in t h i s way has several c h a r a c t e r i s t i c s a s follows; 11) the maximum diameter of surface i s

Fig. 1 Schematic i l l u s t r a t i o n of the reflec- Fig. 2 Negative c r y s t a l s of i c e : t i o n of polarized l i g h t a t the surface ( a ) a negative crystal with a covered with a t r a n s i t i o n layer. hexagonal prism shape (below r e f r a c t i v e indices of the t . r a n s i t i ~ ! i 5 1 % ~ r -2°C); (b) a spherical nega- and i c e , d: thickness of t h e layer. The t i v e crystal with two small p-polarization i s parallel t o t h e plane basal f a c e t s (above -2°C).

of incidence and the s-polarization per- Scale bars indicate 1 nun.

pendicular t o the surface.

(4)

3 t o 4 mm, ( 2 ) molecularly f l a t , (3) f r e e from misorientations (exact surface orien- t a t i o n of {00011 and {10TO1), and ( 4 ) f r e e from contaminations. Consequently, these surfaces a r e the best one in the purpose of t h e investigation of crystal surface.

3. Experimental r e s u l t s

A s e r i e s of experiments were carried out a t various conditions. For a l l experiments, the surface temperature T was s e t f i r s t below -lO°C, and increased a t the constant r a t e of O.l0C/min o r l e s s ?

Figure 3 shows the typical change of observed (Y, A) a t t h e condition close t o the equilibrium, which i s plotted in a polar coordinate ( Y , A). The thin s o l i d curves show simulated changes in p f o r thickening a s i n g l e layer of various refrac- t i v e indices. When the t r a n s i t i o n layer does not e x i s t on the surface, (Y, A) i s plotted a t the point S. Since the r e f r a c t i v e index of bulk water i s 1.333 a t O°C, a change in n l appears mainly in I, whereas d appears in A? i f the layer i s water- like. The observed changes of (Y, A) f o r (0001)- and (1010)-faces show t h a t the r e f r a c t i v e index of t h e t r a n s i t i o n layer i s around 1.330, which is quite close t o t h a t of water. I t a l s o means t h a t the properties of the t r a n s i t i o n layer a r e water- l i k e and the s i n g l e layer model i s acceptable f o r the model of i c e surface structure.

Figure 4 shows the change i n A with respect t o Ts f o r both faces.

Under the conclusion t h a t t h e r e f r a c t i v e index of the t r a n s i t i o n layer i s 1.330, the change of A can be read a s the change of t h e layer thickness a s shown in

fig. 4. This r e s u l t s show t h a t the temperature Tw, a t which the QLL appears on the i c e surface, i s -2°C and -4°C f o r {00011- and (10TO1-faces, respectively. Although the temperature dependence of d and the temperature Tw f o r {1010)-faces f a i r l y scattered from sample t o sample, systematic differences in d and Tw between both faces were confirmed by a s e r i e s of experiments.

nrn .o

- basal f0001>-face

---- prism ~ ~ ! ~ ) - f a c e

Fig. 3 Observed changes of p= tany e x p ( i ~ ) in a polar coordinate ( Y , A ) f o r

(0001 )-face (sol id 1 ine) and (10?O}-face (broken 1 ine) with increasing tem-

perature, and simulated changes of p f o r thickening layer ( t h i n s o l i d curves)

with various r e f r a c t i v e indices nl on ice. Crossed marks show the s t a r t i n g

points of experiments.

(5)

JOURNAL D E PHYSIQUE

Ts: TEMPERATURE ("C)

0 -5 -10 -15

d A l n t n B

-basal ( 0 0 0 ll-face

--- prism (10TOl-face

Fig. 4 Temeprature dependence of A and t h e t h i c k n e s s change o f t h e t r a n s i t i o n l a y e r under t h e conclusion o f nl=1.330.

4. Discussion

Kuroda and Lacmann[l5] t h e o r e t i c a l l y discussed t h e temperature dependence and a n i s o t r o p y o f t h e t h i c k n e s s o f QLL as f o l l o w s .

The existence o f QLL on t h e i c e surface i s disadvantageous due t o t h e b u l k f r e e energy o f t h e l i q u i d phase. However, i t lowers t h e surface f r e e energy o f t h e system, so t h a t i t i s t o be p o s s i b l e t h a t t h e QLL s t a b l y e x i s t s on t h e surface.

For i c e surface covered w i t h QLL, t h e y i n d i ~ a t e d t h a t t h e w e t t a b i l i t y parameter Aam becomes p l u s value. That i s ,

where oI, ow and aOI,W a r e t h e s u r f a c e f r e e energies p e r u n i t area ( s u r f a c e t e n s i o n ) f o r t h e - i n t e r f a c e of vapor/ice, vapor/water and ice/water, r e s p e c t i v e l y . Consequ- e n t l y , t h e e q u i l i b r i u m thickness o f QLL de i s determined by t h e balance between t h e disadvantage o f t h e b u l k f r e e energy a4d t h e f a l l o f t h e surface f r e e energy.

where n and A a r e parameters connected t o t h e i n t e r a c t i o n between water molecules, Vm t h e molecular volume, Tm t h e m e l t i n g temperature o f i c e , AT t h e supercooling and Qm t h e l a t e n t heat o f f u s i o n per molecule.

From the equation (2) and (3), deq increases w i t h i n c r e a s i n g Aa .

As t h e s u r f a c e energy p e r u n i t area i s p r o p o r t i o n a l t o t h e number d e n s i t y o? broken hydrogen bonds along t h e surface (broken bond model ), oI(OOO1 ) < a I (1010).

Consequently, t h e f o l l o w i n g r e l a t i o n i s expected,

(6)

In the present experiment, i t i s c l a r i f i e d t h a t Tw(OOO1) > ~ ~ ! 1 0 i 0 ) and the thickness increases with increasing temperature. These r e s u l t s q u a l i t a t i v e l y coincide with the theoretical explanation by Kuroda and Lacmann[15].

The temperatures when the QLL appears on the i c e surface a r e higher than those temperatures which have been obtained by other experiments. This reason i s considered t h a t the surfaces used in the present experiment were molecularly f l a t and f r e e from misorientations and contaminations, compared with t h e rough and high index surfaces used in other experiments, Because a I f o r the rough and high index surface i s higher than a (0001) or a ( l o l o ) , surfaces l i k e t h i s a r e more wettable than 100011- and ( 1 0 i 0 ) - ~ f a c e s (namefy, Tw(OOO1) > Tw(lO1O) > Tw(high index)).

On the other hand, i t has been c l a r i f i e d t h a t the conspicuous habit change of i c e crystal occurs a t the temperature of -2°C ( f i g . 5 ) . Kohata e t a l . [I81 showed t h a t the shape of negative crystal (evaporation form) changes t o the sphere which i s truncated with only small {0001)-facets above -2°C-(fig. 2-b), compared with the hexagonal prism surrounded by both (0001)- and (1010)-facets below -2°C

( f i g 2-a). Yamashita and Asano[19] showed t h a t the shape of snow crystal (growth form) also changes from the hexagonal p l a t e t o the c i r c u l a r disk above -2°C. These observational r e s u l t s mean t h a t the anisotropy of growth o r evaporation r a t e s with respect t o a l l surfaces with crystallographic orientations excepting (00011 dis- appears a t temperatures above -2°C. The disappearance of anisotropy l i k e t h i s may occur when the differences of surface s t r u c t u r e s are vanished by the occurence of surface roughening.

The present experimental r e s u l t s showed t h a t the (10i0)-face i s covered with QLL a t temperatures above -4 "C. Consequently, we should consider t h a t the interfgce structure between QLL and i c e changes from smooth t o rough above -2°C f o r t h e (1010) -face, though t h e i n t e r f a c e on (0001)-face i s kept smooth a t whole temperature range (0 t o -2°C). That i s , the surface roughening occurs f o r the i n t e r f a c e on the (1010)-face a t t h i s temperature.

m.

P. TEMPERATURE ("C)

0 -1 -2 -3 -4 - 5

I i I

Spherical negative : Hexagonal prismof with basal I negative crystal

0 F

I

I

ICE CRYSTAL

SURFACE STRUCTURE 0 F ICE CRYSTAL

Circular-disk I I Hexagonal plate of snow Crystal 1 snow crystal

I I

? I I

I

I

;3gzjI I 1 I rn I C E

Tr T w ( O 0 0 ~ 1

-.-.-

I I " '

'

I ICE

T.

1 I

oio)

Type I : smooth interface. Type I 1 : rough interface

Fig. 5 Schematic diagram t o show the r e l a t i o n between the microscopic surface

s t r u c t u r e and the i c e crystal morphology. Tr i s the temperature a t which the

surface roughening t r a n s i t i o n occurs.

(7)

(21-500 JOURNAL DE PHYSIQUE

5. Conclusions

The conclusions obtained in t h i s study a r e summarized a s follows:

1 ) The r e f r a c t i v e index of t h e t r a n s i t i o n l a y e r i s 1.330 f o r (0001)- and (10T0)- faces, which means t h e properties of t h e t r a n s i t i o n l a y e r a r e very c l o s e t o those of bulk water(nw=l .333) ; t h a t i s t o say, t h e t r a n s i t i o n l a y e r i s QLL.

2) Tw(OOO1) = -2°C and T,(IOTO) = -2%-4°C. The thickness of t h e t r a n s i t i o n l a y e r increases with increasing temperature and deq(OOO1) < deq(lO1O) a t temperatures above -4°C.

3 ) These experimental r e s u l t s a r e q u a l i t a t i v e l y explained by t h e theory of Kuroda and Lacmann[l 51.

4 ) The h a b i t change observed f o r t h e negative c r y s t a l and t h e snow c r y s t a l i n d i c a t e s t h a t t h e surface roughening occurs a t t h e i n t e r f a c e between QLL and i c e c r y s t a l on t h e (10i0)-face a t the temperature of -2°C.

6. Acknowledgements

The authors a r e indebted t o Professor Oguro of Hokkaido Kyoiku University f o r h i s kind o f f e r of an i c e s i n g l e c r y s t a l which was used in p a r t of experiment.

This work was supported by t h e S c i e n t i f i c Grant of Japanese Education Ministry.

7. References

U. Nakaya and A. Matsumoto, J. Colloid Sci. 9 1954)41-49. 4

H. H. G. J e l l i n e k , J . Colloid Sci. 14(1959)26 -280;J. Colloid I n t e r f a c e Sci. - , 25(1967)206-217.

[3] W. D. Kingery, J . Apll. Phys. 31 (1960)833-838.

[4] A. W. Adamson, L. W. Dormant and M. Orem, J . Colloid I n t e r f a c e Sci. 25(1967)206-

9 7 7 L I I .

[5] I. Watanabe and T. Okita, Bull. Inst. Pub. Health 25(1976)67-72.

[6] B. Lagourette, C. Boned and R. Royer, J . Physique 37(1976)955-964.

[7] C. Jaccard, in: Physics of Snow and Ice, Vol. 1 (Hokkaido Univ., Sapporo 1967) 173-179.

[8] N. Maeno and H, Nishimura, J. Glaciology 21(1978)193-205.

[9] V . I. Kvlvidze, U. F. Kiselev, A. B. Karaev and L. A. Ushakova, Surf. Sci.

44(1974)60-68.

[lo] E. Mazzega, V. del Penino, A. Loria and S. Mantovani, J . Chem. Phys. 64(1976) 1028-1 031.

[11] D. Nason and N. H. Fletcher, J . Chem. Phys. 64(1975)4444-4449.

[12] I . Golecki and C. Jaccard, Phys. Lett. 63A(1977)374-376.

[I31 D. Beaglehole and D. Nason, Surf. Sci. 96(1980)357-363.

14 N . H. Fletcher, Phil. Mag. 7(1962)255-269; 18(1968)1287-1300.

15 T. Kuroda and R. Lacmann, J . Crystal Growth 56(1982)189-205.

1 1

[16] M. Yamamoto, Y. Furukawa and T. Kuroda, in preparation.

1171 C. A. Knight and N. C. Knight, Science 150(1965)1819-1821.

1181 S. Kohata, Y. Furukawa and T. Kobayashi, i n preparation.

[I91 A. Yamashita and A. Asano, J. Meteor. Soc. Japan 62(1984)140-145.

COMMENTS V . F . PETRENKO

When you c a l c u l a t e t h e t h i c k n e s s o f a l i q u i d l a y e r you imply t h a t i t i s a homogeneous one. But i f it is n o t , does t h i s change your r e s u l t s ?

Answer :

We can a l s o o b t a i n t h e s i m u l a t e d diagram o f (q.6) f o r t h e inhomogeneous o r

m u l t i l a y e r s model. But t h e i r diagrams c o m p l e t e l y d i f f e r from t h a t f o r t h e

(8)

homogeneous s i n g l e l a y e r model. Experimental d a t a o b t a i n e d i n t h i s experiment show

t h e b e s t f i t t i n g t o t h e d i a g r a m f o r t h e h o m o g e n e o u s s i n g l e l a y e r m o d e l .

Consequently, we s h o u l d c o n s i d e r t h a t t h e QLL i s t h e homogeneous s i n g l e l a y e r .

Références

Documents relatifs

Nous avons fait l’étude d’une structure à ondes de surface dans le but de réaliser un dispositif électro- magnétique focalisateur à deux dimensions basé sur

1) At the melting point the resonance signal drops to an unmeasurable small value in a very limited temperature interval. Line broadening by diffusion could not be

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Here, we integrate new seismic observations of deep re fl ectors beneath India and Tibet with fi rst ‐ principles calculations, and laboratory synthesis experiments to test hypotheses

The good agreement between the ellipsometric measurements performed as a function of temperature and those obtained elsewhere with variable wavelengths show that the

[r]

D'après le théorème, de Meusnier, si l'on considère les courbes d'une surface S, passant par un point A de cette surface et tangentes à une tangente D à la surface au point A, le

Although small near surface incident winds naturally occur in fronts via combination of the thermal wind balance and of the boundary layer, they pose at least two problems in