• Aucun résultat trouvé

An expansion of the Riemann Zeta function on the critical line

N/A
N/A
Protected

Academic year: 2021

Partager "An expansion of the Riemann Zeta function on the critical line"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-03271709

https://hal.archives-ouvertes.fr/hal-03271709

Preprint submitted on 27 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An expansion of the Riemann Zeta function on the critical line

Bernard Candelpergher

To cite this version:

Bernard Candelpergher. An expansion of the Riemann Zeta function on the critical line. 2021. �hal- 03271709�

(2)

An expansion of the Riemann Zeta function on the critical line B.Candelpergher

Universit´e Cˆote d’Azur, CNRS, LJAD (UMR 7351), Nice, France. candel@unice.fr

Abstract

We give an expansion of the Riemann Zeta function on the critical line as a converging series P

m≥0amqm(12 +it) in the space L2(R,cosh(πt)dt ), where the functions qm are related to Meixner polynomials of the first kind and the coefficients am are linear combinations of the Euler constant γ and the values ζ(2), ζ(3), . . . , ζ(m+ 1).

1 Laguerre functions

The Laguerre polynomials x7→Lm(2x) are defined by the generating function (cf. [6]) 1

1−ae1−a2ax = 1 1 +a

+∞

X

m=0

Lm(2x)am where |a|<1.

They are given by Lm(2x) =Pm

k=0Cmk(−2)k xk!k. The Laguerre functions ϕm(x) =√

2 e−xLm(2x),

form an orthonormal basis of L2(]0,+∞[, dx), and we have the generating function

√2

1−ue−x1+u1−u =

+∞

X

m=0

ϕm(x)um where |u|<1. (1)

With z = 1+u1−u, we get for Re(z)>0

e−xz =√ 2π

+∞

X

m=0

ϕm(x)ψm(z), (2)

where ψm is the function defined in the half-plane {Re(z)>0} by ψm(z) = 1

√π(1 +z)

z−1 z+ 1

m

. By (2) we see that the function ψm is related toϕm by

ψm(z) = (e−xz

√2π, ϕm) = Z +∞

0

e−xz

√2π ϕm(x)dx.

Thus we have ψm(z) = 1

m(z), where L is the Laplace transform Lf(z) =

Z +∞

0

e−xzf(x) dx.

(3)

This transformation maps the space L2(]0,+∞[, dx) to the Hardy spaceH2(P) of analytic functions g in the half-plane P ={Re(z >0}such that: there exists Mg >0 with

Z

R

|g(x+iy)|2 dy≤Mg for all x >0.

By a theorem of Paley and Wiener each such g has non-tangential limits g(iy) = limx→0g(x+iy) at almost every point of the imaginary axis. The space H2(P) is an Hilbert space with the inner product

(g, h)H2 = Z

R

g(iy)h(iy)dy,

and the functions ψm (m ≥0), form an orthonormal basis ofH2(P). If f ∈L2(]0,+∞[, dx) then f =X

m≥0

(f, ϕmm ⇔ Lf(z) =√ 2πX

m≥0

(f, ϕmm(z).

2 Mellin transform and Meixner polynomials

For a function f on ]0,+∞[, we define the Mellin transform of f by M(f)(s) =

Z +∞

0

xs−1f(x)dx, which is supposed to be defined for s∈C such that 0< Re(s)<1.

We have MLf(s) = Γ(s)Mf(1−s) for 0< Re(s)< 1, and iff and g are in L2(]0,+∞[), we have the Parseval-Mellin formula (cf. [4]) :

1 2iπ

Z 12+i∞

1 2−i∞

M(f)(z)M(g)(z) dz = Z +∞

0

f(x)g(x) dx.

The Mellin transform of ϕm is given by Z +∞

0

ϕm(x)xs−1 dx=√ 2

m

X

k=0

Cmk(−2)k k!

Z +∞

0

e−xxs+k−1 dx=√

2 Γ(s)qm(s), with

qm(s) =

m

X

k=0

Cmk(−2)k (s)k

k! where (s)k=s(s+ 1)· · ·(s+k−1) (with (s0) = 1).

We have (cf. [2])qm(s) =F(−m, s; 1; 2) whereF is the Gauss hypergeometric function (also denoted by 2F1). We have also qk(s) = k!1mk(−s,1,−1), wheremk is a Meixner polynomial of the first kind.

Since Mϕm(s) = √

2 Γ(s)qm(s) and ψm = 1

m, we get for 0< Re(s)<1 Mψm(s) = 1

√2πMLϕm(s) = 1

√2πΓ(s)Γ(1−s)Mϕm(1−s) =

√π

sin(πs)qm(1−s).

(4)

By the definition of ψm we verify that 1xψm(1x) = (−1)mψm(x), thus we have Mψm(1−s) = (−1)mm(s),

this gives

qm(1−s) = (−1)mqm(s).

By the Parseval-Mellin formula we get 1

2π Z +∞

−∞

M(ϕm)(1

2+it)M(ϕn)(1

2+it) dt = Z +∞

0

ϕm(x)ϕn(x) dx=δm,n

(with δm,n = 1 ifm =n and δm,n = 0 ifm 6=m). This gives δm,n =

Z +∞

−∞

Γ(1

2 +it)qm(1

2+it)Γ(1

2+it)qn(1

2 +it) dt π =

Z +∞

−∞

qm(1

2 +it)qn(1

2+it) dt cosh(πt) Thus the polynomials t7→qm(12+it) form an orthonormal basis ofL2(R,cosh(πt)dt ) with respect to the scalar product

(f|g) = Z +∞

−∞

f(t)g(t) dt cosh(πt)

This implies that all the zeros of the polynomials t7→qm(12 +it) are real.

We have q0 = 1 and

q1(1

2 +it) = −2it q2(1

2 +it) = 1 2 −2t2 q3(1

2 +it) = −5 3it+4

3it3 q4(1

2 +it) = 3 8 −7

3t2+ 2 3t4 . . .

By Mellin transform of (1), we see that the generating function of the polynomials qm is

+∞

X

m=0

qm(s)um = 1 1−u

1 +u 1−u

−s

for u∈]−1,1[. (3)

This gives, with y= 1+u1−u, the relation y−s = 2√

π

+∞

X

m=0

ψm(y)qm(s) for y >0. (4)

Let s= 12 +it with t ∈Rand y=e−ξ, we get eitξ = 2√

πe−ξ/2

+∞

X

m=0

ψm(e−ξ)qm(1

2+it) for ξ ∈R.

(5)

The latter series converges in L2(R,cosh(πt)dt ) since P+∞

m=0m(e−ξ)|2 <+∞.

If a function h∈L2(R,cosh(πt)dt ) has, in this space, an expansion kike h(t) =X

n≥0

anqn(1 2 +it), then we have

(h|eitξ) = 2√ πe−ξ/2

+∞

X

m=0

amψm(e−ξ), that is

F h(t) cosh(πt)

(ξ) = 2√ πe−ξ/2

+∞

X

m=0

amψm(e−ξ) (5)

where F is the Fourier transform defined by Fg(ξ) =R+∞

−∞ g(t)e−itξdt.

3 An expansion of Zeta

3.1 A Fourier transform

In the critical strip 0< Re(s)<1, we have (cf. [7]) ζ(s) = 1

Γ(s) Z +∞

0

f(x)xs−1dx= 1

Γ(s)Mf(s) where f(x) = 1

ex−1 − 1 x (also we have ζ(s) =sR+∞

0 ([x]−x)x−s−1dx, which gives |ζ(12 +it)|=O(|t|) for t→ ±∞).

Since we have (cf.[2]) for x >0

L(f)(x) = log(x)−Ψ(1 +x) where Ψ = Γ0 Γ, then we get for 0< Re(s)<1

M(log(x)−Ψ(1 +x))(s) =ML(f)(s) = Γ(s)M(f)(1−s) = Γ(s)Γ(1−s)ζ(1−s),

thus π

sin(πs)ζ(1−s) =M(log(x)−Ψ(1 +x))(s).

By Mellin inversion, we obtain for x >0 log(x)−Ψ(1 +x) = 1

2iπ

Z c+i∞

c−i∞

π

sin(πs)ζ(1−s)x−s ds for all 0< c <1.

With c= 12, we have for x >0

log(x)−Ψ(1 +x) = 1 2

Z +∞

−∞

ζ(1

2+it) 1

√xeitlog(x) dt cosh(πt).

(6)

Let x=e−ξ with ξ ∈R, then we get the Fourier transform Fζ(12 +it)

cosh(πt)

(ξ) = −2e−ξ/2(ξ+ Ψ(1 +e−ξ)) = 2e−ξ/2Lf(e−ξ). (6) Remark. The Fourier transform given by the relation (6), gives for g ∈L2(R), the relation

Z +∞

−∞

ζ(1

2 +it)Fg(t) dt

cosh(πt) =−2 Z +∞

−∞

g(ξ)e−ξ/2(ξ+ Ψ(1 +e−ξ))dξ.

For example, let g(t) = ts−1e−atχ[0,+∞[(t) with a > 0 and Re(s) > 12. Then Fg(t) = (a+it)Γ(s)s and we have

−1 2

Z +∞

−∞

ζ(1

2+it) 1 (a+it)s

dt

cosh(πt) = 1 Γ(s)

Z +∞

0

ξs−1e−ξ(a+12)(ξ+ Ψ(1 +e−ξ)) dξ.

Expanding the Ψ function as

Ψ(1 +e−ξ) =−γ+

+∞

X

n=1

(−1)n+1ζ(n+ 1)e−nξ since 0< e−ξ <1, we get for α=a+ 12 > 12

−1 2

Z +∞

−∞

ζ(1

2 +it) 1 (α− 12 +it)s

dt

cosh(πt) = s

αs+1 −γ 1 αs +

+∞

X

n=1

(−1)n+1ζ(n+ 1) 1 (n+α)s, Thus, for x >−12 and Re(s)> 12, we have a generalization of a formula of I.V.Blagouchine (cf.[1])

γ (x+ 1)s +

+∞

X

n=2

(−1)n−1 ζ(n)

(n+x)s = s

(x+ 1)s+1 +1 2

Z +∞

−∞

ζ(1

2+it) 1 (x+12 +it)s

dt

cosh(πt) (7)

3.2 Expansion of ζ (

12

+ it)

By (5) and (6), the coefficients am of the expansion ζ(12 +it) = P

m≥0amqm(12 +it) in the space L2(R,cosh(πt)dt ) are given by

Lf(e−ξ) =√ π

+∞

X

m=0

amψm(e−ξ). (8)

For an explicit evaluation of am, let u= ee−ξ−ξ−1+1 in the relation (8), then we get for −1< u <1 1

1−u

log(1 +u

1−u)−Ψ(1 + 1 +u 1−u)

=

+∞

X

m=0

bmum where bm = am

2 . (9)

(7)

Now, take the Taylor expansion of the left side of (8). For the logarithmic part, we have simply 1

1−ulog(1 +u

1−u) = 1 1−u

+∞

X

n=0

1−(−1)n n un=

+∞

X

n=1

Xn

p=1

1−(−1)p p

un,

For the part involving the function Ψ, we need the help of (cf.[2]) the integral formula Ψ(x+ 1) = 1

x + Ψ(x) = 1

x −γ+ Z +∞

0

e−t−e−xt 1−e−t dt, this gives

− 1 1−uΨ

1 + 1 +u 1−u)

=− 1

1 +u + 1

1−uγ− 1 1−u

Z +∞

0

e−t−e1+u1−ut 1−e−t dt, and, with (1), we get

− 1 1−uΨ

1 + 1 +u 1−u

=− 1

1 +u+ 1 1−uγ−

+∞

X

m=1

Z +∞

0

e−t(1−Lm(2t))

1−e−t dt um. Since, for m integer ≥1, we have

− Z +∞

0

e−t(1−Lm(2t)) 1−e−t dt =

Z +∞

0

e−t 1−e−t(

m

X

k=1

Cmk(−2)ktk k!)dt=

m

X

k=1

Cmk(−2)kζ(k+ 1).

then we have proved the following theorem.

Theorem. The expansion of t7→ζ(12 +it) in the space L2(R,cosh(πt)dt ) is given by ζ(1

2+it) = 2X

m≥0

bmqm(1

2+it) (10)

with b0 =−1 +γ, and for m≥1 bm =

m

X

p=1

1−(−1)p

p + (−1)m+1+γ+

m

X

k=1

(−2)kCmk ζ(k+ 1). (11) For example, we have b1 = 3 +γ−2ζ(2), and

b2 = 1 +γ−4ζ(2) + 4ζ(3) b3 = 11

3 +γ−6ζ(2) + 12ζ(3)−8ζ(4) b4 = 5

3 +γ−8ζ(2) + 24ζ(3)−32ζ(4) + 16ζ(5) Since we have, for m ≥1, the combinatorial identity

m

X

p=1

1−(−1)p

p =−

m

X

k=1

Cmk(−2)k1 k,

(8)

then we get, for the coefficients of (11), the simple expression bm =

m

X

k=0

Cmk(−1)kzk with z0 =γ−1 and zk = 2k ζ(k+ 1)−1− 1 k

if k ≥1. (12) Remark. We have for any integer k ≥0

Z +∞

0

1

ex−1 − 1 x

e−x2kxk k! =zk, thus we get

bm = Z +∞

0

1

ex−1− 1 x

e−xLm(2x)dx= 1

√2(f, ϕm), as we expected, since by Mellin transform we have formally

ζ(1

2 +it) = 2X

m≥0

bmqm(1

2+it)⇔f =√ 2

+∞

X

m=0

bmϕm

3.3 An integral formula

Since the binomial transform bvm =Pm

k=0(−1)kCmkvk is involutive then we have by (12) zm =

m

X

k=0

(−1)kCmkbk.

From (10), we have for m ≥0 bm = 1

2 Z +∞

−∞

ζ(1

2 +it)qm(1

2 −it) dt

cosh(πt), (13)

thus the binomial transform of (bm) is given by the binomial transform of (qm(s)). We have qm(s) =

m

X

k=0

Cmk(−2)k (s)k

k! ⇒2m (s)m m! =

m

X

k=0

(−1)kCmkqk(s), thus

m

X

k=0

(−1)kCmkbk = 2m Z +∞

−∞

ζ(1

2+it)(12 −it)m m!

dt cosh(πt). Finally we get the integral expression γ = 1 + 12R+∞

−∞ ζ(12 +it)cosh(πt)dt ,and ζ(m+ 1) = 1 + 1

m + 1 2π

Z +∞

−∞

ζ(1

2 +it)Γ(12 +it)Γ(12 −it+m)

Γ(m+ 1) dt for m≥1.

(9)

We see that the analytic functions f and g defined by f(s) =ζ(s+ 1)− 1

s for s6= 0 with f(0) =γ, and

g(s) = 1 + 1 2π

Z +∞

−∞

ζ(1

2+iu)Γ(12 +iu)Γ(12 −iu+s)

Γ(s+ 1) du for Re(s)>−1 2.

are such that f(m) = g(m) for all integersm ≥0. Then by the Carlson’s theorem we get f(s) = g(s) for Re(s)>−12. This gives the integral formula

ζ(s+ 1)− 1

s = 1 + 1 2π

Z +∞

−∞

ζ(1

2 +iu)Γ(12 +iu)Γ(12 −iu+s)

Γ(s+ 1) du for Re(s)>−1

2, s6= 0. (14) Remark. Let the function defined for Re(s)>0 by ζa(s) =P+∞

n=1

(−1)n−1

ns = (1− 22s)ζ(s). We have ζa(s) = 1

Γ(s) Z +∞

0

f(x)xs−1dx where fa(x) = 1 ex+ 1.

By similar calculations as before we get the following expansion in the space L2(R,cosh(πt)dt ) (1−√

2 2−it)ζ(1

2+it) = 2X

m≥0

cmqm(1

2+it) with cm = (−1)m−Log(2)−

m

X

k=1

Cmk(−1)k(2k−1)ζ(k+1).

We have c0 := 1−ln (2), and

c1 = −1−ln (2) +ζ(2)

c2 = 1−ln(2) + 2ζ(2)−3ζ(3)

c3 = −1−ln +3ζ(2)−9ζ(3) + 7ζ(4)

c4 = 1−ln (2) + 4ζ(2)−18ζ(3) + 28ζ(4)−15ζ(5)

Acknowledgments.

My warmest thanks go to F.Rouvi`ere for his helpful comments.

4 Bibliography

[1] I.V.Blagouchine. A complement to a recent paper on some infinite sums with the zeta values, preprint, 2020. Available at https://arxiv.org/abs/2001.00108.

[2] I.S.Gradshteyn and I.M.Ryzhik. Tables of Integrals, Series and Products. Academic Press.

[3] G.Hetyei. Meixner polynomials of second kind and quantum algebras representing su(1,1).

Proceedings of the Royal Society A 466 (2010) (p.1409-1428)

[4] A.Ivic. The Riemann Zeta-function. Theory and Applications. Dover (2003)

[5] A. Kuznetsov. Expansion of the Riemann Ξ Function in Meixner-Pollaczec Polynomials.

Canad. Math. Bull. Vol. 51 (4), 2008 (p.561-569).

[6] N.N.Lebedev. Special functions and their applications. Dover (1972)

[7] E.C. Titchmarsh. The theory of the Riemann Zeta-function. Second Edition revised by D.R.

Heath-Brown. Clarendon Press Oxford. (1988)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to