• Aucun résultat trouvé

ELECTRO-OPTICAL MEASUREMENTS OF INSULATOR SURFACE FLASHOVER IN VACUUM

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRO-OPTICAL MEASUREMENTS OF INSULATOR SURFACE FLASHOVER IN VACUUM"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219175

https://hal.archives-ouvertes.fr/jpa-00219175

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRO-OPTICAL MEASUREMENTS OF INSULATOR SURFACE FLASHOVER IN VACUUM

K. Mikkelson, M. Kristiansen, Jiali Lin, J. Thompson

To cite this version:

K. Mikkelson, M. Kristiansen, Jiali Lin, J. Thompson. ELECTRO-OPTICAL MEASUREMENTS

OF INSULATOR SURFACE FLASHOVER IN VACUUM. Journal de Physique Colloques, 1979, 40

(C7), pp.C7-401-C7-402. �10.1051/jphyscol:19797196�. �jpa-00219175�

(2)

JOURUAL DE PHYSIQUE CoZZoque C7, suppZbment au n07, Tome 40, JuiZZet 1979, page C7- 401

K. Mikkelson, M. Kristiansen, and J.

in*,

J. Thompson X

.

xDepariment EZect. Eng., Texas [PechnicaZ University, Lubbock, TX 79409 U.S.

A.

Department EZect. Eng., University South CaroZina, CoZumbia, SC 29208, U.S.A.

A b s t r a c t e l e c t r i c f i e l d s t r e n g t h becomes

E l e c t r o - o p t i c a l measurements o f t h e e l e c t r i c

E

( x , t ) = const. x ( h y ( x , t ) / s y ) f o r t h e Pockels 1 P

f i e l d along i n s u l a t o r surfaces i n vacuum d u r i n g t h e e f f e c t and EIk(x,t) = const. x [ ~ ~ ( x . t ) / 6 ~ ] ' f o r few nanoseconds p r i o r t o i n s u l a t o r f l a s h o v e r have the Kerr e f f e c t , where n y l 6 y = g/2a w i t h 6y being been made. The Pockels and t h e K e r r e f f e c t a r e t h e uniform, o r background, f r i n g e spacing and Ay used i n c o n j u n c t i o n w i t h a p o l a r i z a t i o n i n t e r f e r o - the amount o f measured f r i n g e bending 4

.

meter t o measure t h e i n t e r f a c i a l f i e l d s which have

Experimental arrangement a r i s e t i m e o f a few ns. I n s u l a t o r surface charging

The experimental arrangement i s shown i n F i g . and cathode f i e l d enhancement occurs, followed by

3. The ruby laser is used to probe the test cell plasma formation near t h e cathode which propagates

and also trigger the FX-15, thereby reducing the toward t h e anode a t approximately one t e n t h t h e

t i m i n g problems. The o n l y system j i t t e r i s t h a t o f speed o f l i g h t . Voltage c o l l a p s e across t h e insu-

t h e FX-15 gap, approximately 2 ns. The o p e r a t i n g l a t o r occurs a f t e r t h e plasma f o r m a t i o n has

t e s t c e l l pressure i s 5 x 1 0 - ~ T o r r . reached t h e anode.

I n t r o d u c t i o n

Surface charging o f t h e i n s u l a t o r by secondary e l e c t r o n emission i s w e l l documented '2y3. Regions o f f i e l d i n t e n s i f i c a t i o n near t h e cathode-vacuum- i n s u l a t o r t r i p l e j u n c t i o n causes f i e l d emission o f e l e c t r o n s . T h i s causes r e g e n e r a t i v e surface charg- i n g and e l e c t r o n m u l t i p l i c a t i o n w i t h t h e r e s u l t i n g e l e c t r o n avalanche proceeding towards t h e anode.

E l e c t r o - O p t i c a l Measurements o f E l e c t r i c F i e l d s For a p a r a l l e l e l e c t r o d e c o n f i g u r a t i o n , shown i n Fig. 1, t h e phase d i f f e r e n c e g(x,y) a f,E(x,y) f o r t h e Pockels e f f e c t i n KDP and g(x,y) a aE (x,y) 2 f o r t h e K e r r e f f e c t i n nitrobenzene, where

x

i s the p a t h l e n g t h through t h e o p t i c a l , a c t i v e r e g i o n ( i - e . between t h e e l e c t r o d e s ) and E i s t h e average ap- p l i e d f i e l d . The phase s h i f t g i s measured u s i n g a p o l a r i z a t i o n analyzer (see Fig.

Z),

which pro- duces a f i n i t e f r i n g e i n t e r f e r e n c e p a t t e r n i n d i c a - t i v e o f t h e phase d i f f e r e n c e between E,, and E ~ ,

which i s a f u n c t i o n o f t h e e l e c t r i c f i e l d . A s l i t i s p o s i t i o n e d a t t h e vacuum-insulator i n t e r f a c e and t h e f r i n g e

att tern

streaked w i t h an image c o n v e r t e r camera. The s p e c i f i c r e l a t i o n - ships between t h e f r i n g e motion and i n t e r f a c i a l

*

T h i s work was supported by Sandia Laboratories.

Results

The e x c i t a t i o n p u l s e t o t h e t e s t c e l l has a r i s e t i m e o f 2.5 ns, a 5.5 ns t o p which drops 5%, and a 4 ns f a l l time. The t e s t c e l l a c t s as a ca- p a c i t i v e l o a d and charges t o t w i c e t h e p u l s e v o l t - age.

The streaked f r i n g e s h i f t p a t t e r n f o r t h e KDP t e s t c e l l , shown i n F i g . 4, a r e non-uniform, i n d i - c a t i n g greater, o r enhanced, e l e c t r i c f i e l d s t r e n g t h near t h e cathode. The maximum f i e l d i s reached a t the anode .6 ns b e f o r e the maximum f i e l d a t t h e cathode. T h i s i s due t o continued surface charging a f t e r t h e a p p l i e d f i e l d has peaked. The e l e c t r i c f i e l d as a f u n c t i o n o f anode t o cathode d i s t a n c e shows t h e e l e c t r i c f i e l d enhancement f o r a s p e c i f i c time, ( F i g . 5). Flashover occur as t h e e x c i t a t i o n pulse i s beginning t o f a l l , making anal- y s i s i n t h i s area impossible. A nitrobenzene t e s t c e l l w i t h reduced r i s e t i m e gave t h e t y p i c a l streak- ed f r i n g e p a t t e r n shown i n F i g . 6. The p r e v i o u s l y discussed surface charging e f f e c t s a r e again pre- s e n t as t h e f r i n g e s r i s e t o t h e i r peaks. Note t h a t t h e f r i n g e s have d i f f e r e n t slopes a f t e r peaking and t h a t they r e t u r n t o t h e a p p l i e d f i e l d value p r i o r t o f l a s h o v e r . The slopes i n d i c a t e d i f f e r e n t surface charging r a t e s along t h e i n s u l a t o r , corresponding t o t h e e l e c t r o n avalanche propagation. The delay

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797196

(3)

between positive surface charging occuring a t the cathode and anode i s - 1.3 ns giving the avalanche a propagation speed of - 7 . 7 ~ 1 0 m/s o r .025c. 6 After positive surface charging begins near the anode the f i e l d a t the cathode begins t o return to t h e applied f i e l d value a t time t3. This phenom- enon propagates across the f r i n g e pattern in . 3 ns.

Sufficient energy has been deposited near the cathode t o induced gas desorption from the sur- face 3 . A t time t3 the gas density reaches a point where ionization by f i e l d emitted electrons from the t r i p l e junction causes plasma formation. The number of f r e e electrons increases s i g n i f i c a n t l ~ . These electrons cause a rapid increase in the ion- ization of desorbed gases and a l s o a n n i h i l a t e the positive surface charge adjacent to the plasma by surface recombination. The propagation speed of the plasma formation i s 3 . 3 ~ 1 0 7 m/s or I l c , while the recombination time i s - 500 ps. After a delay of 1 ns, associated with the highly inductive stage of arc formation, the voltage across the t e s t c e l l col lapses.

References

1 . C .

H.

de Tourreil e t a l . , IEEE Trans. Elec.

Insul. EI-8, 17 (1973).

2.

J . P.

Brainard e t a l . , J . Appl. Phys. 45, 3262 (1 974).

3. R. A . Anderson, 1974 Ann. Rep. Conf. Elec.

Insul . and Dielectr. Phenom., 436 (1974).

4. J . E . Thompson e t a l . , IEEE Trans. on I n s t . and Meas. 5, 1 (1976).

F i g . 1. T e s t C e l l Geometry

Half Wave

P o l a r i z e r s

L a s e r T r i g g e r e d Scopes and

Gap

\

Camera

O u t e r ~ o n d u c t o d

I

To A n a l y z e r and Camera

F i a . 3 . E x ~ e r i m e n t a l A r r a n e ~ m ~ n t

I I i 1 1 1 ' 1

0 t l 10 t ( n s )

r i ~ . 4. F r i n g e P a t t e r n f o r KDP T e s t C e l l

F r i n g e S h i f t A Y / ~ Y

9

-

Plot

f o r

t i m e t l

6

- +

J

I I 1 I I 1 1 I

0 . 5 1.0

Anode t o Cathode D i s t a n c e (x/d)

F i g . 5 . E l e c t r i c F i e l d S t r e n g t h f o r KDP C e l l

P i g . 2. P o l a r i z a t i o n A n a l y z e r F i g .

6 .

F r i n g e P a t t e r n

f o r

N i t r o - T e s t C e l l

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to