• Aucun résultat trouvé

P o i s s o n processes as renewal processes invariant under translations

N/A
N/A
Protected

Academic year: 2022

Partager "P o i s s o n processes as renewal processes invariant under translations "

Copied!
3
0
0

Texte intégral

(1)

A R K I V F O R M A T E M A T I K B a n d 7 n r 4 0

1.68 06 4 Communicated 10 April 1968 b y H a r a l d Cram6r a n d L e n n a r t Carleson

P o i s s o n processes as renewal processes invariant under translations

B y MURALI RAO a n d HANS ~TEDEL

Introduction

L e t ( X n : n = + 1, __ 2 . . . . } be a sequence of r a n d o m variables such t h a t a.s.

, , , X _ ~ < X _ I < 0 < X 1 < X 2...

P u t Y o = X _ I , Y I = X 1 Y ~ = X , - X ~ _ I , n 4 0 , 1.

A s s u m e t h a t :

(i) {(Yo, Y1), Yn, n ~ O . 1} is a set of i n d e p e n d e n t r a n d o m variables.

(ii) { Y~ : n 4= O, 1}, are independent, identically distributed positive r a n d o m v a r - iables with P[ Y~ < y] = F(y),

F ( O ) = O a n d E [ Y n ] = - < c ~ . 1

m

L e t { ~ , n = -!-_ 1, ___ 2, ...} be a set of i n d e p e n d e n t r a n d o m variables which is inde- p e n d e n t of {X~} a n d ~n, n = _ 1, • 2 . . . , be identically distributed with the s a m e n o n - d e g e n e r a t e d distribution G. P u t Zn = Xn + ~,~ a n d let N(I) = n u m b e r of X~ E I a n d _N(I) = n u m b e r of Z~ E I .

D o o b has shown [1, pp. 404-407] t h a t if all Y~ h a v e a n exponential distribution t h e n N(I) a n d /~(I) h a v e t h e s a m e distribution. Thed6en p r o v e d t h e converse of this s t a t e m e n t , n a m e l y t h a t e v e r y Y~, n 4= 0, 1, h a s a n exponential distribution if N(I) a n d ~ ( I ) h a v e the s a m e distribution a n d if

(iii') P[Yo >Yo, Y1 >Y] = mfyo+ul (1 - F(s)) de.

W e shall here p r o v e t h a t t h e w e a k e r conditions E[N(I))] = m ]I] a n d E[N(I)N(J)] = E[.N(I)I~'(J)] are sufficient t o i m p l y e x p o n e n t i a l distributions of Y.. Our proof is a t t h e s a m e t i m e a simplification of Thed6en's proof.

L e t X~ a n d Y~ be as in t h e introduction a n d i n s t e a d of (iii') p u t (iii) E[N(I)] = m III where II] denotes t h e L e b e s g u e m e a s u r e of I .

539

(2)

M. RAO, H. WEDEL, Poisson processes as renewal processes

T h e n (iii) is e q u i v a l e n t t o P [ Y i > u ] = ~ ( 1 - F(t))dt for i =0, 1, see [2], pp. 354.

L e t n o w {~n, n = + 1, • 2, ...} be a sequence of r a n d o m variables which is inde- p e n d e n t of the sequence {Xn}. W e shall a s s u m e t h a t for all n, m, n4=m, (~, ~ ) h a v e t h e s a m e joint distribution G a n d t h a t t h e s u p p o r t g r o u p of G. i.e. t h e g r o u p g e n e r a t e d b y t h e s u p p o r t of G, has a n e l e m e n t of t h e f o r m (0, d) w i t h d > 0; if ~.

a n d ~ are i n d e p e n d e n t a n d h a v e a n o n d e g e n e r a t e distribution t h e n this is certainly true.

P u t Z~ = Xn + ~n, n = _+ 1, • 2, . . . , a n d 1~(I) = n u m b e r of Z~ E I .

Theorem. Let X~, ~ , g , be as above. I / E [ N ( I ) 57(J)] = E[N(I)N(J)] /or all I, J then {Xn} is Poisson i.e. F ( y ) = 1 - m e --my.

P r o # . P u t O ( I , J ) = E[N(I) N ( J ) ] - E [ N ( I N J ) ] = ~ . m P[Xn E I, Xm E J]. Using independence of { ~ } a n d {Xn} we get E [ i ~ ( I ) R ( J ) ] - E [ 2 ~ ( I N J ) ] = ~ O ( I - u , J - v) dG(u, v). T h e condition B[N(I)] = m [I[ implies E[2V(I)] = m ] I { . T h u s E[2V(I) 2~(J)] - E [ N ( I N J ) ] = E[N(I) N ( J ) ] - E [ N ( I N J ) ] : which gives 9 = 9 ~+ G.

A simple consequence of t h e renewal t h e o r e m is t h a t for a n y p a i r of finite inter- vals I , J , we see t h a t E [ N ( I + h ) N ( J + k)] is a b o u n d e d function of (h, k). T h e C h o q u e t - D e n y t h e o r e m [3, p. 152] applies a n d we deduce t h a t e v e r y p o i n t of t h e s u p p o r t of G is a period for r T h e set of periods for (I) is a group a n d this g r o u p contains the e l e m e n t (0, d) a n d hence (0, kd) where k is a n y positive integer (in- deed a n y integer). T h u s for all I , J a n d all positive integers k, (I)(I, J ) = r J + kd). T a k e I = (0, x] w i t h x < kd. T h e n I fl (I + kd) = r

Also

@(I,I+kd)= ~

P [ X ~ e l , X , ~ e I + k d ] = ~. P [ X ~ e I , X m e I + k d ]

n4-m rn,n>~I

= n=l ~ m>n ~" P[Xn EI, Xm E I + kd]= n=l ~ f [ H ( I + k d - u ) d ( F o - ) e F (n-l)*) (u)

= f [ H ( I + kd - u) du,

where H(x) = ~ ~ 1 F k* (x) a n d (iii) implies m x = ~ - o Fo-)e F k* (x), x > O.

Similar calculations give (I)(I, I ) = 2 ~ H ( x - u) clu = 2 ~ H(u) du. T h u s

yo f:

2 H(u) du = H ( I + kd - u) du = [H(x + ]cd - u) - H(kd - u)] du

fo

= [H(t~d + u) - I-I(kd - u)] du.

This equality for all x < kd implies 2 H(u) = H(kd + u) - H(]cd - u), u < kd.

Suppose d o is a positive n u m b e r such t h a t F(do)>0 a n d F(d o - ) = 0 . T h e n F n*

has a n a t o m a t nd 0 a n d t h u s H has a m a s s p o i n t a t e v e r y positive integral multiple of do, b u t H ( u ) = 0 u < d o. Choose ]c so t h a t kd > d o. F o r u < d o H ( u ) = 0 a n d t h e functional e q u a t i o n for H shows t h a t H ( k d - u ) = H(kd + u ) u < do. Since e v e r y in- 540

(3)

ARKIV FOR MATEMATIK. B d 7 n r 4 0

t e r v a l of l e n g t h I a r g e r t h a n d 0, c o n t a i n s a m u l t i p l e of d o a n d H h a s a p o s i t i v e m a s s a t s u c h a p o i n t , w e s e e t h a t H ( k d " u) < H(kd + u) f o r s o m e 0 < u < d 0. T h i s is a c o n t r a d i c t i o n a n d t h u s F c e r t a i n l y c a n n o t b e a r i t h m e t i c . A s k - ~ c ~ B l a c k w e l l ' s t h e o r e m [2 p. 347] s h o w s t h a t H ( k d + u) - H ( k d - u) -~ 2 um, a n d t h u s 2 H(u) = 2 urn.

T h i s is e q u i v a l e n t t o F b e i n g e x p o n e n t i a l . Q . E . D .

A C K N O W L E D G E M E N T

I t was H. BergstrSm who pointed out t h a t our conditions were sufficient. We are grateful to to him and P. Jagers for valuable discussions.

University o] G6teborg, Department of Mathematics, GSteborg, Sweden

R E F E R E N C E S

1. DooB, J. L., Stochastic Processes. Wiley, 1953.

2. FELLER, W., An Introduction to Probability Theory and its Applications, vol. I I . Wiley, N e w York 1966.

3. M_EY~R, P., Probability and Potentials. Blaisdell, 1966.

4. T H ~ D ~ , T., On stochastic stationary of renewal processes. Arkiv fSr mathematik 7, H~fte 3, 249-263 (1967).

Tryekt den 30 augusti 1968 Uppsala 1968. Almqvist & Wiksells Boktryckeri AB

5 4 1

Références

Documents relatifs

Plaque de support sans formaldéhyde Pannello in e.marble® senza formaldeide Несущая плита не содержит формальдегида Lackschicht. Lacquering layer Couche de

[r]

Le système de bio résonance, que le centre Quantaform utilise à travers ses appareils de biofeedback, système L.I.F.E et QUANTASCAN PRO, entre en communication avec le corps

Dans l’éventualité où vous seriez demandeur d’emploi au 5 septembre 2022 et, dans ce cas, inscrit auprès de Pôle Emploi 6 mois avant votre entrée en formation en catégorie 1 ou

Topper et cover OPERA LUXE avec double zip sur quatre côtés, amovible, remplaçable, lavable en machine ou au pressing. • Oeko-Tex

Avec ses unités de production et distribution situées à Castellarano, dans la province de Reggio Emilia, à 40 km seulement de l’aéroport de Bologne, HT Srl fournit des produits

En collaboration avec le Service des programmes, diriger la coordination, l'élaboration et la hiérarchisation des politiques stratégiques et de l'agenda de plaidoyer de

Equipées avec un second écran et le logiciel NEOSCREEN, les bornes Eagle ajoutent aux services interactifs tous les attraits de la communication dynamique.. Eagle avec un accepteur