• Aucun résultat trouvé

A refined saddle point approximation

N/A
N/A
Protected

Academic year: 2022

Partager "A refined saddle point approximation "

Copied!
8
0
0

Texte intégral

(1)

A refined saddle point approximation

T H O M A S ~-~ O G L U N D

W e consider high c o n v o l u t i o n powers

f f * ( x ) = ~ f ( x l ) . . . f ( x , , )

Xl+ . . . +xn=x

o f a n a r b i t r a r y f u n c t i o n f: Z - + [0, ~ ) w i t h finite s u p p o r t S = {x E Z I f ( x ) > 0}, a n d our aim is to o b t a i n a n a p p r o x i m a t i o n of fn*(x) which is s h a r p for all x C Z.

I t will be easy t o see t h a t o u r a p p r o x i m a t i o n below (properly i n t e r p r e t e d ) holds w h e n S is a one p o i n t set. To a v o i d trivialities we e x c l u d e this ease f r o m t h e re- m a i n d e r o f t h e t e x t . L e t x a n d 2 s t a n d for t h e smallest a n d largest p o i n t o f S, respectively, a n d let I d e n o t e t h e c o n v e x hull of S considered as a subset o f R, . _ x = m i n S , 2 = m a x S , I ~ l-X, 2].

I n o r d e r t o be able to give t h e a n n o u n c e d a p p r o x i m a t i o n we h a v e t o require that the support of f n , is a convex subset of Z for all n sufficiently large. This is the case i f and only i f both -X + 1 and 2 - - 1 belong to S. F o r if 2 - - 1, say, does n o t belong to S t h e n n2 - - 1 $ supp i f * for all n, a n d henc~ t h e s u p p o r t o f f n . n e v e r becomes a c o n v e x subset of Z. (Note t h a t t h e integer i n t e r v a l [-xn, 2hi is t h e c o n v e x hull o f s u p p f " * considered as a subset of Z.) Conversely, if x + 1 a n d 2 - 1 belong to S t h e n supp f " * contains all points of f o r m

]ClX @ ]c2(_x @ 1) @ ]ca(2 - - l) @ k42 = n x + (k a @ k4)(2 -- x -- l) + k 2 + k4, w i t h k 1 .. . . , k~ n o n - n e g a t i v e integers satisfying /c 1 + . . . + k 4 = n. T h a t is, s u p p f ~ contains all points of f o r m n _ x + h l ( 2 - - x - - 1) + h 2 , w i t h 0 < h l < n , 0 < h g . < n , a n d h e n c e s u p p f ~ = [nx, n2] for all n > m a x ( 1 , 2 - - x - - 2 ) .

L e t /, s t a n d for t h e m e a s u r e on Z which assigns t h e weight f ( x ) to t h e p o i n t x,

#(E) = ~ f(x).

x c E

T h e a p p r o x i m a t i o n will be i b r m u l a t e d in t e r m s of q u a n t i t i e s which are n a t u r a l l y t i e d to t h e f a m i l y of p r o b a b i l i t y distributions whose densities r e l a t i v e to t h e m e a s u r e

# consist of t h e closure o f t h e e x p o n e n t i a l f a m i l y p,(x) = e"~/cf(a), a C R. H e r e

(2)

174 T H O M A S /-IO G L U N D

~(a) = ~ e"~f(x) is t h e L a p l a c e t r a n s f o r m of f. T o c o m p l e t e t h e f a m i l y we t h u s h a v e to a d d t h e t w o p r o b a b i l i t y d i s t r i b u t i o n s given b y t h e densities

p_+(x) = lim pa(X) = ( ~ x x / f ( x ) a n d p+~(x) = lim p~(x) ~-- (~;,/f(2)

(the K r o n e c k e r delta).

T h e a b o v e - m e n t i o n e d q u a n t i t i e s are a m o n g t h e following ones. T h e meanvalue

t h e variance

f d

m a : xpa(x)d#(x) = da log qJ(a),

f

d2

V a - - - - (X -- m.)2pa(x)d/u(x) ~- ~a2 log q~(a),

a n d t h e entropy

= - - f p a ( X )

H= log pa(x)d#(x)

J = log ~(a) - - am~.

I f we n o t e t h a t m + : _ x , m + ~ - - - - 2 a n d d m a / d a = v ~ > O for a C R , we see t h a t t h e m e a n v a l u e m a p s 1~ o n t o I in a one to one m a n n e r . T h e f o u r t h q u a n t i t y we will n e e d is t h e maximum likelihood estimator, d = m -1, which is a one to one m a p p i n g o f I o n t o R. I t s n a m e comes f r o m t h e i d e n t i t y

p3(x)(x) = m a x pa(x).

aeR L e t us f i n a l l y i n t r o d u c e t h e a n a l y t i c f u n c t i o n

i f

~(~) - - 2 ~ e x p [ Z ( e ~ - - 1 - - i ~ ) ] d ~ :

The function ~(2), ~ ~ 0, is strictly positive and satisfies

e(0) = ~ _> e(~) = ( 2 z ~ ) - ' / 2 ( ~ § O ( U ~ ) ) , as ~ - ~ ~ . This will be p r o v e d a t t h e e n d o f t h e paper.

I t is clear t h a t f f * ( x ) = 0 w h e n x / n ~ I , a n d t h a t f " * ( x ) > 0 w h e n x / n C I , p r o v i d e d n _> m a x (1, 2 - - x - - 2). T h e local central limit t h e o r e m says

f~*(x) = cH~189 [-- 89 -- mo)2/Vo] ~- O(n-1))

u n i f o r m l y in x E Z, a n d h e n c e it tells us n o t h i n g m o r e t h a n f~*(x) = O(e"H~

e x c e p t w h e n x/n belongs t o a s u b i n t e r v a l of I o f l e n g t h O(~loog n/n) (centred a r o u n d m0). R i c h t e r [3] gave a n a p p r o x i m a t i o n w h i c h holds w h e n x/n belongs to a s u b i n t e r v a l of l e n g t h o(1). B u t t h e r e are still b e t t e r results. So-called saddle

(3)

A ~ E F I ~ E 9 S A m ) ~ P o I ~ T APP~OXIMATIO~ 175 p o i n t a p p r o x i m a t i o n s h a v e long since b e e n u s e d in s t a t i s t i c a l m e c h a n i c s . A rigorous r e s u l t of t h a t k i n d w a s g i v e n b y M a r t i n - L S f [2]:

f"*(x)

= e x p

[nH~(x/n)](2~nVa(x/,))-}(1 q- O(1/n)),

u n i f o r m l y in x 6 Z as

x/n

is w i t h i n b u t s t a y s a w a y f r o m t h e b o u n d a r y o f I . I t is also clear t h a t

f"*(x) = f(x/n F

= e x p

[nH~(,/,)]

w h e n

x/n

b e l o n g s t o t h e b o u n d a r y of I .

T h e r e m a i n i n g g a p is filled in b y

the refined saddle point approximation.

THEOREM. A s n

---> oo,

ff*(x)

= e x p

[nH~(~l,)]~(nv~(~/~))(1 ~- O(lln)) uniformly for x/n 6 I , and fn*(x) = 0 when x/n ~ I.

I t will follow f r o m t h e details b e l o w t h a t t h e s t a t e m e n t a b o v e is still t r u e if we r e p l a c e t h e e r r o r

O(1/n)

b y O(min

(nv~(~/,O,

2 I/n)).

T h e p r o o f s t a r t s w i t h t h e i d e n t i t y

1

j e-(a+ia)xq~( a -~ i~)'~d~.

f f * ( x ) -

2~

W e p u t a =

d(x/n)

a n d c o n c l u d e

1 f D

J r~c~/,)(~Fd~,

ff*(x) =

e x p

[nH,~(,I,) ] G

w h e r e

W e h a v e to s h o w t h a t

= f ).

Z

u n i f o r m l y in a f o r - - oo < a _~ oo a n d a of t h e f o r m a =

d(x/n).

T h e p r o o f will be s e p a r a t e d i n t o t w o eases: 0 < a < oo a n d - - oo < a < 0 , a n d t h e second case will be o m i t t e d since it is quite a n a l o g o u s to t h e f i r s t one. T h e w o r d c o n s t a n t (in f o r m u l a s w r i t t e n Const.) will be u s e d for n u m b e r s w h i c h do n o t d e p e n d on a, ~, or n.

(4)

176

Le~

Then c 2 ( a ) ~ - v a and

T E O ~ A S ~ O G L U N D

c~(a) = f (x - ~ o ) % ( x ) @ ( x ) . Z

~o(~) = 1 + ~ - - ~ ok(a).

L E P T A 1. Ick(a) - - ( - - 1)ke-af@ -- 1)/f@)l ~ Cke -2a, ]c - ~ 2, 3 . . . . f o r s o m e c o n s t a n t C > 1 a n d a l l a > 0 .

This and the lemma below will be proved at the end of the paper. P u t

(i~)k

ra(~) ~- ~ ~-. (ok(a) - - ( - - ])kVa), k ~ 3

I t follows from the lemma t h a t

]Ck(a ) - - ( - - ])kval ~ 2Cke -2a ~ Const. Ckv2,,

and hence also that f%(~)l--~Const, v2,1~l 3, for l~l < ~ . This motivates the decomposition

~a(~) = ~ § v~ - ~ - 1 § i~,) § ra(O,).

Note t h a t r~(~) is negligible compared to the other terms not only when v~ is small b u t also otherwise provided lal is small. Small ~ give the main contribution to

7r n

f _ = y,(~) d~ in the latter ease.

Introduce the abbreviations

~(i~) ~

= ~ ( ~ ) , q = Va(e - ~ - - 1 + i~,), r = to(c,), s = ~ (c~(a) - - ( - - U~vo), k ~ 4

and M ~ max (]Yl, le~-ll, leU+l~ll, e-"a~/2" ~ ).

Then 7 ~ l § 2 4 7 r and

y~ __ e ~ = (yn _ en(v-1)) § (en(v-1) __ e.q( 1 § nr))

(This complicated decomposition is unnecessary if we are content with the error O ( n - 8 9 instead of O(]/n).) The inequalities

ix ~ - - y~] < n i x - - Yl (max (/xl, l y l ) ) n - 1 and le ~ - - 1 - - x l ~ Ixl:elXl/2 together with the familiar estimate l Y - l l ~ v,~2/2 yields

(5)

A R E F I N E D S A D D L E P O I N T A P P R O X I I ~ f A T I O N 177

< n M , - 1 ] y _ d - i ] < n M ~ 1]y ~ 112d-1/2 < Const. M " ( n v , s 2 ) 2 / n f o r Is[ ~< :~.

(Note t h a t supava < co, a n d hence also 1 / M <_ expv~s2/2 <_ Const.) I n similar w a y we o b t a i n

]e "(r-l) - - e"q(] + nr)[ < Const M~(nv,s2)3/n a n d

[nr(e ~q - - exp (-- nvaa2/2))] <_ Const. M~(nv~a2)a/n f o r I ~[ < z . (Here we used t h e i n e q u a l i t y ]e i~ - - 1 - - i s - - (is)2/2] _< ls[z/6.) F i n a l l y

Ins exp (-- nv~s2/2)] <_ Const. M~(nVaS2):/n.

(The e s t i m a t e Is[ < Const. v:a[s] 4 is a consequence of l e m m a 1.)

a

LEMMA 2. T h e r e are p o s i t i v e constants e a n d 6 such that M < exp (-- e:xZv.) f o r all - - ~ ~ a < ~ a n d - - :r < s < :~ s a t i s f y i n g v~[s I < d.

W e use t h e fact f ~ = (r -- s) exp (-- nVaS2/2)da = O, m a k e t h e s u b s t i t u t i o n s --> -- s in the integral representation of ~(2), a n d split the domains of i n t e g r a t i o n in t h e expression D into two parts: Is] _< rain (~, ~/Va) a n d 5/Va < IS I __< :r. The result is

D _< Const. g(nv~)/n + f (lye(s)[" + [exp (e i~ -- 1 is) p~v~)ds,

~/v~ <_ 1~[ _<

where

/ ,

g(a) = / e - ~ ' [ ( a ~ y + (a~Y]&.

I t is clear t h a t g(2) < Const. (22 -[- 2a), 2 ~ 0, a n d t h e s u b s t i t u t i o n s - + ~ 2 89 shows t h a t g(2) < Const. 2-89 Hence g(2) < Const. rain (1, 22)Q(~) for all 2 > 0.

The second t e r m in t h e s u m d o m i n a t i n g D is non-zero o n l y if the d o m a i n of i n t e g r a t i o n is n o n - e m p t y , i.e. o n l y w h e n v~ > 6/x. According to l e m m a 1 this implies t h a t a belongs to a compact subset, K , of R. W e also k n o w t h a t r / = i n f ~ 5 / v , > O, a n d it is wellknown t h a t [ya(S)] < 1 for all a C R a n d o < I~l < ~.

(a,

~) - +

r-(~)

(See l e m m a 3, p. 475 of Feller [1].) I t is easy to see t h a t t h e function is continuous,

([>( ~ ) - r # ) [ _< f

Ip~ - pb(x)Ir

+ b, - ;~ I),

a n d hence also

sup

a. C K

]7~(~)[ < 1.

(6)

1 7 8 THOMAS H 6 G L U ~ D

T h e e s t i m a t e

(valid w h e n d/v~ < Is l < ~r) f i n a l l y shows t h a t t h e r e is a integral in q u e s t i o n is d o m i n a t e d b y

Const. e - ~ < Const. e-~'~? < Const. rain (1, (nv~)~)~(nv,)/n, ( R e m e m b e r t h a t Va ~ 5/~7"~.)

Proof of lemma 1. W e p o i n t o u t t h e fact t h a t

[e~l = e ~ ~ = e x p ( - v~(1 - - c o s s ) ) _< e - ~ ( : . . . . ~)/~

$ > 0 such t h a t t h e

a S

where ~" < ~/max~ v,.

> po(x) = ~-~ + o(e-~

a - ~ ~ . I t is clear t h a t m a = 2 - ~ O ( e - ~ ) . Also

]ck(a ) - - ( - - 1 ) U e - a f ( 2 - 1)If(2)[ <_ ] ( 2 - ma)~po(2)[ +

x - 2

+ 1(2 - : - m o ) k p o ( 2 - - ~) - ( - 1 ) % - ~ f ( 2 - 1 ) / f ( 2 ) 1 + I ~ (x - m . ) k p a ( x ) ] .

T h e f i r s t e x p r e s s i o n t o t h e r i g h t is d o m i n a t e d b y (Const. e-a) k, t h e t h i r d b y (Const.)ke -2a, a n d t h e second b y

](2 - - 1 - - ma) ~ - - ( - - 1)klpa(2 - - 1) -~ Const. e -2a

< (Const.) k ]2 -- m~Ie -a -~ Const. e -2a < (Const.) ~ e -2a.

T h e l e m m a follows.

Proof of lemma 2. W e h a v e

R e (y~(s) - - 1) = R e V a ( e - i ~ - - 1 ~ is) + R e r,(s) < -- Va(1 - - cos s) -~-

]ra(S)]

< - - v,s22/• 2 + Const. v:~lsl a < - - v,s'~/10,

p r o v i d e d [sl ~< x a n d v, la I is s u f f i c i e n t l y small. H e r e we h a v e used t h e i n e q u a l i t y 1 - t o s s _>~e2/~2, v a l i d for [~[ _<~. These estimates t a k e care of ]e~-:[ a n d [e~+lrt].

I n o r d e r to e s t i m a t e [y~(s)] we n o t e t h a t Jlog (1 ~- z) - - z] < ]z[ 2 for lzJ < 1 B u t lya(~) - - iI ~< v~x2/2 <_ 1 for I~l < z a n d Val~l ~< l/Jr. H e n c e

]ya(S)[ = le~~ _< [exp (y - - i ~- V2a~4/4)[ <

e x p ( - - G~2/lO -~ v2,~4/4) < e x p ( - -

Va~2/20),

p r o v i d e d Is[ ~ z a n d v,]~l is s u f f i c i e n t l y small.

The function o(~). I t is clear t h a t le(2)l _< Q(0) = 1 for ~ >_ 0. I n o r d e r to show t h a t ~ ( ~ ) > 0 for 2 > 0, we n o t e t h a t

~(~) = e-~ e~(k-~)d~.

(7)

A R E F I N E D SADDLE POINT APPROXIlVfAT~ON 179 H e n c e

for 4 = 0, 1, 2 , . . . , and

otherwise.

4 C R - - Z .

o(2)=e - ~ . > o

4 k sin zt(2 -- k) e-~o~ k! ~(2 -- k)

B u t sin ~(2 -- k) = (-- 1) k sin ~2, a n d sgn (sin ~4) = (-- 1) [~d for I t therefore follows from l e m m a 3 t h a t ~(4) > 0 also for 0 < 4 $ Z.

L]~MMA 3. P u t

S(4) k=o )-[' k! 2 - - k ' 4 C R - - Z .

T h e n S(2) > 0 i f [4] is even a n d non-negative, a n d S(2) < 0 otherwise.

Proof. Observe t h a t

~ { ( - - 2) 2k 1 (-- 2) 2k+1 1

S ( 2 ) = ~ 0 ~ (2k~. 2 - - 2k @ (2k @ 1)! 2 - - 2 k - - 1) --

22k(1 1 )

= - k = o ~ ~ 2 k + 1 + (2 - 2k)(2 - 2k - 1) '

a n d t h a t ( 2 - - 2 k ) ( 2 - - 2 k - - 1 ) > 0 if a n d only if 4 - - 2 k < 0 or 2 - - 2 k > 1.

H e n c e S(2) < 0 if ( 2 - - 2 k ) ( 2 - - 2 k - - 1) > 0 2 < 0 or [2] is odd.

Similarly

1 ~ (((~k 2)2k+1 1 ( - - 2 ) 2k+2 1 )

S ( 2 ) = ~ +~o~ + 1)! 4 - - 2 k - - 1 + ( 2 k + 2)! 2 - - 2 k - - 2 =

1 ~ 42k+1 ( 1 1 i)

- 4 +~0= ( 2 k + 1 ) ! 2 k + 2 + ( 4 - - 2 k - - 1 ) ( 4 - - 2 k - - 2 ' a n d hence S(2) > 0 if [2] is even a n d non-negative. The l e m m a follows.

Since

(2~4)-89 = - - e- 89 + 2(i~)a/6)d~

2~ R

it remains to show t h a t the difference b e t w e e n this integral a n d t h e integral defining

~o(2) is 0(2 -3/2) as 2---~ oo. I t should be clear t h a t t h e contribution to these integrals from values of ~ satisfying [~ I > 1 is less t h a n 0(2-a/2). P u t sk(~) = e '~ - - ~ 1 o (i~)J/j!. T h e n Isk(~)l < I~lk/k!, a n d

for all k = 0 , 1 , 2 , . . . , i.e. if

(8)

180 TI{O~AS I~6GLUND

i f i

[~().) - - ( 2 z A ) - k l ~-- ~ e - l - ~ ( e ~'~"(~)- 1 - -

A(i~)3/6)da +

0 ( 2 - 3 / 2 ) . E~[<a

T h e i n e q u a l i t y [e ~ - 1 - - yI ~ ] e~ - l - - x ] -~- I x - - y ] ~ [x]%l~1/2 ~- ]x - - yr, ap- plied to x--~ 2s3(~ ) and y ~-- A(i~)3/6, shows t h a t t h e i n t e g r a n d to t h e r i g h t is d o m i n a t e d b y

[ ( ~ ) ~ e -:'~',:~ +

(~o~)~e-~:~]/,~

p r o v i d e d [~] ~ 1. H e n c e @(A) = (2n~)- 89 Jr 0(1/~)).

R e f e r e n c e s

1. FELLER, W., A n introduction to probability theory and its applications, Vol. 2. Wiley, New York, 1966.

2. MARTI~-LSF, P., Statistiska modeller, anteclcningar frdn seminarier 14s~ret 1969--70, ut- arbetade av 1~. Sundberg (in Swedish). University of Stockholm, Department of M a t h e m a t i c a l statistics.

3. RICHTER, W . , Local limit theorems for large deviations. Theor. Probability Appl., 2 (1957), 206--220.

Received September 3, 1973 T h o m a s H S g l u n d

Institut for M a t e m a t i s k StatiStik H . C. Orstsd Institut

Universitetsparken 5 D K - 2 1 0 0 K o b e n h a v n D a n m a r k

Références

Documents relatifs

In the 1980s, Heckman and Opdam ad- dressed the following problem (which goes back to Koornwinder for the root system BC 2 ) : for any root system R , construct a continuous family

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We prove general versions of theorems for random points and effectively measurable random variables, in particular Birkhoff’s ergodic theorem.. This is a significant improvement

In [3] the authors present a general framework for the construction and char- acterization of piecewise-polynomial local interpolants with given smooth- ness and approximation

In this report we study the arithmetic of Rikuna’s generic polynomial for the cyclic group of order n and obtain a generalized Kummer theory.. We also present a method for

EXAMPLE 3.1.. 30) connectionless with any optimization problem. In fact, the solution of this example appears here as the unique saddle-point of the functional.. EXAMPLE

A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values.. It leads us to new explicit sufficient and necessary

Although the equilibrium, hybrid and mixed methods contained in the men- tioned works are often quite satisfactory from a numerical point of view, a complete study of the convergence