• Aucun résultat trouvé

Flowers and mycorrhizal roots – closer than we think?

N/A
N/A
Protected

Academic year: 2021

Partager "Flowers and mycorrhizal roots – closer than we think?"

Copied!
7
0
0

Texte intégral

(1)

Flowers

and

mycorrhizal

roots

closer

than

we

think?

Eva

Nouri

and

Didier

Reinhardt

DepartmentofBiology,UniversityofFribourg,Fribourg,Switzerland

Roots and flowers are formed at the extreme ends of

plants and they differ in almost every aspect of their

developmentandfunction;evenso,theyexhibit

surpris-ingmolecularcommonalities.Forexample,thecalcium

and calmodulin-dependent protein kinase (CCaMK)

plays a central role in root symbioses with fungi and

bacteria, but is also highly expressed in developing

anthers. Moreover, independent evidence from

tran-scriptomics,phylogenomics,andgeneticsreveals

com-mon developmental elements in root symbioses and

reproductivedevelopment.Wediscussthesignificance

of these overlaps, and we argue that an integrated

comparativeviewofthetwophenomenawillstimulate

researchandprovide newinsight,notonlyintoshared

components,butalsointothespecificaspectsofanther

developmentandrootsymbioses.

Roots andflowers:closerthanapplesandoranges?

Most plants engageinarbuscular mycorrhiza (AM),

mu-tualistic associationswith fungifrom theorder

Glomero-mycota [1–3]. The wide distribution of this interaction

among land plants, and its predominance in almost all

ecological niches, suggests that this symbiosis provides

diverseimportantservicestothehost[4].Establishment

ofAMrequiresasignalingcascadeinthehost,referredto

as the common symbiosis signaling pathway (CSSP)

be-causeitissharedwiththenitrogen-fixingnodulesymbiosis

betweenlegumesandrhizobia[2,5].

One of the central elements of the CSSP is CCaMK,

whichisrequiredforinfection byAM fungiandrhizobia

[6].ConstitutivelyactiveformsofCCaMKaresufficientto

triggertheformationofnodulesintheabsenceofrhizobia

or of any exogenous stimulus, hence demonstrating the

centralrole ofCCaMK innodulation[7,8].Interestingly,

CCaMKwasoriginallyidentifiedandcharacterizednotin

roots,butintheanthersofflowers,hencetheprovocative

question: does pollen development involve mechanisms

shared withrootsymbiosis?Whatmightthetwo havein

common? Based on several lines of evidence, it may be

relatedtosignalingandcellwallbiosynthesis.

Pollengrainsrepresenthighly-resistantcapsuleswhich

protect the sensitive sperm cells (or their progenitor

cell) against harsh conditions such as desiccation and

UVirradiation.Thewallofthecapsuleconsistsofasturdy

multi-layered cell wall[9]that is coatedwith oneofthe

most resistant biological materials, sporopollenin, that

consistsofahydrophobicpolymeroffattyacidsandtheir

derivatives[10].Owingtoitsextremeresistanceandwide

distribution in nature, pollen is one of the best fossil

indicatorsforevolutionaryandclimaticstudiesoverlarge

spatialandtemporalscales[11].

At the other end of the spectrum regarding longevity

residetheephemeralarbuscules,thefeedingstructuresof

AMfungi thathave alifetimeofonly afew days[12,13].

Nevertheless,surprisingly,thedevelopmentofarbuscular

mycorrhizarequiresasimilarlipid-relatedpathwayinthe

planthostasthatinvolvedinpollenwallsynthesis.

Howev-er, in the case ofsymbiosis, there is noevidence forthe

formationofanextracellularpolymerbytheplant.Instead,

thenon-polymerizedlipidicintermediatesofthepathway

arethoughttofunctionas signalsbetweentheplanthost

andthefungal endosymbiont[14–16].Moreover,genomic

and genetic analysesreveal further unexpected parallels

betweenrootsymbiosisandpollendevelopment.

Wediscusshererecenthighlightsinthesesofar

unre-latedresearch domains, explorethe significanceof

over-lapsbetween theinvolved pathways,andsuggest that a

scientific crosstalkbetween thetwo researchfieldscould

potentiallycontributetoadvancingbothfieldsinthe

com-ingyears.

Theprecedent:thecaseofCCaMK

CCaMKwas firstisolatedfrom lilly(Liliumlongiflorum)

anthers [17], and subsequently biochemically

character-ized in lilly, tobacco (Nicotiana tabacum), maize (Zea

mays),andpea(Pisumsativum)[18–25].Thecombination

of a calmodulin-binding domain and three EF hands in

CCaMK is unique (Box 1) and sets it apart from the

calcium-dependent protein kinases (CDPKs) [6]. In lilly

andtobaccoanthers,CCaMKisexpressedathighestlevels

during the meiotic phase of pollen development, in the

meiocytes as well as in the tapetum, the cell layer that

feedsthedevelopingpollen[18,26].

ThefunctionofCCaMKhaslongremainedelusive,and

whenthefirstknockoutmutantsofccamkwereidentified

inMedicagotruncatulatheirphenotypewasnotrelatedto

flowersbut,surprisingly,totheroots,whichweredefective

inthedevelopmentofbothAMandnitrogen-fixingnodules

[27,28]. Subsequent work showed that the AM-related

functionofCCaMKanditsexpressioninflowersare

con-served in rice (Oryza sativa) [29,30]. The function of

CCaMK in symbiosis is thought to bethe decoding of a

Correspondingauthor:Reinhardt,D. (didier.reinhardt@unifr.ch).

Keywords:symbiosis;arbuscularmycorrhiza;pollen;glycerol-3-phosphate acyltrans-ferase;GPAT.

Published in 7UHQGVLQ3ODQW6FLHQFH  ± which should be cited to refer to this work.

(2)

calcium signal (calcium spiking) in root cells that have

perceivedAMfungalorrhizobialsignals(reviewedin[6]).

Interestingly,mutantsdefectiveintwoothercomponents

oftheCSSPthatactupstreamofcalciumspiking,

nucleo-porin85(NUP85) andNUP133,alsopointtoan overlap

between root symbiosis and reproduction because they

exhibitfertilitydefects[31–33].

Alipid-relatedpathwaysharedbetweenAMandflower

development

Toexplorepotentiallysharedregulatorypathwaysin

flow-erdevelopmentandrootsymbiosisinasystematicfashion,

acomparisonoftherespectivetranscriptomescanbeused

asanindicatorforcommondevelopmentalandregulatory

pathways.Because the well-characterized model species

Arabidopsisthalianadoesnotengageinrootsymbioses,we

chosethestandardsymbiosismodelspeciesM.truncatula

which offers excellent bioinformatics tools with the

M. truncatula Gene Expression Atlas (MtGEA; http://

mtgea.noble.org/v3).

Bycomparinggene expressionin flowerswith

vegeta-tivebuds,andapplyingathreefoldinductioncutoff,atotal

of151flower-induced geneswere identified. In a second

step,theseflower-relatedgeneswereassessedinrelation

tothree recentlyestablishedAM-related criteria [34]: (i)

threefoldinduction inmycorrhizalroots,(ii)asignificant

AM-relatedpatternofsequenceconservationinthecoding

region,and(iii)predictedAM-relatedregulatorysequences

in their promoters. Surprisingly, 81 of the 151

flower-inducedgenes(53.6%)werefoundinatleastoneofthese

three AM-related categories. Considering the 20 genes

with the highest induction levels in AM (Table 1), 10

(50%)exhibitedasignificant(P<0.05)AM-related

conser-vationpatternasdefinedin[34]orwereentirelymissing

fromA.thaliana(indicatedwithasterisksinTable1).This

isconsiderably morethan the 28.5%ofgenes(n =1334)

withanAM-relatedconservationpatternwhen4684

ubiq-uitoushousekeepinggeneswereconsidered(seeTableS5

in[34]).Thissuggeststhatthese10flower-inducedgenes

have beenunderselectionfor AM-related functions,and

thereforemayhaveoverlappingfunctionsinflowersandin

AMsymbiosis.

The gene with the highest induction ratioin AM is a

glycerol-3-phosphate acyltransferase (GPAT) (Table 1),

knownasREQUIREDFORARBUSCULAR

MYCORRHI-ZA2(RAM2),basedonitsAM-defectivemutantphenotype

[16].GPATcatalyzesthetransferoffattyacidsonto

glyc-erol-3-phosphate[35,36].Thisisthefirstcommittedstepin

the biosynthesisofphospholipids (membrane lipids)and

triacylglycerols (storagelipids), andofextracellularlipid

polyesterssuchascutinandsuberin(Box2).Animportant

distinction in these pathways is that the precursors of

Box1.Calciumandcalmodulin-dependentproteinkinase(CCaMK)

CCaMKisaproteinkinasethatcanbindthreecalciumionswiththeEF hands(redblocks)initsC-terminaldomain(Figure I).Thisdomain, whichisevolutionarilyrelatedtocalmodulin(althoughoneEFhandis nonfunctional,depictedinpink),issharedwiththecalcium-binding domainofCDPKs[70].However,incontrasttoCDPKs,CCaMKhasin additionacalmodulin-bindingdomain(CBD) whichisessentialfor properregulation[6,71].CCaMK,whichisencodedbyasingle-copy geneinmostplants,ishighlyconservedinspeciesthatcanundergo

AMand/orrootnodulesymbiosis[34,72];however,Arabidopsisthaliana andothernon-symbioticspecieshavelostit.Forphylogeneticanalysis, MtCCaMKwasusedasabaittoidentifythethreeclosesthomologsfrom Medicagotruncatula(Mt),A.thaliana(At),Solanumlycopersicum(Sl), Cucumissativus(Cs),Oryzasativa(Os),Zeamays(Zm),andSorghum bicolor(Sb)byPBLASTatNCBI.Phylogramswereproducedasdescribed using the software package at www.phylogeny.fr [73]. Support for branchseparationisindicatedwithbootstrapvaluesfor100replicates.

sb_2 Os_3 Os_2 Sb_3 ZmCDPK3MtCDPK2 Cs_2 Cs_3 SlCDPK3 ZmCDPK24 SlCDPK17 AtCDPK29 MtCDPKb AtCDPK2 AtCDPK12 CsCCaMK SbCCaMK OsCCaMK ZmCCaMK MtCCaMK SlCCaMK CCaMK Calmodulin Kinase domain CBD EF EF EF EF EF EF EF 0.99 0.99 0.88 0.8 0.39 1 0.85 0.6 1 1 0.75 0.69 0.78 0.42

TRENDS in Plant Science

FigureI.PhylogramofplantCCaMKproteins.

(3)

membrane and storage lipids are first acylated at the

sn1-position, whereas theprecursors ofthe extracellular

polyestersareacylatedatthesn2-position[35,36](Box2).

Plantshavetypically8–10GPATsdistributedoversix

subfamilies(Figure1).Basedonitsrelativeproximityto

GPAT4toGPAT8(Figure1), RAM2ispredictedtohave

sn2-acylation activity. Furthermore, RAM2 shares

con-served amino acid residues with GPAT4, GPAT6, and

GPAT8 that are required for phosphatase activity

[16,37].This activity releases the phosphate groupfrom

the sn3-position,therebygenerating precursorsfor cutin

biosynthesis (Box 2). Based on this collective evidence,

RAM2 in pollen may be involved in the synthesis ofan

extracellularlipidicpolymer,perhapssporopollenin.

What is the role of RAM2 in AM symbiosis? Lipidic

polyesters function primarily as barriers for water and

solublemolecules[38],afunctionthatisnotimmediately

obvious in mycorrhizal roots where facilitated nutrient

transfer is the central symbiotic function. Based on the

factthatram2mutantsshowextremelylowlevelsofAM

fungalcontactpoints, ithasbeenproposed thatthe

pro-ducts of the GPAT activity of RAM2 may function as

signalsfromthehosttostimulatefungalinfection[14–16].

The secondgene inthelistofsharedAM- and

flower-induced genes (Table 1)encodesa predictedCASP1-like

protein. CASPs, which are encoded by a gene family in

Arabidopsis, are membraneproteins that localize to the

Casparian strip, and are required for its formation

[39].ThethirdgeneinthelistofAM-andflower-induced

genes is a cytochrome P450 belonging to the subfamily

CYP71,andaferulate5-hydroxylase(FAH)istheclosest

homologinArabidopsis(Table1).FAH isinvolvedinthe

biosynthesis of lignin by oxidizing one of its aromatic

constituents [40,41].Becausebothfunctions,CASP1-like

andCYP71,appeartoberelatedtocellwallmodifications,

it is possible that the apoplastic symbiotic interface of

mycorrhizalrootsandthepollenwallsharesomeunknown

features.However,itshouldbeborneinmindthat,despite

theirtentativeannotationbasedonArabidopsis,the

func-tionsofCASP1-like andofCYP71 in rootsymbiosis and

pollendevelopmentareelusiveandwillrequirefunctional

analysisbyreversegeneticsapproaches.

RecognitioninAMandinpollinationmayinvolvea

commonmechanism

Atasuperficiallevel, theinteraction betweenfungal

hy-phaeandroots,andbetweenpollentubesandthestigma,

exhibitsimilaraspects.Inbothcases,atubularstructure

(fungal hyphae and pollen tubes, respectively) penetrate

planttissues(therootsurfaceandthestigma,respectively).

Aparallelatthemolecularlevelinvolvesthespecific

recog-nitionmechanismsinvolvedinthetwointeractionswhich,

however, lead to opposite downstream consequences. In

AM, the recognitionof symbiosis-specificsignals and the

activationoftheCSSPareprerequisitesforacompatible

interaction[2,3,42].Bycontrast,plantsusetherecognition

ofpollen-specific signals toidentify theirown pollen and

toreject it, a phenomenonknown as self-incompatibility

(SI)[43].

TherearetwodifferentmechanismsofSI,gametophytic

and sporophytic SI, depending on whether recognition

involvesfactorsencoded by thehaploidpollengrain(the

gametophyte) or factors encoded by the diploid anther

tissue of the sporophyte (in particular the tapetum) of

theplantthatproducedthepollen.Inthe

well-character-ized sporophytic SI of the Brassicaceae (including the

genus Arabidopsis),the diploidanthertissues produce a

protein, the S-locus cysteine-rich (SCR) protein, that is

deposited on the pollen coat during pollen development

[44].Thisextracellularproteinisrecognizedinthestigma

Table1.GenescommonlyinducedinAMsymbiosisandinflowersofMedicagotruncatulaa

GeneID Probeset LCM AM Flo/Bud Annotation Athomolog

1b MTR_1g040500.1 Mtr.36944.1.S1_at 321.9 45.1 75.2 ERglycerol-phosphateacyltransferase(RAM2) At2g38110 2b MTR_6g073040.1 Mtr.41728.1.S1_at 199.3 241.4 22.8 Putativeuncharacterizedprotein(CASP1-like) At2g39530 3b MTR_8g091690.1 Mtr.12170.1.S1_at 58.1 93.7 30.7 CytochromeP450(CYP71A1;ferulate5-hydroxylase) At4g36220

4 MTR_8g087810.1 Mtr.46057.1.S1_at 47.7 31.3 3.2 Nitrate/chloratetransporter At1g59740

5 MTR_8g038210.1 Mtr.14183.1.S1_at 27.5 2.5 11.1 Annexin At5g12380

6 MTR_8g074530.1 Mtr.43640.1.S1_at 20.5 1.6 3.9 Putativeuncharacterizedprotein At4g35690

7 MTR_4g122750.1 Mtr.38447.1.S1_at 14.0 1.1 19.5 Pectinesteraseinhibitor At1g47960

8 MTR_3g020970.1 Mtr.30156.1.S1_at 11.8 6.0 7.5 Subtilisininhibitor At2g38900

9 MTR_5g017550.1 Mtr.44890.1.S1_at 11.1 0.9 26.2 Calcium-bindingproteinCML24 At2g15680

10b MTR_5g018610.1 Mtr.29593.1.S1_at 8.4 29.6 4.0 Putativeuncharacterizedprotein nohomolog 11b MTR_2g100350.1 Mtr.8968.1.S1_at 7.8 0.4 27.9 PyridoxalphosphatephosphatasePHOSPHO2 At1g17710

12b MTR_7g083570.1 Mtr.22351.1.S1_at 7.0 0.5 3.5 GEM-likeprotein At5g13200

13 MTR_7g082570.1 Mtr.12958.1.S1_at 6.7 1.3 5.2 ClassIglutamineamidotransferase At5g38200

14b MTR_6g009260.1 Mtr.17352.1.S1_at 6.4 10.7 3.9 Synaptojanin-1 At3g63240

15 MTR_3g084200.1 Mtr.20624.1.S1_at 6.1 0.8 3.5 Auxin-inducedprotein-likeprotein At4g38840

16 MTR_2g101560.1 Mtr.12373.1.S1_at 5.1 0.9 14.4 Nitrate/peptidetransporter At1g52190

17 MTR_8g094740.1 Mtr.44450.1.S1_at 4.7 1.8 4.6 Glutamyl-tRNA(Gln)amidotransferasesubunitA At5g64440

18b MTR_3g061170.1 Mtr.43887.1.S1_at 4.5 0.8 3.8 ChaperoneproteindnaJ At3g13310

19b MTR_7g012330.1 Mtr.43426.1.S1_at 4.1 0.6 52.6 CytochromeP450(CYP71B37) At4g31500

20b MTR_3g088460.1 Mtr.17288.1.S1_at 4.0 0.7 7.4 Metaltransporter At1g15960

aAbbreviations:AM,mycorrhizalrootsvscontrolroots;ER,endoplasmicreticulum;Flo/Bud:flowersvsvegetativebuds;LCM,lasercapture-microdissectedmycorrhizal cortexcellsvsnon-colonizedcells.

bGenesthatexhibitasignificant(P<0.05)AM-relatedconservationpatternasdefinedin[34],orthatwerelostinArabidopsis.

(4)

byS-locusreceptorkinase(SRK)whichactivatesthe

abor-tionofself-pollenbyamechanismthatiscurrentlyunder

intensedebate [45–48].TheextracellulardomainofSRK

containsahighly conservedcysteine-richstretch

consist-ingof an EGF-like and a PAN_APPLE motive that are

requiredforreceptor dimerization[49],andcomprises

N-glycosylationsitesthatareessentialforlocalizationtothe

plasmamembrane[50].ThegenesencodingSCRprotein

andSRK are tightly linked in the S-locus, and occur in

many allelic variants in natural plant populations [51],

thusensuringefficientcross-pollination.

Interestingly, maize roots express a closely related

homologofSRK,referredtoasZmPK1[52].Recent

bioin-formaticsanalysisatthegenomiclevelrevealed thatthe

genomesofAM-competentspecieshaveaconserved

SRK-relatedgroupofreceptorkinasesthatareabsentfromthe

non-mycorrhizalBrassicaceae [34]. The extracellular

do-mainofthesepredictedAM-related receptorsexhibitthe

canonicalcysteineresiduesrequiredfordimerizationand

severalpredictedN-glycosylationsites(Figure2).

Consis-tent with a role in root symbioses, the three Medicago

homologs of this specific SRK-related gene family are

expressed exclusively or primarily in roots (see http://

mtgea.noble.org/v3).A potentialroleoftheseAM-related

receptor kinases, in addition to the established roles of

leucine-richrepeat(LRR)andlysine-motive(LysM)

recep-tor-like kinases (RLKs) [53], remains to be elucidated;

however, it is intriguing to note that AM and SI may

involve recognitionsystems that share a common

evolu-tionaryorigin.

Cellwall-relatedcommonalitiesbetweensymbiosisand

pollendevelopment

Fascinatingparallelshave emergedfrom comparisonsat

the molecularandmorphologicallevelsbetweengrowing

pollentubesandtheinfectionthreadinrootnodule

sym-biosis.Infectionthreadsareinvaginationsofroothaircells

thatallowrhizobiatoenter,andthatguidethemtowards

thecortex[5].Severalsimilaritieshaveledtothe

hypoth-esis that the infection thread could be regarded as an

inversepollentubethat extendsbyatip-growing

mecha-nism[54].Indeed,pollentubesandinfectionthreadsshare

severalcloselyrelatedproteinssuchaspecticenzymes[55]

andarabinogalactanproteins[56].Thecloserelationship

betweennodule-relatedandpollen-relatedpecticenzymes

extendsfromtheconservedcodingregionintothe

promo-ters. Strikingly, some promoters contain separate

ele-ments that mediate expression in flowers and nodules,

respectively.Takentogether,thesefindingsstronglyargue

for a common evolutionary origin of cell wall-related

Box2.Activitiesofglycerol-3-phosphateacyltransferase(GPAT)

GPATs mediate the first dedicated step in the biosynthesis of membranelipids,storagelipids,andextracellularlipidpolyesters (cutinandsuberin)(FigureI).Ingeneral,GPATsuseacyl-CoAasa substrate,from which they transfer theacyl chainonto glycerol-3-phosphate. In the case of membrane and storage lipids, the acylgroupistransferredtothesn1-position,resultingin lysopho-sphatidicacid(1-acyl-LPA),followedbythetransferofasecondacyl

chaintothesn2-position.Cutinandsuberinprecursorsareformed bythetransferoftheacylchaintothesn2-position(2-acyl-LPA).In the caseofcutinbiosynthesis,the productof theacyltransferase reaction is simultaneously dephosphorylated, resulting in mono-acylglycerol (MAG). Nomenclature and numbering are based on theGPATsofArabidopsisthaliana.Reproduced,withpermission, from[74]. O O OH CH3 n OH (GPAT5) (GPAT4,6) O OH OH O O O n R R O n P O P sn-1 GPATs sn-2 GPATs Fay acyl-CoA + Glycerol-3-phosphate Membrane and storage lipids Suberin Cun

R = CH3, OH, COOH, OCOR′, COOR′

(GPAT55 sn-1 GPATs 4,6) sn-2 GPAT (GPAT55) (GPAT55

TRENDS in Plant Science

FigureI.GPATsandtheirroleinthebiosynthesisofmembraneandstoragelipidsandoflipidpolyesters.

(5)

mechanisms involved in the formation of pollen tubes

andinfectionthreads[55].Furthermoleculargenetic

dis-section of the pathways involved in these two different

cellulargrowthphenomenawillprofitfromsuch

compara-tivestudies.

Evidenceforoverlapsfromgenetics

Geneticoverlapsbetweendevelopmentalpathwayscanbe

discovered by rescreening mutants for new phenotypes.

For example, the finding that approximately half the

nodulation-defectivemutantsinpeaarealsoAM-defective

0.95 0.88 1 1 0.86 0.91 0.87 0.92 0.62 0.94 1 0.96 0.39 1 0.82 0.44 0.93 0.96 0.96 0.97 0.97 0.64 0.45 0.79 0.77 0.95 0.82 0.92 1 0.55 0.96 SIGPAT5/7a SIGPAT5/7b MtGP AT5/7 OsGP AT5/7 OsGPAT4/8 SIGPAT4/8 MtGP AT4/8 AtGP AT4 AtG PAT8 OsGP AT6b OsGP AT6a OsRAM2a OsRAM2b AtG PA T6 OsGP A T-X SIGP A T1 MtGP A T1a MtGP AT1b MtGP AT2/3a

MtGPAT2/3bAtGPAT3 AtGPAT2 AtG PA T1 OsGP AT 1 OsGP AT2/3a OsGP AT2/3b AtGPAT7 At GPAT 5 MtGP A6a MtGP A T6b MtRAM2 SIGP A T 6 SlRAM2a SlRAM2b SlRAM2-lik e

TRENDS in Plant Science

Figure1.Phylogenyofglycerol-3-phosphateacyltransferases(GPATs).PhylogramoftheentireGPATfamiliesoftheAMcompetentspeciesMedicagotruncatula,Solanum lycopersicum,Oryzasativa(rice),andofthenon-mycorrhizalspeciesArabidopsisthaliana.NotethatA.thalianalacksahomologintheRAM2branch(yellow).Phylogenetic analysiswascarriedoutasdescribedusingthesoftwarepackageatwww.phylogeny.fr[73].Supportforbranchseparationisindicatedwithbootstrapvaluesfor 100replicates.

EGF-like mof PAN-APPLE mof

TRENDS in Plant Science

Figure2.ConserveddimerizationdomaininAM-relatedSRK-likeproteins.ConservedC-richextracellulardomainofArabidopsislyrataSRKb[75]andBrassicaoleraceaSRK6

[76],togetherwiththethreepredictedMedicagotruncatulaAM-relatedSRKhomologs(Mt238,Mt354,Mt4055)[34],theclosesthomologinOryzasativa(Os354),andZeamays PK1(ZmPK1)[52].Conservedcysteineresiduesarehighlightedinred,predictedN-glycosylationsitesinblue.GlycosylationsitesinAlSRKbwereexperimentallyconfirmed[50].

(6)

ledtothediscoveryoftheCSSP[57].Applyingthisapproach

to reveal overlaps between pollen development and root

symbioses appears at firstsight less pertinent, and thus

systematic rescreening of pollen mutants for symbiosis

defects has not been carried out. Furthermore, this

ap-proach has been precluded in the cases where pollen

mutants had been isolated in the non-symbiotic model

speciesA.thaliana.Conversely, AM mutantswith pollen

defectsshould immediatelybeidentifiedby theirfertility

defects.Indeed, somesymbiosismutantsexhibit

segrega-tiondistortions[32,33,58]and, inthecaseofNUP85and

crinkle,thishasbeenattributedtopollendefects[33,58].

GiventhetranscriptomicoverlapbetweenAMandflower

development, ram2 and ccamk mutants could also be

expected to exhibit fertility defects in addition to their

symbiosisdefects;however,thisisnotthecase.Thismay

befor two reasons: pollen is generally produced in large

excess,andthereforequantitativedefectsinpollenfitness

maybe overlooked,in particular in self-fertile species. A

secondreasonforthelackofpollen-relatedmutant

pheno-types may be functional redundancy. For example, the

secretionofcomponentsforpollenwallformationin

Arabi-dopsisinvolvestwoABCtransportersoftheG-type

subfam-ily, ABCG1 and ABCG16, which act redundantly [59].

Similarly, RAM2 may function redundantly with other

GPATsinpollen, whereasits role inmycorrhizalrootsis

non-redundant.Indeed,membersfromotherbranchesofthe

GPATtreewereshowntobeinducedduringpollen

develop-ment[60]ortoberequiredforpollendevelopment[61–63].

Concludingremarksandoutlook

Thecombinedevidencefromtranscriptomics,genomics,and

geneticsrevealssignificantoverlapsbetweenroot

symbio-ses and pollen development. Components of the CSSP,

includingNUP85,NUP133,andCCaMK,aswellasashared

mechanism involvingthe glycerol-3-phosphate

acyltrans-feraseRAM2,appeartofunctioninbothmycorrhizalroots

andanthers.Althoughthesharedelementsmayultimately

serve different downstream functions in AM and pollen

development, comparison of the common elements could

beinformative.Animportant aspectofsuchcomparative

workshouldinvolvetheprecisetranscriptomicanalysisof

thedifferentcelltypesinanthersandmycorrhizalrootsin

an AM-competent species such as M. truncatula or rice.

Geneexpressiondatawithhighspatialandtemporal

reso-lutioncouldbeobtainedusingtechniquessuchascell

sort-ing[64,65]orlaser-assistedmicro-dissectioninmycorrhizal

roots[66,67]andinpollendevelopment[68,69].Usingsuch

asystematiccomparativeapproach,andexchanging

infor-mation and ideas from the two research domains, could

helptoexplaincommonanddifferentialelementsinthese

seeminglyverydifferentrealmsofplantbiology.

Acknowledgments

WethankPatrickFavre forassistancewith geneexpressionanalysis. ThisworkwassupportedbySystemsXandtheSwissNationalScience Foundation.

References

1 Bucher,M.etal.(2014)Throughthedoorsofperceptiontofunctionin arbuscularmycorrhizalsymbioses.NewPhytol.204,833–840

2Gutjahr,C.andParniske,M.(2013)Cellanddevelopmentalbiologyof arbuscularmycorrhizasymbiosis.Annu.Rev.CellDev.Biol.29,593–617

3 Harrison,M.J.(2012)Cellularprogramsforarbuscularmycorrhizal symbiosis.Curr.Opin.PlantBiol.15,691–698

4 Smith,S.E.andRead,D.J.(2008)MycorrhizalSymbiosis,Academic Press

5 Oldroyd,G.E.D.etal.(2011)Therulesofengagementinthelegume– rhizobialsymbiosis.Annu.Rev.Genet.45,119–144

6Singh,S.andParniske,M.(2012)Activationofcalcium-and calmodulin-dependentproteinkinase(CCaMK),thecentralregulatorofplantroot endosymbiosis.Curr.Opin.PlantBiol.15,444–453

7 Gleason,C.etal.(2006)Nodulationindependentofrhizobiainduced by a calcium-activated kinase lacking autoinhibition. Nature 441, 1149–1152

8 Tirichine,L.etal.(2006)DeregulationofaCa2+/calmodulin-dependent

kinase leads to spontaneous nodule development. Nature 441, 1153–1156

9 Quilichini,T.D.etal.(2014)Newviewsoftapetumultrastructureand pollen exine development in Arabidopsis thaliana. Ann. Bot. 114, 1189–1201

10 Ariizumi, T. and Toriyama, K. (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu. Rev. PlantBiol.62,437–460

11 Mitchell,F.J.G.(2011)Exploringvegetationinthefourthdimension. TrendsEcol.Evol.26,45–52

12 Alexander,T.etal.(1988)Dynamicsofarbusculedevelopmentand degenerationinmycorrhizasofTriticumaestivumLandAvenasativa LwithreferencetoZeamaysL.NewPhytol.110,363–370

13 Alexander,T.etal.(1989)Dynamicsofarbusculedevelopmentand degenerationinonion,bean,andtomatowithreferencetovesicular– arbuscularmycorrhizaeingrasses.Can. J.Bot.Rev.Can. Bot.67, 2505–2513

14 Bonfante,P.andGenre,A.(2015)Arbuscularmycorrhizaldialogues: doyouspeak‘plantish’or‘fungish’?TrendsPlantSci.20,150–154

15 Murray,J.D.etal.(2013)Signalingattherootsurface:theroleofcutin monomersinmycorrhization.Mol.Plant6,1381–1383

16 Wang,E.T.etal.(2012)Acommonsignalingprocessthatpromotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22, 2242–2246

17 Patil,S.etal.(1995)Chimericplantcalcium/calmodulin-dependent proteinkinasegenewithaneuralvisinin-likecalcium-bindingdomain. Proc.Natl.Acad.Sci.U.S.A.92,4897–4901

18 Liu,Z.H.etal.(1998)Chimericcalcium/calmodulin-dependentprotein kinaseintobacco:differentialregulationbycalmodulinisoforms.Plant Mol.Biol.38,889–897

19 Pandey, S. and Sopory, S.K. (1998) Biochemical evidence for a calmodulin-stimulated calcium-dependent protein kinase in maize. Eur.J.Biochem.255,718–726

20 Ramachandiran,S.etal.(1997)Functionaldomainsofplantchimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitoryandvisinin-likedomains.J.Biochem.121,984–990

21 Sathyanarayanan,P.V.etal.(2000)PlantchimericCa2+ /calmodulin-dependentproteinkinase–roleoftheneuralvisinin-likedomainin regulatingautophosphorylationandcalmodulinaffinity.J.Biol.Chem. 275,30417–30422

22 Sathyanarayanan, P.V. et al. (2001) Calcium-stimulated autophosphorylation site of plant chimeric calcium/calmodulin-dependentproteinkinase.J.Biol.Chem.276,32940–32947

23 Sathyanarayanan,P.V.andPoovaiah,B.W.(2002) Autophosphorylation-dependentinactivationofplantchimericcalcium/calmodulin-dependent proteinkinase.Eur.J.Biochem.269,2457–2463

24 Pandey, S. and Sopory, S.K. (2001) Zea mays CCaMK:

autophosphorylation-dependent substrate phosphorylation and down-regulationbyredlight.J.Exp.Bot.52,691–700

25 Pandey, S.etal.(2002)ACa2+/CaM-dependent kinasefrompeais

stressregulatedandinvitrophosphorylatesaproteinthatbindsto AtCaM5promoter.Eur.J.Biochem.269,3193–3204

26 Poovaiah,B.W.etal.(1999)Developmentalregulationofthegenefor chimeric calcium/calmodulin-dependent protein kinase in anthers. Planta209,161–171

27 Le´vy, J. et al. (2004) A putative Ca2+ and calmodulin-dependent

proteinkinaserequiredforbacterialandfungalsymbioses.Science 303,1361–1364

(7)

28 Mitra,R.M.etal.(2004)ACa2+/calmodulin-dependentproteinkinase required for symbiotic nodule development: gene identification by transcript-basedcloning.Proc.Natl.Acad.Sci.U.S.A.101,4701–4705

29 Chen,C.Y.etal.(2007)Fungalsymbiosisinricerequiresanorthologof a legume common symbiosis gene encoding a Ca2+

/calmodulin-dependentproteinkinase.PlantPhysiol.145,1619–1628

30 Gutjahr,C.etal.(2008)Arbuscularmycorrhiza-specificsignalingin ricetranscendsthecommonsymbiosissignalingpathway.PlantCell 20,2989–3005

31 Binder,A.andParniske,M.(2014)AnalysisoftheLotusjaponicus nuclearporeNUP107-160subcomplexrevealspronouncedstructural plasticityandfunctionalredundancy.Front.PlantSci.4,552

32 Kanamori,N.etal.(2006)Anucleoporinisrequiredforinductionof Ca2+spikinginlegumenoduledevelopmentandessentialforrhizobial

andfungalsymbiosis.Proc.Natl.Acad.Sci.U.S.A.103,359–364

33 Saito, K. et al. (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotusjaponicus.PlantCell19,610–624

34 Favre,P.etal.(2014)Anovelbioinformaticspipelinetodiscovergenes relatedtoarbuscularmycorrhizalsymbiosisbasedontheirevolutionary conservationpatternamonghigherplants.BMCPlantBiol.14,333

35 Chen, X. et al. (2011) sn-Glycerol-3-phosphate acyltransferases in plants.PlantSignal.Behav.6,1695–1699

36 Li-Beisson,Y.etal.(2013)Acyl-lipidmetabolism.ArabidopsisBook11, e0161

37 Yang, W.L. et al. (2010) A distinct type of glycerol-3-phosphate acyltransferasewithsn-2preferenceandphosphataseactivityproducing 2-monoacylglycerol.Proc.Natl.Acad.Sci.U.S.A.107,12040–12045

38 Schreiber, L.(2010)Transportbarriers madeofcutin,suberinand associatedwaxes.TrendsPlantSci.15,546–553

39 Geldner,N.(2013)Theendodermis.Annu.Rev.PlantBiol.64,531–558

40 Franke,R.etal.(2000)Modifiedligninintobaccoandpoplarplants over-expressingtheArabidopsisgeneencodingferulate5-hydroxylase. PlantJ.22,223–234

41 Marita, J.M. et al. (1999) NMR characterization of lignins in Arabidopsis alteredin theactivity offerulate 5-hydroxylase. Proc. Natl.Acad.Sci.U.S.A.96,12328–12332

42 Oldroyd,G.E.D. (2013)Speak,friend,andenter:signallingsystems thatpromote beneficial symbiotic associationsin plants. Nat. Rev. Microbiol.11,252–263

43 Takayama, S. and Isogai, A. (2005) Self-incompatibility in plants. Annu.Rev.PlantBiol.56,467–489

44 Nasrallah, J.B.and Nasrallah,M.E.(2014)S-locusreceptorkinase signalling.Biochem.Soc.Trans.42,313–319

45 Goring,D.R.etal.(2014)TheARC1E3ligasepromotesastrongand stableself-incompatibilityresponseinArabidopsisspecies:responseto theNasrallahandNasrallahcommentary.PlantCell26,3842–3846

46 Indriolo,E.etal.(2012)TheARC1E3ligasegeneIsfrequentlydeleted inself-compatibleBrassicaceaespecies andhasaconservedrolein Arabidopsislyrataself-pollenrejection.PlantCell24,4607–4620

47 Indriolo,E.etal.(2014)TheARC1E3ligasepromotestwodifferent self-pollenavoidancetraitsinArabidopsis.PlantCell26,1525–1543

48 Nasrallah,J.B.andNasrallah,M.E.(2014)Robustself-incompatibility intheabsenceofafunctionalARC1geneinArabidopsisthaliana.Plant Cell26,3838–3841

49 Naithani,S.etal.(2007)Structuralmodulesforreceptordimerization intheS-locusreceptorkinaseextracellulardomain.Proc.Natl.Acad. Sci.U.S.A.104,12211–12216

50 Yamamoto,M.etal.(2014)Site-specificN-glycosylationoftheS-locus receptorkinaseanditsroleintheself-incompatibilityresponseofthe Brassicaceae.PlantCell26,4749–4762

51 Vekemans,X.etal.(2014)Theevolutionofselfingfromoutcrossing ancestorsinBrassicaceae:whathavewelearnedfromvariationatthe S-locus?J.Evol.Biol.27,1372–1385

52 Walker,J.C.andZhang,R.(1990)Relationshipofaputativereceptor proteinkinasefrommaizetotheS-locusglycoproteinsof Brassica. Nature345,743–746

53 Antolin-Llovera,M.etal.(2014)Knowingyourfriendsandfoes–plant receptor-likekinasesasinitiatorsofsymbiosisordefence.NewPhytol. 204,791–802

54 Szczyglowski,K.andAmyot,L. (2003)Symbiosis,inventivenessby recruitment?PlantPhysiol.131,935–940

55 Rodriguez-Llorente,I.D.etal.(2004)Frompollentubestoinfection threads: recruitmentofMedicago floralpecticgenes forsymbiosis. PlantJ.39,587–598

56 Nguema-Ona,E.etal.(2012)Arabinogalactanproteinsin rootand pollen-tubecells:distributionandfunctionalaspects.Ann.Bot.110, 383–404

57 Duc,G.etal.(1989)Firstreportofnon-mycorrhizalplantmutants (myc-)obtainedinpea(PisumsativumL.)andfababean(ViciafabaL.). PlantSci.60,215–222

58 Tansengco,M.L.etal.(2004)Pollendevelopmentandtubegrowthare affectedinthesymbioticmutantofLotusjaponicus,crinkle.PlantCell Physiol.45,511–520

59 Yadav,V.etal.(2014)ABCGtransporters arerequiredforsuberin andpollenwallextracellularbarriersinArabidopsis.PlantCell26, 3569–3588

60 Cnudde, F. et al.(2006) Changes in geneexpression during male meiosisinPetuniahybrida.ChromosomeRes.14,919–932

61 Chen, X. et al. (2014) Glycerol-3-phosphate acyltransferase 4 is essentialforthenormaldevelopmentofreproductiveorgansandthe embryoinBrassicanapus.J.Exp.Bot.65,4201–4215

62 Li,X-C.etal.(2012)Glycerol-3-phosphateacyltransferase6(GPAT6)is importantfortapetumdevelopmentinArabidopsisandplaysmultiple rolesinplantfertility.Mol.Plant5,131–142

63 Zheng, Z.F. et al. (2003) Arabidopsis AtGPAT1, a member of the membrane-boundglycerol-3-phosphateacyltransferase gene family, isessentialfortapetumdifferentiationandmalefertility.PlantCell 15,1872–1887

64 Birnbaum,K.etal.(2003)AgeneexpressionmapoftheArabidopsis root.Science302,1956–1960

65 Birnbaum,K.etal.(2005)Celltype-specificexpressionprofitingin plantsviacellsortingofprotoplastsfromfluorescentreporterlines. Nat.Methods2,615–619

66 Berruti,A.etal.(2013)Applicationoflasermicrodissectiontoidentify themycorrhizalfungithatestablisharbusculesinsiderootcells.Front. PlantSci.4,135

67 Gomez,S.K.andHarrison,M.J.(2009)Lasermicrodissectionandits application to analyze gene expression in arbuscular mycorrhizal symbiosis.PestManag.Sci.65,504–511

68 Aya, K. et al. (2011) Comprehensive network analysis of anther-expressedgenesinricebythecombinationof33lasermicrodissection and143spatiotemporalmicroarrays.PLoSONE6,e26162

69 Suwabe, K. et al. (2008) Separated transcriptomes of male gametophyteandtapetuminrice:validityofalasermicrodissection (LM)microarray.PlantCellPhysiol.49,1407–1416

70 Harper,J.F.andHarmon,A.(2005)Plants,symbiosisandparasites:A calciumsignallingconnection.Nat.Rev.Mol.CellBiol.6,555–566

71 Poovaiah,B.W.etal.(2013)Recentadvancesin calcium/calmodulin-mediatedsignalingwithanemphasisonplant-microbeinteractions. PlantPhysiol.163,531–542

72 Delaux,P-M.etal.(2014)Comparativephylogenomicsuncoversthe impact of symbiotic associations on host genome evolution. PLoS Genet.10,e1004487

73 Dereeper,A.etal.(2008)Phylogeny.fr:robustphylogeneticanalysisfor thenon-specialist.NucleicAcidsRes.36,W465–W469

74 Beisson,F. etal. (2012) Solving the puzzles of cutin and suberin polymerbiosynthesis.Curr.Opin.PlantBiol.15,329–337

75 Kusaba,M.etal.(2001)Self-incompatibilityinthegenusArabidopsis: characterizationoftheS-locusin theoutcrossingA.lyrataandits autogamousrelativeA.thaliana.PlantCell13,627–643

76 Stein,J.C.etal.(1991)Molecularcloningofaputativereceptorprotein kinase gene encoded at the self-incompatibility locus of Brassica oleracea.Proc.Natl.Acad.Sci.U.S.A.88,8816–8820

Figure

Figure 1. Phylogeny of glycerol-3-phosphate acyltransferases (GPATs). Phylogram of the entire GPAT families of the AM competent species Medicago truncatula, Solanum lycopersicum, Oryza sativa (rice), and of the non-mycorrhizal species Arabidopsis thaliana

Références

Documents relatifs

Printer-friendly Version Interactive Discussion 4000 3000 2000 1500 1000 400 Particulate Organic Matter Colloids Volatile Acids, Na Salts CH 2 Cl 2 -Extractable Organic

Characterisation of a rice knockout mutant revealed a role for this FPGS isoform during seed filling, for maintaining mono- and polyglutamylated folate levels and revealing that

A CIRAD project (Orytage) involving NARES and IRC partners aims at developing an international phenotyping network for rice adaptations to drought and thermal stresses in the

Heckel G, Burri R, Fink S, Desmet J-F, Excoffier L (2005) Genetic structure and colonization processes in European populations of the common vole Microtus arvalis.

The cAMP binding protein Epac regulates cardiac myofilament function The effects of Epac activation on myofilament Ca 2 sensitivity and on cTnI and cMyBP-C phosphorylation

AMPK, AMP-activated protein kinase; aPKC, atypical protein kinase C; Arl13B, ADP-ribosylation factor-like protein 13B; CaM, calmodulin; CaMKII, Ca 2+ /calmodulin-dependent kinase

But at the intensive margin, participants' EDA rises in their own ODA only for those who face their own honesty rst ( 0.16 − 0.23 is not signicantly dierent from 0 in Model (5) of