• Aucun résultat trouvé

Subcellular structural plasticity caused by the absence of the fast Ca²⁺ buffer calbindin D-28k in recurrent collaterals of cerebellar Purkinje neurons

N/A
N/A
Protected

Academic year: 2021

Partager "Subcellular structural plasticity caused by the absence of the fast Ca²⁺ buffer calbindin D-28k in recurrent collaterals of cerebellar Purkinje neurons"

Copied!
3
0
0

Texte intégral

(1)

 

Supplementary Material

Subcellular structural plasticity caused by the absence of the fast Ca

2+

buffer calbindin D-28k in recurrent collaterals of cerebellar Purkinje

neurons

David  Orduz  1*,  Alain  Boom  2,  David  Gall  1,  Jean-­‐Pierre  Brion  2,  Serge  N  Schiffmann  1  and  Beat  Schwaller  3*  

1  Laboratory  of  Neurophysiology,  UNI,  Université  Libre  de  Bruxelles  (ULB),  Bruxelles,  Belgium  

2  Laboratory  of  Histology,  Neuroanatomy  and  Neuropathology,  UNI,  Université  Libre  de  Bruxelles  (ULB),  Bruxelles,   Belgium  

3  Anatomy,  Department  of  Medicine,  University  of  Fribourg,  Fribourg,  Switzerland      

*  Correspondence:  David  Orduz,  Neurophysiology  &  New  Microscopies  Laboratory,  INSERM  U1128,  Paris  Descartes   University,  45  Rue  des  Saints-­‐Pères,  75006,  Paris,  France.  e-­‐mail:  david.orduz-­‐perez@parisdescartes.fr;    Beat  Schwaller,   Anatomy,  Department  of  Medicine,  University  of  Fribourg,  Route  Albert-­‐Gockel  1,  CH-­‐1700  Fribourg,  Switzerland.  e-­‐mail:   beat.schwaller@unifr.ch  

(2)

Orduz  et  al.     Calbindin  D-­‐28k  sculpts  Purkinje  collaterals  

  2  

Orduz  et  al.  

Supplementary Figure 1. A standardized method for accurate measuring synaptic cleft width in PC-PC synapses. (A) The cartoon illustrates the intensity profile for pre-to-postsynaptic

membrane peak densities (maximal intensity signal). Note that the valley in the center (minimal intensity signal) corresponds to the “real synaptic cleft width” that doesn’t include the electrodense lipid bilayers. Lower case letters indicate the boundaries for the two methods used to calculate the synaptic cleft width from intensity profiles (see methods). (B) Synaptic cleft width measurements and their box-to-whiskers graphs color-coded per genotype. Data obtained with the two methods and also by two-blind experimenters (Observers #1 and #2) are presented for comparison. (C) Comparison between measurements performed by standardized vs. peak-to-peak method (top) and between observers for the same synapses (bottom). When synaptic cleft widths from the same genotype were measured with the standardized method, its distribution presented smaller coefficient of variation

Pre Post A B Peak-­to-­peak  method Standardized  method b a a b

Synapse  intensity  profile Lipidic  bilayers C 20 15 10 5 Observer  #  1 measurements  (nm) 20 15 10 5 Observer  #  2 measurements  (nm) 40 30 20 10 Standarized  method measurements  (nm)

40 30 20 10 Peak-­to-­peak  method measurements  (nm) WT   CBKO 40 30 20 10 0 Synaptic  cleft  width measurements  (nm)

Standardized  methodPeak-­to-­peak  method

Observer  #  1Observer  #  2 *** WT   CBKO Signal  intensity max min * * *

(3)

Orduz  et  al.     Calbindin  D-­‐28k  sculpts  Purkinje  collaterals  

Orduz  et  al.   3  

(CV) compared to the peak-to-peak method (0.32 vs. 0.42 respectively for WT synapses; and 0.32 vs. 0.4 respectively for CB-/- synapses) and the mean width values were smaller (21.17 ± 0.39 vs. 26.28 ± 0.83 for WT synapses; and 23.8 ± 0.43 vs. 28.73 ± 0.82 for CB-/- synapses). This confirmed that the standardized method catches the “real synaptic cleft width”. Interestingly, this method increased the statistical significant difference between genotypes (P<0.001) compared to the peak-to-peak method (P<0.05), which corroborates its robustness to properly measure synaptic widths and to unravel subtle differences. On the other hand, values from blind-experimenters showed bigger CV values compared to the standardized method (0.48 and 0.42 for Observer #1 and #2 respectively for WT synapses; 0.49 and 0.45 for Observer #1 and #2 respectively for CB-/- synapses) and smaller mean values compared to the standardized method (12.73 ± 0.53 and 12.9 ± 0.51 for Observer #1 and #2 respectively from the WT synapses; 14.38 ± 0.6 and 14.66 ± 0.51 for Observer #1 and #2 respectively from the CB-/- synapses). This confirmed that the eye-inspection method likely underestimates the real synaptic cleft width and introduces a more substantial experimenter-dependent bias to the measurements. *P < 0.05; ***P < 0.001; Student’s t test.

Références

Documents relatifs

Si la source continue est une source de tension, l’onduleur est appelé onduleur de tension, si en plus la fréquence est indépendante de la source de sortie, il est dit autonome.

Having established that P-type currents in mouse Purkinje neurons undergo Ca 2 ⫹ -dependent inactivation and facilitation, we next evaluated the role of endogenous Ca 2⫹ buffers

I-V peak represents voltage eliciting maximum current amplitude. p-values were determined by

In particular, we obtain critera for three-weight inequalities for the Hardy-type operators with Oinarov’ kernel on monotone functions in the case 0 &lt; q &lt; p ≤ 1..

Il suffit de mettre le terme du plus haut degré en facteur et de constater que l’autre facteur est la somme d’une constante non nulle et d’une espression qui tend vers zéro..

[r]

[r]

This work was partially supported by the strategic project POS- DRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the Euro- pean Social Fund-Investing in