• Aucun résultat trouvé

Network  Slicing  for  Internet  of  Heterogeneous  Things

N/A
N/A
Protected

Academic year: 2022

Partager "Network  Slicing  for  Internet  of  Heterogeneous  Things"

Copied!
2
0
0

Texte intégral

(1)

         

Network  Slicing  for  Internet  of  Heterogeneous  Things    

 

Heterogeneous   network   is   an   environment   where   different   types   of   network   technologies,   services,   and   terminals   co-­‐exist.   We   can   name   some   technologies   like   Cellular  technologies,  VANET,  Wi-­‐Fi,  IoT,  etc.  In  addition,  various  services  within  these   networks  also  have  different  requirements  in  terms  of  mobility,  cost,  security,  latency,   reliability,  energy,  quality  of  service,  or  quality  of  experience.  Generally,  we  can  classify   traffics   into   categories   such   as   mobile   broadband   (communication,   entertainment,   internet),   massive   IoT   (long-­‐range   coverage,   retail,   shipping,   manufacturing),   mission   critical   IoT   (ultra   low   latency   communication,   automotive,   medical),   Internet   of   Multimedia  Things  (IoMT),  VANET  (autonomous  driving  &co.),  etc.    In  order  to  manage   this   complex   environment,   virtualization   is   a   promising   solution.   It   is   becoming   a   key   technology   thanks   to   its   flexibility   that   can   adapt   to   real-­‐time   demands.     Various   virtualization   technologies   contribute   in   different   ways:   Virtual   Machine   (VM)   enables   dynamic   ways   to   manage   physical   servers;   Software   Defined   Networking   (SDN)   provides  the  adaptability  to  manage  network  services  while  separating  the  control  and   data  planes.  Moreover,  Network  Function  Virtualization  (NFV)  enables  software-­‐based   and  elastic  network  functions.  The  particular  focus  will  be  on  network  slicing,  which  is  a   form   of   virtual   network   architecture   using   the   same   principles   as   in   software-­‐defined   networking   (SDN).   Network   slicing   allows   multiple   virtual   networks   to   be   created   on   top   of   a   common   shared   physical   infrastructure.   The   virtual   networks   are   then   customized   to   meet   the   specific   needs   of   applications,   services,   devices,   customers   or   operators.    

 

In   this   internship,   we   will   concentrate   on   the   context   of   Internet   of   Heterogeneous   Things   (IoHT)   using   this   network   slicing   for   managing   services.   This   architecture   decouples  the  software  that  controls  and  routes  traffic  on  a  network  from  the  physical   infrastructure  that  provides  computing  and  storage  resources.  In  this  way,  it  can  greatly   reduce  the  time  needed  to  deploy  a  service.  As  mentioned  earlier,  virtualization  will  give   operators   the   ability   to   instantly   create   a   new   service   in   case   of   a   hardware   failure,   minimizing  any  potential  disruption  in  quality  of  service.  This  makes  use  of  automatic   resource  allocation  to  create  an  elastic  IoT  capable  of  adjusting  capacity  to  both  planned   and  unexpected  changes  in  demand,  for  example  during  a  popular  sporting  event  or  due   to   a   viral   video.   After   the   peak,   computing   resource   can   be   released   for   other   applications.  Hence,  one  of  the  targets  is  to  study  management  issues  of  video  service   (IoMT)   since   it   is   the   most   bandwidth   consuming,   by   considering   improvement   of   Quality   of   Experience   (QoE)   as   ultimate   objective.   Different   QoS-­‐based   management   solutions   have   been   proposed   for   this   context   but   as   of   our   knowledge   very   few   solutions   are   proposed   based   on   QoE.   Besides   QoE,   there   are   other   parameters   to   consider   such   as   user   bandwidths,   resources,   costs,   etc.   Network   providers   need   to   adaptively   manage   these   complex   demands   and   adapt   infrastructures   in   a   seamless   fashion  for  varying  applications  and  user  constraints.    

 

(2)

     

   

The  objectives  of  this  internship  are  multiple.  First,  the  student  will  have  to  investigate   on   different   techniques   deployed   for   managing   heterogeneous   network,   especially   existing  works  on  network  slicing.  The  student  will  provide  a  state  of  the  art  on  existing   network   slicing   techniques   in   the   literature.   Then   the   final   goal   is   to   propose   a   novel   mechanism   to   handle   IoHT   using   this   concept.   He/she   will   propose   a   new   technique   including  and  considering  the  various  requirements  of  today  and  future  services.  Finally,   he/she  will  implement  the  proposed  mechanism  in  a  network  simulator  (ns3,  QualNet,   Mininet,  etc.)  in  order  to  validate  the  proposition  in  realistic  scenario.  

 

The   student   will   have   to   work   on   variety   of   recent   technologies   and   architectures   in   order  to  contribute  to  the  IoHT;  therefore,  we  need  a  student  who  is  highly  motivated   and  with  good  backgrounds  on  both  networking  and  programming.  Maths  skills  will  be  a   plus.  Please  note  that  the  student  may  be  proposed  to  pursue  a  PhD  study  (depending  on   funding).  

 Keywords:   Virtualization,   Network   Slicing,   Quality   of   Experience,   Internet   of   Things,   Heterogeneous  Environment.  

   

Reference:  

[1] Sezer,  S.;  Scott-­‐Hayward,  S.;  Chouhan,  P.K.;  Fraser,  B.;  Lake,  D.;  Finnegan,  J.;  Viljoen,   N.;   Miller,   M.;   Rao,   N.,   "Are   we   ready   for   SDN?   Implementation   challenges   for   software-­‐defined  networks,"  IEEE  Communications  Magazine,  vol.51,  no.7,  pp.36-­‐43,   July  2013  

[2] "Network   Functions   Virtualisation—   Introductory   White   Paper".   ETSI.   22   October   2012.  Retrieved  20  June  2013.  

[3] ITU-­‐T  SG12,  “Definition  of  Quality  of  Experience”,  COM12  –  LS  62  –  E,  TD  109rev2   (PLEN/12),  Geneva,  Switzerland,  Jan.  2007.  

[4] X.  Foukas,  G.  Patounas,  A.  Elmokashfi  and  M.  K.  Marina,  "Network  Slicing  in  5G:  

Survey  and  Challenges,"  in  IEEE  Communications  Magazine,  vol.  55,  no.  5,  pp.  94-­‐100,   May  2017.  

[5] M.  Richart,  J.  Baliosian,  J.  Serrat  and  J.  L.  Gorricho,  "Resource  Slicing  in  Virtual   Wireless  Networks:  A  Survey,"  in  IEEE  Transactions  on  Network  and  Service   Management,  vol.  13,  no.  3,  pp.  462-­‐476,  Sept.  2016.  

   

Supervisor:  Kandaraj  PIAMRAT  and  Salima  HAMMA   Place:  LS2N/RIO,  University  of  Nantes    

Stipend:  ~550  euros/month   Duration:  5-­‐6  months  

Contact:   kandaraj.piamrat@univ-­‐nantes.fr,   salima.hamma@univ-­‐nantes.fr   with   CV,   transcript,  and  motivation  letter.  

Références

Documents relatifs

Linear predictor associate one pa- rameter to each input feature, so a high-dimensional

However, in the agriculture internet of things, the data are sourced from different organizations and information technology facilities; it is an enormous challenge

For our model, we will use a WGAN (both WGAN-C and WGAN-GP will be tested) as it provides more stability in the training stage and is more resilient to mode collapse [25]. Figure

Various virtualization technologies contribute in different ways: Virtual Machine (VM) enables dynamic ways to manage physical servers; Software Defined Networking

The 2-nd phase – transmission of data blocks in accordance with the regulated synchronous- time method of multiple access, which provides for the regulation of ST access to

This model represents the bottom topography and surface waves with spectra, and evaluates a Bragg scattering source term that is theoretically valid for small bottom and surface

Industrial automation will use more and more the IIoT networks (we are gathering here the notion of Industrial Internet, Machine-to-Machine, Internet of Everything, embedded

Our proposition is an approach to enable communication between a oneM2M node with an other one using a tier protocol with end-to-end ciphering of the data exchanged.. As