• Aucun résultat trouvé

Experimental fire tower studies of elevator pressurization systems for smoke control

N/A
N/A
Protected

Academic year: 2021

Partager "Experimental fire tower studies of elevator pressurization systems for smoke control"

Copied!
27
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Paper (National Research Council of Canada. Institute for Research in

Construction), 1987

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=8684ef05-0cdc-46ef-be95-02e614ca1f3f

https://publications-cnrc.canada.ca/fra/voir/objet/?id=8684ef05-0cdc-46ef-be95-02e614ca1f3f

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/40001418

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Experimental fire tower studies of elevator pressurization systems for

smoke control

(2)

S e r

L I L A

~ 2 1 d

Natlonal Research Consell natlonal

no.

1 5 4 8

)*I

Council Cmatia

de

recherches Canada

c .

2

BLDG

Institute for

lnstitut de

-

-

/

Research in

recherche en

Construction

construction

Experimental Fire Tower Studies of Elevator

Pressurization Systems for Smoke Control

by

G.T. Tamura and

J.H.

Klote

ANALYZED

Reprinted from

ASHRAE

Transactions 1987

Vol. 93,

Pt.

2

p. 2235-2256

(IRC Paper No. 1548)

NRCC 291 21

I R C

- 'Q

=.

1E

I

L I B R A R Y

& *

(/

1

B I B L I O T H ~ Q U E

'

I

I R C

I

CNPC - l r Y 1 5 T

4

I

_I.--

(3)

-On a effectuC des essais dans la tour experimentale d'incendie du Conseil national de

recherches du Canada afin d'ktudier le mouvement de la furnee dans les puits d'ascenseurs

sous I'effet d'un gros incendie, et de determiner la capacitk des installations mkaniques de

mise en pression

B

maintenir les puits et entrees d'ascenseurs aptes

B

1'Cvacuation des

personnes handicapkes et B l'intervention des pompiers. Les essais ont rev616 qu'il fallait

contrbler la pression pour parer h la perte de pression due h l'ouverture des portes. On a

formule des equations facilitant la conception de systkmes de contr6le de la pression

comportant soit un debit variable d'alimentation d'air avec contrble en retour, soit des

registres dktendeurs placCs dans les

murs

des puits ou des entrCes d'ascenseurs. Les essais

realis6 dans la tour ont montre que dans le cas de ces deux mkthodes de contrble de la

pression, les valeurs mesurCes et calculCes des debits d'alimentation d'air et des Ccarts de

pression concordaient gCnCralement.

(4)

EXPERIMENTAL FIRE TOWER STUDIES

OF ELEVATOR PRESSURIZATION

SYSTEMS FOR

SMOKE CONTROL

G.T.

Tamura,

P.E.

J.H. Klote, P.E., D.Sc.

(5)

EXPERIMENTAL FIRE TOWER STUDIES

OF ELEVATOR PRESSURIZATION

SYSTEMS FOR SMOKE CONTROL

G.T.

Tarnura,

P.E.

J.H.

Klote,

P.E.,

D.Sc.

ASHRAE Fellow ASHRA E Member

ABSTRACT

T e s t s were conducted i n t h e e x p e r i m e n t a l f i r e tower a t t h e N a t i o n a l Research Council of Canada t o s t u d y smoke movement through e l e v a t o r s h a f t s caused by a l a r g e f i r e and t o determine t h e e f f e c t i v e n e s s of mechanical p r e s s u r i z a t i o n i n keeping t h e e l e v a t o r s h a f t and l o b b i e s t e n a b l e f o r e v a c u a t i o n of t h e handicapped and f o r use by f i r e f i g h t e r s . The t e s t s i n d i c a t e d t h a t p r e s s u r e c o n t r o l is r e q u i r e d t o cope w i t h l o s s of p r e s s u r i z a t i o n due t o open doors. Equations were developed t o a s s i s t i n d e s i g n i n g p r e s s u r e c o n t r o l systems i n v o l v i n g e i t h e r a v a r i a b l e

supply a i r r a t e w i t h feedback c o n t r o l o r r e l i e f dampers i n t h e w a l l s of t h e e l e v a t o r s h a f t o r l o b b i e s . T e s t s conducted i n t h e tower i n d i c a t e d t h a t f o r both methods of p r e s s u r e c o n t r o l , comparison of measured and c a l c u l a t e d v a l u e s of supply a i r r a t e s and p r e s s u r e d i f f e r e n c e s a r e i n good agreement.

INTRODUCTION

It is a g e n e r a l p r a c t i c e t o d i s c o u r a g e occupants from u s i n g e l e v a t o r s a s means of escape d u r i n g a f i r e by warning s i g n s placed a d j a c e n t t o t h e doors and by a u t o m a t i c e l e v a t o r r e c a l l t o t h e ground f l o o r upon f i r e s i g n a l s . I f , however, one o r more e l e v a t o r s can be made s a f e from t h e e f f e c t s of f i r e , t h e y can be used t o s e r v e a v i t a l f u n c t i o n i n a i d i n g f i r e f i g h t e r s and i n e v a c u a t i n g handicapped people. Such an e l e v a t o r must have c o n t r o l s and power s u p p l i e s t h a t a r e r e l i a b l e , and t h e i r l o b b i e s and s h a f t must be p r o t e c t e d a g a i n s t f i r e and smoke.

To develop smoke c o n t r o s a f e e l e v a t o r , a j o i n t p r o j e c t (NRCC) and t h e National Bureau

1 technology f o r e l e v a t o r s as one of t h e requirements of a f i r e - was undertaken by t h e N a t i o n a l Research Council of Canada of Standards (NBS) i n t h e United S t a t e s . I n i t i a l s t u d i e s involved a computer a n a l y s i s of s e v e r a l p o s s i b l e smoke c o n t r o l systems ( K l o t e and Tamura

1986). The r e s u l t s of t h e a n a l y s i s conducted f o r both summer and w i n t e r and f o r c e r t a i n open- door c o n d i t i o n s i n d i c a t e d t h a t a l l systems c o n s i d e r e d , e x c e p t f o r t h e one w i t h feedback c o n t r o l of supply a i r f o r e l e v a t o r s h a f t p r e s s u r i z a t i o n , f a i l e d t o m a i n t a i n t h e r e q u i r e d p r e s s u r i z a t i o n when some combination of doors was open. It was a l s o noted t h a t t h e r e a r e probably o t h e r systems capable of p r o v i d i n g adequate smoke c o n t r o l .

This paper d e a l s with t h e follow-up s t u d i e s i n t h e e x p e r i m e n t a l f i r e tower of t h e N a t i o n a l F i r e L a b o r a t o r i e s (NRCC). The t e s t s involved examining t h e smoke movement p a t t e r n caused by t h e temperature e f f e c t of f i r e and t h e e f f e c t i v e n e s s of t h e mechanical

p r e s s u r i z a t i o n e i t h e r of t h e e l e v a t o r s h a f t o r e l e v a t o r l o b b i e s i n t h e e l e v a t o r s h a f t l l o b b y u s a b l e . Equations were developed f o r d e s i g n i n g p r e s s u r i z a t i o n systems w i t h p r e s s u r e c o n t r o l

t o cope w i t h p r e s s u r e l o s s due t o some open door c o n f i g u r a t i o n s . The types of p r e s s u r e

c o n t r o l system examined were feedback c o n t r o l of supply a i r r a t e f o r p r e s s u r i z a t i o n and r e l i e f

G.T. Tamura, I n s t i t u t e f o r Research i n Construct i o n , N a t i o n a l Research Council of Canada, Ottawa, and J.H. K l o t e , Center f o r F i r e Research, National Bureau of S t a n d a r d s , G a i t h e r s b u r g ,

(6)

dampers i n t h e w a l l s of e i t h e r t h e e l e v a t o r s h a f t o r e l e v a t o r fobby i n t h e c a s e of l o b b y p r e s s u r i z a t i o n . These e q u a t i o n s were v a l i d a t e d w i t h t e s t s i n t h e e x p e r i m e n t a l f i r e tower. They w i l l p r o b a b l y be u s e f u l t o d e s i g n e r s ; t h i s p a p e r , however, does n o t d e v e l o p a c o y p l e t e d e s i g n methodology f o r e l e v a t o r smoke c o n t r o l .

DESCRIPTION OF THE EXPERIMENTAL FIRE TOWER

The f i r e tower ( F i g u r e 1 ) i s p a r t of t h e e x p e r i m e n t a l f a c i l i t i e s of t h e N a t i o n a l F i r e

L a b o r a t o r y l o c a t e d between C a r l e t o n P l a c e and Almonte, O n t a r i o , a b o u t 40 m i l e s ( 6 0 km) west of Ottawa. The 10-story tower c o m p r i s e s a n e x p e r i m e n t a l tower and an a t t a c h e d o b s e r v a t i o n tower. The t y p i c a l f l o o r h e i g h t i s 8.5 f t ( 2 . 6 m) e x c e p t f o r t h e f i r s t and second f l o o r s , which a r e 12 f t (3.6 m). Both t o w e r s $re c o n s t r u c t e d of m o n o l i t h i c r e i n f o r c e d c o n c r e t e ( t h i c k n e s s of 8 i n [200 mm]). The p l a n v i e w of a t y p i c a l f l o o r is shown i n F i g u r e 2.

The o b s e r v a t i o n tower c o n t a i n s a f r e i g h t e l e v a t o r , s t a i r w a y , a workspace f o r

i n s t r u m e n t s , and d a t a a c q u i s i t i o n u n i t s f o r m o n i t o r i n g f i r e e x p e r i m e n t s . It i s p r o t e c t e d by a f i r e w a l l and f i r e d o o r s w i t h s m a l l f i x e d w i r e d - g l a s s o b s e r v a t i o n windows. An i n d e p e n d e n t a i r s y s t e m m a i n t a i n s a c o m f o r t a b l e t e m p e r a t u r e i n w i n t e r and p r e s s u r i z e s t h e o b s e r v a t i o n tower t o p r e v e n t i n g r e s s of combustion p r o d u c t s from t h e f i r e tower.

The e x p e r i m e n t a l tower c o n t a i n s a l l t h e s h a f t s and o t h e r f e a t u r e s n e c e s s a r y t o s i m u l a t e a i r and smoke movement p a t t e r n s of a t y p i c a l m u l t i s t o r y b u i l d i n g , i n c l u d i n g t h e e l e v a t o r , s t a i r , smoke e x h a u s t , s e r v i c e , s u p p l y , and r e t u r n a i r s h a f t s . The e l e v a t o r and s t a i r s h a f t s a r e f u l l - s i z e d , b u t t h e e l e v a t o r s h a f t , a t p r e s e n t , h a s no c a r o r h o i s t i n g a p p a r a t u s , w h i l e t h e s t a i r s h a f t is equipped w i t h a s t a n d a r d s t a i r c a s e . A s u r r o u n d i n g c o r r i d o r i s o l a t e s t h e group of s h a f t s from t h e e x t e r i o r w a l l s , c r e a t i n g a t y p i c a l c e n t e r c o r e . A l l j o i n t s of t h e c o n c r e t e s t r u c t u r e a r e s e a l e d t o minimize u n c o n t r o l l e d a i r l e a k a g e s . The e x t e r i o r w a l l s and w a l l s of v e r t i c a l s h a f t s a r e p r o v i d e d w i t h v a r i a b l e o p e n i n g s t h a t c a n be set t o p r o v i d e d e s i r e d l e a k a g e a r e a s of t y p i c a l b u i l d i n s. Two propane g a s b u r n e r s e t s , e a c h c a p a b l e of

f,

p r o d u c i n g h e a t a t an o u t p u t of 8.56 x 10 Btu/h (2.5 MW), a r e l o c a t e d on t h e second f l o o r burn

a r e a w i t h t h e g a s t r a i n r i g s l o c a t e d i m m e d i a t e l y below on t h e ground f l o o r . The second f l o o r I i s c o m p l e t e l y p r o t e c t e d w i t h h i g h t e m p e r a t u r e i n s u l a t i o n t o p r e v e n t t h e c o n c r e t e from t h e r m a l

damage of t h e c o n c r e t e . 1

I

I

A s e p a r a t e s t r u c t u r e a d j a c e n t t o t h e tower ( F i g u r e 3 ) h o u s e s t h e a i r moving and h e a t i n g

1

p l a n t of t h e e x p e r i m e n t a l t o w e r ; t h e a i r d u c t s b e i n g c a r r i e d underground t h r o u g h a s h o r t

t u n n e l t o t h e bottom of t h e e x p e r i m e n t a l f i r e tower. There a r e two a i r systems. The f i r s t h a n d l e s t h e main a i r s u p p l y and h e a t i n g l o a d . It n o r m a l l y o p e r a t e s i n t h e r e c i r c u l a t i o n mode, but i t can be o p e r a t e d on 100% o u t s i d e a i r and u s e d t o p r e s s u r i z e t h e e n t i r e b u i l d i n g . T h i s s y s t e m can a l s o be r u n i n a n e x h a u s t mode by u s i n g a s e p a r a t e v a r l a b l e - f l o w e x h a u s t f a n mounted a t t h e t o p of t h e r e t u r n a i r s h a f t . The second a i r s y s t e m s u p p l i e s o u t s i d e a i r , e i t h e r t o t h e e x p e r i m e n t a l s t a i r and e l e v a t o r s h a f t s o r t o v e s t i b u l e s i n t e r p o s e d between t h e e n t r a n c e s t o t h e s e s h a f t s a n d t h e b u r n a r e a . The a i r systems a r e o p e r a t e d from t h e f a n c o n t r o l room i n t h e a t t a c h e d s e r v i c e u n i t ( F i g u r e 3 ) . The a i r f l o w r a t e s i n t h e a i r d u c t s a r e measured w i t h e i t h e r m u l t i - p o i n t s e l f - a v e r a g i n g t o t a l p r e s s u r e t u b e s and t h e i r a s s o c i a t e d s t a t i c p r e s s u r e t a p s o r w i t h an o r i f i c e p l a t e . They were c a l i b r a t e d u s i n g t h e p i t o t t r a v e r s e method.

Temperatures a r e measured i n t e n d i f f e r e n t l o c a t i o n s on e a c h f l o o r u s i n g chrome-alumel thermocouples. A d d i t i o n a l t e m p e r a t u r e measurements a r e made i n t h e burn a r e a of t h e f i r e f l o o r . P r e s s u r e d i f f e r e n c e s a c r o s s t h e v a r i o u s w a l l s a r e measured u s i n g 18 s t a t i c p r e s s u r e t a p s (0.25 i n [6.3 mm] O.D. c o p p e r t u b i n g ) mounted f l u s h t o t h e w a l l s on e a c h f l o o r . A l l p r e s s u r e l i n e s a r e c o n n e c t e d t o a 24-port p r e s s u r e s w i t c h equipped w i t h a diaphragm-type m a g n e t i c r e l u c t a n c e p r e s s u r e t r a n s d u c e r and l o c a t e d on t h e same f l o o r i n t h e o b s e r v a t i o n a r e a . Carbon d i o x i d e c o n c e n t r a t i o n s a r e measured a t s i x l o c a t i o n s on e a c h f l o o r i n t h e s h a f t s , l o b b i e s , c o r r i d o r s , and b u r n a r e a by c o p p e r sampling t u b e s (0.25 i n [6.3 mm] O.D. c o p p e r

t u b i n g ) c o n n e c t e d t o a 12-port s a m p l i n g s w i t c h u n i t w i t h a n o n d i s p e r s i v e i n f r a r e d g a s < a n a l y z e r . A l l d e v i c e s of t h e t h r e e s y s t e m s a r e c o n t r o l l e d and monitored by a computer based

d a t a a c q u i s i t i o n and c o n t r o l system.

The c r o s s - s e c t i o n a l a r e a of t h e e l e v a t o r s h a f t , which r e p r e s e n t s a s i n g l e c a r s h a f t , i s 84 f t 2 (7.84 m2). Openings i n t h e w a l l s f o r t h e e l e v a t o r d o o r s a r e covered w i t h a movable plywood patlel t o p e r m i t a v a r i a b l e s i z e o p e n i n g up t o 6.0 f t 2 (0.56 m2) t o s i m u l a t e a l e a k a g e a r e a due t o an open e l e v a t o r door w i t h t h e c a r a t t h e opening. There i s a removable h a t c h a t

(7)

t h e t o p of t h e e l e v a t o r s h a f t and an o u t s i d e v e n t c o n n e c t e d t o t h e bottom of t h e s h a f t a t t h e subgrade l e v e l , t o p e r m i t n a t u r a l v e n t i n g e i t h e r a t t h e t o p o r bottom of t h e s h a f t . Also a t t h e s u b g r a d e l e v e l t h e r e i s an opening f o r a i r s u p p l y t o t h e s h a f t . The e l e v a t o r lobby, whose a r e a i s 70 i t 2 (6.44 m2), is p r o v i d e d w i t h a s t a n d a r d f i r e door on a l l f l o o r s e x c e p t f o r t h e second f l o o r where t h e d o o r i s of p l a s t e r b o a r d w i t h a v e r t i c a l l e a k a g e s l o t i n t h e c e n t e r t o r e p r e s e n t t h e l e a k a g e a r e a of a t y p i c a l door. There is an o p e n i n g i n t h e w a l l of e a c h lobby t o s u p p l y a i r f o r lobby p r e s s u r i z a t i o n . A more d e t a i l e d d e s c r i p t i o n of t h e e x p e r i m e n t a l f i r e tower may be found i n Achakji (1987).

DESIGN APPROACH

The i n t e n t of a n e l e v a t o r p r e s s u r i z a t i o n s y s t e m i s t o p r e v e n t smoke m i g r a t i o n i n t o e l e v a t o r s h a f t s and l o b b i e s d u r i n g a f i r e . T h i s is done by d e v e l o p i n g p r e s s u r e s i n t h e l o b b i e s t h a t a r e s u f f i c i e n t t o overcome t h e a d v e r s e p r e s s u r e d i f f e r e n c e s caused by v a r i o u s mechanisms, s u c h a s w e a t h e r , t e m p e r a t u r e e f f e c t of f i r e , v e n t i l a t i o n s y s t e m s , and t h e p i s t o n e f f e c t c a u s e d by an e l e v a t o r i n motion. Lobbies s e r v e as t e m p o r a r y r e f u g e a r e a s f o r t h e h a n d i c a p p e d w a i t i n g t o be e v a c u a t e d by a n e l e v a t o r ; t h e y a l s o p r o t e c t t h e e l e v a t o r door and i t s c o n t r o l mechanism from t h e f i r e t e m p e r a t u r e . The h i g h e s t a d v e r s e p r e s s u r e d i f f e r e n c e f o r a g i v e n b u i l d i n g due t o a combination of t h e s e v a r i o u s mechanisms is t h e d e s i g n p r e s s u r e d i f f e r e n c e t h a t an e l e v a t o r s h a f t p r e s s u r i z a t i o n s y s t e m must be c a p a b l e of m a i n t a i n i n g a c r o s s t h e l o b b y d o o r d u r i n g a f i r e . The d e t e r m i n a t i o n of t h e d e s i g n p r e s s u r e d i f f e r e n c e i s beyond t h e s c o p e of t h i s paper and is t h e s u b j e c t of a n o t h e r i n v e s t i g a t i o n . T h i s p a p e r d e a l s o n l y w i t h t h e component of t h e d e s i g n p r e s s u r e d i f f e r e n c e caused by t h e t e m p e r a t u r e e f f e c t of f i r e . A c a l c u l a t i o n p r o c e d u r e was d e v e l o p e d t o a s s i s t i n d e s i g n i n g p r e s s u r e c o n t r o l s y s t e m s i n v o l v i n g e i t h e r v a r i a b l e s u p p l y a i r o r r e l i e f dampers i n t h e w a l l s of t h e e l e v a t o r s h a f t o r l o b b i e s . F i g u r e 4 shows t h e s c h e m a t i c drawings of both t h e e l e v a t o r s h a f t and t h e e l e v a t o r

I

lobby p r e s s u r i z a t i o n systems. The l e a k a g e a r e a s i n t h e w a l l s of t h e a i r f l o w s y s t e m s a r e

I

i n d i c a t e d i n t h e s e f i g u r e s . By c o n s i d e r i n g e q u a t i o n s f o r p a r a l l e l and series f l o w

c o m b i n a t i o n s d e s c r i b e d i n K l o t e and F o t h e r g i l l ( 1 9 8 3 ) , t h e r e q u i r e d s u p p l y a i r r a t e s f o r a

I

I

g i v e n d e s i g n p r e s s u r e d i f f e r e n c e , t h e r e s u l t a n t p r e s s u r e d i f f e r e n c e s when d o o r s a r e opened,

I

s h a f t and lobby p r e s s u r i z a t i o n systems a r e l i s t e d i n Appendix and t h e r e q u i r e d r e l i e f damper s i z e s c a n be c a l c u l a t e d . These e q u a t i o n s f o r b o t h t h e e l e v a t o r A. The b a s i c e q u a t i o n is

I

where

I

Q = s u p p l y a i r r a t e

C = c o n s t a n t f o r a s t a n d a r d a i r c o n d i t i o n

I

Ae = o v e r a l l e q u i v a l e n t l e a k a g e area from t h e p r e s s u r i z e d s p a c e t o o u t s i d e p e r f l o o r AP = p r e s s u r e d i f f e r e n c e from t h e p r e s s u r i z e d s p a c e t o o u t s i d e

The v a l u e s of Ae f o r t h e e l e v a t o r s h a f t and t h e e l e v a t o r l o b b y can be c a l c u l a t e d from

e q u a t i o n s i n Appendix A, s t e p 1. For a g i v e n d e s i g n p r e s s u r e d i f f e r e n c e a c r o s s t h e e l e v a t o r l o b b y d o o r (AP3), t h e r e q u i r e d AP can be c a l c u l a t e d from e q u a t i o n s i n Appendix A, s t e p 2 ,

which show t h a t AP,/AP i s c o n s t a n t f o r a g i v e n set of l e a k a g e a r e a s . The r e q u i r e d s u p p l y a i r r a t e s c a n be c a l z u i a t e d from e q u a t i o n s i n Appendix A, s t e p 3. F o r t h e open-door c o n f i g u r a t i o n w i t h t h e e l e v a t o r , e l e v a t o r l o b b y , and e x i t d o o r s on t h e ground f l o o r open s o t h a t t h e

e l e v a t o r s h a f t is d i r e c t l y exposed t o o u t s i d e p r e s s u r e , t h e f l o w r a t e on t h e ground f l o o r from t h e e l e v a t o r s h a f t t o o u t s i d e can be c a l c u l a t e d w i t h e q u a t i o n s i n Appendix A, s t e p 4. The t o t a l o u t s i d e s u p p l y a i r r a t e s r e q u i r e d t o p r e s s u r i z e t h e e l e v a t o r lobby t o a s p e c i f i e d d e s i g n l e v e l (AP $ can be c a l c u l a t e d using e q u a t i o n s i n Appendix A, s t e p 5 and s t e p 7, f o r t h e c a s e

wirh

all

ioors c l o s e d , QT, and with Lhe ground f l o o r d o o r s open, QT1, r e s p e c t i v e l y . The c a l c u l a t i o n of QT' c a n i n c l u d e open lobby d o o r s on o t h e r f l o o r s t o conform t o a g i v e n d e s i g n c r i t e r i a by u s i n g a s u i t a b l e v a l u e of Ae

on

t h o s e f l o o r s , as i n d i c a t e d i n t h e n o t e i n s t e p 1. For a v a r i a b l e s u p p l y a i r f a n g y s t e m w i t h f e e d b a c k c o n t r o l , t h e r a n g e of s u p p l y a i r r a t e

I

r e q u i r e d is t h e n g i v e n by QT and QT1.

With supply a i r , QT, set f o r t h e a l l - d o o r s - c l o s e d s i t u a t i o n , t h e lowered v a l u e of AP

'

caused by opening d o o r s on t h e ground f l o o r i s g i v e n by e q u a t i o n s i n Appendix A, s t e p 6 ,

aria,

(8)

i c o r r e s p o n d i n g l y , w i t h s u p p l y a i r , Q T 1 , set f o r t h e open-door c o n d i t i o n , t h e i n c r e a s e d v a l u e of

AP3caused by c l o s i n g a l l d o o r s i s g i v e n by e q u a t i o n s i n s t e p 8. The v a l u e s of APjl and AP3

s h o u l d be checked, f o r i n t h e former c a s e , AP3' may be t o o low t o p r e v e n t smoke i n f i l t r a t i o n , 1 whereas f o r t h e l a t t e r c a s e , AP3 may be g r e a t enough t o c a u s e d i f f i c u l t y i n o p e n i n g lobby

doors. The problem of o v e r p r e s s u r i z a t i o n can be overcome by p r o v i d i n g r e l i e f dampers i n t h e w a l l s of e i t h e r t h e s h a f t o r l o b b y on e a c h f l o o r . The e q u a t i o n f o r t h e r e q u i r e d s i z e of r e l i e f damper i s g i v e n i n Appendix A, s t e p 9 , and t h e c o r r e s p o n d i n g r e q u i r e d s u p p l y a i r r a t e i n s t e p 10. A f a c t o r , L , t o a c c o u n t f o r t h e s p e c i f i e d i n c r e a s e i n AP3 is i n c o r p o r a t e d i n t h e e q u a t i o n i n s t e p 9 f o r s i z i n g t h e damper s o t h a t t h e rise i n AP3 when t h e e l e v a t o r d o o r i s

c l o s e d i s l i m i t e d t o p r e v e n t d i f f i c u l t y i n door o p e r a t i o n . The r e l i e f dampers a r e c l o s e d when I

t h e e l e v a t o r and l o b b y d o o r s a r e open and t h e y a r e f u l l y open when a l l d o o r s a r e c l o s e d . When an e l e v a t o r s h a f t is p r e s s u r i z e d t o a c h i e v e t h e r e q u i r e d p r e s s u r e d i f f e r e n c e a c r o s s a lobby d o o r on t h e f i r e f l o o r and an e l e v a t o r o r lobby d o o r on some o t h e r f l o o r opens, t h e amount of p r e s s u r i z a t i o n i s d e c r e a s e d due t o t h e i n c r e a s e i n t h e t o t a l l e a k a g e a r e a of t h e s h a f t . Assuming t h e t o t a l q u a n t i t y of p r e s s u r i z a t i o n a i r s u p p l i e d t o t h e smoke c o n t r o l s y s t e m

is c o n s t a n t , t h e r e l a t i o n s h i p between t h e p r e s s u r e d i f f e r e n c e and t h e l e a k a g e a r e a b e f o r e and a f t e r t h e d o o r is opened c a n be e x p r e s s e d a s

(

=

(3)

=

K

( 2 I i N = number of f l o o r s A = e f f e c t i v e l e a k a g e a r e a from e l e v a t o r s h a f t t o o u t s i d e p e r f l o o r e A. = l e a k a g e a r e a of an open e l e v a t o r door I Combining E q u a t i o n s 2, 3, and 4 g i v e s ( 5 ) For a s e l e c t e d v a l u e of AP2/AP1, AP2 i s above a minimum a c c e p t a b l e v a l u e when t h e e l e v a t o r door is opened i f

A

+--

-

(N-1)

>

9

Ae ( 6 )

For example, i f AP /AP

>

1 1 3 and t h e minimum a c c e p t a b l e v a l u e of AP = 0.05 i n of w a t e r (12.5

a

P a ) , Ae = 0.318 f t (0.0295 m2), and A. = 6.00 i t 2 (0.557 m2), t h e n AP2 is above t h e minimum a c c e p t a b l e v a l u e f o r a tower h i g h e r t h a n 24 s t o r i e s . T h i s is a l s o t h e c a s e f o r t h e l o - s t o r y t o w e r , i f t h e v a l u e of A, i s less t h a n 2.65 i t 2 (0.246 m2). The l e a k a g e a r e a , A,,, c a n be d e c r e a s e d by t i g h t e n i n g u p t h e c a r e n c l o s u r e and d e c r e a s i n g t h e c l e a r a n c e between t h e c a r and t h e d o o r s i d e of t h e s h a f t . For t h e s e c a s e s , no s p e c i a l p r o v i s i o n i s r e q u i r e d f o r p r e s s u r e c o n t r o l t o a c c o u n t f o r an open e l e v a t o r door. E q u a t i o n 6 i s , h e n c e , u s e f u l i n t h e d e s i g n of a n e l e v a t o r p r e s s u r i z a t i o n s y s t e m t o check w h e t h e r p r e s s u r e c o n t r o l i s needed. I f some lobby

2238 where

-

A = t o t a l l e a k a g e a r e a of t h e s h a f t S u b s c r i p t 1 = b e f o r e t h e e l e v a t o r door i s open 2 = a f t e r t h e e l e v a t o r d o o r i s open

The v a l u e of AP2 s h o u l d be e q u a l t o t h e d e s i g n p r e s s u r e d i f f e r e n c e t o p r e v e n t smoke i n f i l t r a t i o n i n t o t h e e l e v a t o r s h a f t . The l e a k a g e a r e a s A! and A2 c a n be d e f i n e d a s

A1 = NAe ( a l l d o o r s c l o s e d )

and as an example of a n open d o o r c o n d i t i o n

A2 = (N-l)Ae

+

A, ( e l e v a t o r , l o b b y , and e x i t d o o r s on t h e ground f l o o r open) ( 4 ) where

(9)

doors a r e assumed t o be open, t h e n t h e average v a l u e of Ae f o r t h e tower should be used i n Equation 6.

The r e s u l t s of t h e example c a l c u l a t i o n f o r t h e tower following t h e procedure i n Appendix

A a r e given i n Appendix B.

TEST PROCEDURE

The leakage a r e a s of t h e tower were s e t t o s i m u l a t e those of a b u i l d i n g with average

a i r t i g h t n e s s e s and a f l o o r a r e a of 9,730 f t 2 (904 m2) o r seven t i m e s t h a t of t h e f l o o r a r e a of t h e experimental tower. The values of leakage a r e a s f o r t h e tower given i n Table 1 were estimated from measurements of o t h e r b u i l d i n g s conducted by Tamura and Shaw (1976, and 1978).

The i n i t i a l s e r i e s of t e s t s were coaducted with low and high f i r e temperature

c o n d i t i o n s , both following approximately t h e ASTM-El19 s t a n d a r d time-temperature curve up t o t h e maximum t e s t temperatures and held c o n s t a n t t h e r e a f t e r . For t h e low temperature f i r e , intended t o r e p r e s e n t a s p r i n k l e r e d f i r e , t h e maximum temperature was s e t a t 840 F (400°C). This temperature, which is probably much h i g h e r than expected i n a s p r i n k l e r e d f i r e , was d i c t a t e d by t h e minimum temperature a t which t h e t e s t gas burners could be operated. For t h e high temperature f i r e , t h e maximum f i r e temperature was s e t a t 1380

F

(750°C); f i v e minutes a f t e r i n i t i o n , t h e e a s t and west w a l l vents on t h e second f l o o r , each with an a r e a of 5 f t 2

5

(0.46 m ), were opened t o s i m u l a t e broken windows. It is r e a l i z e d t h a t a much h i g h e r

temperature can occur i n an a c t u a l f i r e , but t h e s e l e c t e d temperature l e v e l was considered t o

be adequate f o r t h e purpose of t h e t e s t s . The c o n t r o l temperature f o r t h e burners was measured 1.0 f t (0.3 m) below t h e c e i l i n g d i r e c t l y above t h e gas burners. The h e a t o u t p u t s were 0.92 and 2.8 x

lo6

Btu/h (0.27 and 0.82 MW) f o r t h e low and high temperature f i r e s , r e s p e c t i v e l y ; t h e corresponding o u t s i d e combustion a i r s u p p l i e s were 385 cfm (0.18 m3/s) and 740 cfm (0.35 m3/s). The test schedule was s e t t o monitor smoke migration d u r i n g t h e burn p e r i o d s and t h e performance of both t h e e l e v a t o r s h a f t and lobby p r e s s u r i z a t i o n systems with t h e e l e v a t o r door c l o s e d and open. The supply a i r f o r p r e s s u r i z a t i o n was i n j e c t e d a t t h e bottom of t h e e l e v a t o r s h a f t o r t h e bottom of t h e a i r d i s t r i b u t i o n s h a f t f o r lobby

p r e s s u r i z a t i o n . For t h e low and high temperature f i r e t e s t s , t h e e l e v a t o r l o b b i e s w e r e p r e s s u r i z e d t o 0.05 i n . o f water (12.5 Pa) and 0.10 i n of water (25.0 Pa), r e s p e c t i v e l y . For t h e s e t e s t s two e x t r a p r e s s u r e t a p s were placed 1.33 f t (0.40 m) and 6.33 f t (1.93 m) above t h e second f l o o r l e v e l i n t h e i n s u l a t e d p l a s t e r b o a r d lobby door and connected t o a p r e s s u r e t r a n s d u c e r whose o u t p u t w a s recorded on a continuous pen recorder. They complemented t h e e x i s t i n g p r e s s u r e t a p l o c a t e d 10.12 i t (3.08 m) above f l o o r l e v e l . An e x t r a g a s sampling tube was placed i n s i d e t h e second f l o o r lobby and connected t o an i n f r a r e d gas a n a l y z e r , whose output was a l s o recorded on a continuous pen recorder.

.

..

The f i r e t e s t s were conducted' of both an e l e v a t o r s h a f t p r e s s u r i z a t i o n system and an e l e v a t o r lobby p r e s s u r i z a t i o n system. Both systems were t e s t e d a g a i n s t low and high

temperature f i r e s . The p r e s s u r i z a t i o n system was a c t i v a t e d f o r 15 minutes, shutdown, and t h e n r e a c t i v a t e d 40 minutes a f t e r i g n i t i o n of t h e f i r e t o determine t h e p r e s s u r e d i f f e r e n c e s a c r o s s t h e lobby door due t o p r e s s u r i z a t i o n a l o n e , f i r e a l o n e , and both a c t i n g t o g e t h e r . The low temperature f i r e t e s t with lobby p r e s s u r i z a t i o n system was conducted w i t h t h e p r e s s u r i z a t i o n system a c t i v a t e d p r i o r t o i g n i t i n g t h e burners t o more c l o s e l y s i m u l a t e expected f i r e

s i t u a t i o n s . A t about 70 minutes a f t e r i g n i t i o n , t h e f i r s t f l o o r e l e v a t o r door, lobby door, and an e x t e r i o r door were opened t o study t h e e f f e c t of t h e r e s u l t i n g drop i n p r e s s u r i z a t i o n .

A s e r i e s of non-fire t e s t s were conducted t o v e r i f y t h e c a l c u l a t i o n procedures given i n Appendix A. The methods of p r e s s u r e c o n t r o l t e s t e d were f o r a v a r i a b l e supply a i r system and t h e use of r e l i e f dampers i n t h e w a l l s of t h e e l e v a t o r s h a f t on each floor.- With t h e e l e v a t o r door closed and open, t h e p r e s s u r e d i f f e r e n c e a c r o s s t h e e l e v a t o r lobby w a l l was c o n t r o l l e d t o a minimum of 0.05 i n of water (12.5 Pa) t o prevent smoke i n f i l t r a t i o n due t o a low temperature f i r e and a maximum of 0.15 i n of water (37.5 P a ) , which is w e l l below t h e allowable l i m i t of 0.36 i n of water (90 Pa) f o r door operation. This l a t t e r l i m i t was based on t h e requirement of t h e National F i r e P r o t e c t i o n Association F i r e Safety Code (NFPA 1985) on t h e maximum allowable door opening f o r c e of 30 l b (133 N ) and assuming a door s i z e of 7 f t (2.13 m) by

3.33 f t (1.02 m) and a f o r c e of 11 l b (40 N) t o overcome t h e door closure.

The t e s t s were conducted with temperature d i f f e r e n c e s between t h e i n s i d e and o u t s i d e of

I l e s s than 10 F (6OC) and wind speed of l e s s than 10 mph (16 kmlh). T e s t s under non-fire I

(10)

c o n d i t i o n s t o v a l i d a t e t h e e q u a t i o n s i n Appendix A were conducted w i t h t h e o u t s i d e w a l l

l e a k a g e a r e a s f o r t h e f i r s t and second f l o o r s h a v i n g t h e same v a l u e s a s t h o s e of t h e r e m a i n i n g f l o o r s t o s i m p l i f y v a l i d a t i o n .

RESULTS AND DISCUSSIONS

Smoke M i g r a t i o n

A d e t a i l e d h a z a r d a n a l y s i s c o n s i d e r i n g t h e e f f e c t of h e a t f l u x , t o x i c g a s e s and smoke o b s c u r a t i o n i s beyond t h e s c o p e of t h i s paper. However, a s i m p l i f i e d approach t o t h e smoke o b s c u r a t i o n problem i s t a k e n assuming t h a t p a r t i c u l a t e c o n c e n t r a t i o n s from a s o l i d f u e l f i r e would be p r o p o r t i o n a l t o t h e ' m e a s u r e d C02 c o n c e n t r a t i o n s from t h e s e t e s t s . T h i s assumption i s p r o b a b l y c o n s e r v a t i v e i n t h a t smoke d e p o s i t i o n r e d u c e s p a r t i c u l a t e c o n c e n t r a t i o n .

The C02 c o n c e n t r a t i o n s i n t h e tower f o r t h e h i g h t e m p e r a t u r e f i r e t e s t s 45 minutes a f t e r i g n i t i o n and 15 m i n u t e s a f t e r e l e v a t o r s h a f t p r e s s u r i z a t i o n a t 0.10 i n of w a t e r ( 2 5 P a ) a r e g i v e n i n T a b l e 2 and s i m i l a r l y a f t e r lobby p r e s s u r i z a t i o n i n T a b l e 3. The C02 c o n c e n t r a t i o n s a r e e x p r e s s e d a s p e r c e n t a g e of t h e c o n c e n t r a t i o n i n t h e second f l o o r measured 1 f t (0.3 m) below t h e c e i l i n g i n t h e burn a r e a . From a c o n s i d e r a t i o n of smoke o b s c u r a t i o n , i t can be assumed t h a t an a r e a i s r e a s o n a b l y s a f e i f i t is n o t c o n t a m i n a t e d t o an e x t e n t g r e a t e r t h a n 1% of t h a t i n t h e v i c i n i t y of a f i r e a r e a (McGuire et a 1 1970). It i s s e e n t h a t w i t h o u t

mechanical p r e s s u r i z a t i o n , t h e C02 c o n c e n t r a t i o n s a r e w e l l above t h e 1% l e v e l i n a l m o s t a l l s p a c e s i n c l u d i n g t h e e l e v a t o r s h a f t and l o b b i e s . The h i g h e s t c o n c e n t r a t i o n , 70X, o c c u r r e d i n t h e second f l o o r e l e v a t o r lobby. The h i g h e s t C02 c o n c e n t r a t i o n s i n t h e v e r t i c a l s h a f t s o c c u r r e d i n t h e s e r v i c e s h a f t . Examination of t h e t e m p e r a t u r e r i s e i n t h e t o w e r , g i v e n i n T a b l e 4, shows t h a t among v e r t i c a l s h a f t s , t h e s e r v i c e s h a f t had by f a r t h e g r e a t e s t

t e m p e r a t u r e i n c r e a s e w i t h an a v e r a g e rise of 100 F (38OC). P r e s s u r e d i f f e r e n c e s i n t h e tower g i v e n i n T a b l e 5 show t h a t , a s e x p e c t e d , t h e g r e a t e s t p r e s s u r e d i f f e r e n c e s o c c u r r e d a c r o s s t h e w a l l s of t h e s e r v i c e s h a f t w i t h f l o w from t h e f l o o r s p a c e s i n t o t h e s e r v i c e s h a f t below t h e

f i f t h f l o o r and t h e r e v e r s e f l o w d i r e c t i o n above i t . A s i m i l a r f l o w p a t t e r n can be s e e n f o r t h e r e t u r n a i r s h a f t , but t h e p r e s s u r e d i f f e r e n c e s a r e munch lower t h a n t h o s e of t h e s e r v i c e s h a f t . It would a p p e a r t h a t t h e s e r v i c e s h a f t a c t e d a s a f l u e and was t h e main passageway f o r C02 t o m i g r a t e t o u p p e r f l o o r s , c a u s i n g a t e n d e n c y f o r C02 on t h e s e f l o o r s t o e n t e r t h e s t a i r and e l e v a t o r l o b b i e s .

A f t e r 15 m i n u t e s of e l e v a t o r s h a f t p r e s s u r i z a t i o n , as shown i n T a b l e 2 , t h e e l e v a t o r s h a f t w a s c l e a r e d of C02 b u t t h e l e v e l s of C02 i n t h e e l e v a t o r l o b b i e s were s t i l l above t h e c r i t i c a l l e v e l . S i m i l a r l y , as shown i n T a b l e 3, when t h e lobby p r e s s u r i z a t i o n was a c t i v a t e d , t h e l o b b i e s were c l e a r e d of C02 b u t c o n c e n t r a t i o n s of C02 i n t h e e l e v a t o r s h a f t were above t h e c r i t i c a l l e v e l . A low t e m p e r a t u r e f i r e t e s t w i t h t h e lobby p r e s s u r i z a t i o n s y s t e m a c t i v a t e d p r i o r t o i g n i t i o n was s u c c e s s f u l i n k e e p i n g t h e e l e v a t o r s h a f t and l o b b i e s smoke f r e e a s l o n g a s a l l d o o r s were k e p t c l o s e d . These r e s u l t s i n d i c a t e t h a t i t i s i m p o r t a n t t o a c t i v a t e t h e p r e s s u r i z a t i o n s y s t e m b e f o r e t h e e l e v a t o r s h a f t and l o b b i e s a r e h e a v i l y c o n t a m i n a t e d w i t h smoke. T a b l e s 2 and 3 a l s o show t h a t , as e x p e c t e d , C02 c o n c e n t r a t i o n s i n t h e u n p r e s s u r i z e d s t a i r w e l l i n c r e a s e d when t h e e l e v a t o r p r e s s u r i z a t i o n s y s t e m s were a c t i v a t e d .

Temperature, P r e s s u r e D i f f e r e n c e , and CO, C o n c e n t r a t i o n of t h e Second F l o o r Lobby Due t o F i r e T a b l e s 6 and 7 g i v e t h e t e m p e r a t u r e s i n s i d e and o u t s i d e t h e s e c o n d f l o o r e l e v a t o r l o b b y , t h e p r e s s u r e d i f f e r e n c e s a c r o s s t h e l o b b y w a l l , and t h e C02 c o n c e n t r a t i o n s i n s i d e t h e lobby. They show t h a t when t h e b u r n e r s a r e o p e r a t i n g , t h e e l e v a t o r lobby t e m p e r a t u r e s a r e w e l l above t h e d a n g e r l e v e l f o r human e x p o s u r e . The two w a l l s of t h e l o b b y t h a t a r e exposed t o t h e burn a r e a a r e c o n s t r u c t e d of a l a y e r of 518 i n ( 1 6 mm) t h i c k gypsum w a l l b o a r d on e i t h e r s i d e of m e t a l s t u d s . With t h e p r e s s u r i z a t i o n s y s t e m o n , t h e l o b b y t e m p e r a t u r e s were lowered t o a b o u t 90-100 F (33-37OC) f o r t h e low t e m p e r a t u r e f i r e a n d t o a b o u t 125-145 F (52-63OC) f o r t h e h i g h t e m p e r a t u r e f i r e . For t h e c a s e when t h e s h a f t p r e s s u r i z a t i o n was a c t i v a t e d b e f o r e t h e burn p e r i o d , t h e lobby t e m p e r a t u r e f o r a low t e m p e r a t u r e f i r e was 98 F (37OC).

Examination of t h e r e s u l t a n t p r e s s u r e d i f f e r e n c e s a c r o s s t h e e l e v a t o r lobby w a l l i n d i c a t e d t h a t t h e y were a b o u t 20% and 40% g r e a t e r t h a n t h e a l g e b r a i c sum of t h e p r e s s u r e d i f f e r e n c e due t o p r e s s u r i z a t i o n and t e m p e r a t u r e e f f e c t of f i r e f o r t h e low and high

t e m p e r a t l i r e f i r e s , r e s p e c t i v e l y . The g r e a t e r v a l u e f o r t h e h i g h t e m p e r a t u r e t h a n f o r t h e low t e m p e r a t u r e f i r e may be a t t r i b u t e d t o t h e f i r e f l o o r b e i n g v e n t e d t o t h e o u t s i d e f o r t h e

(11)

former case, r e s u l t i n g i n somewhat h i g h e r p r e s s u r e d i f f e r e n c e s on f l o o r s above and below t h e

f i r e f l o o r . It would appear t h a t an amount of p r e s s u r i z a t i o n e q u a l t o t h e adverse p r e s s u r e

d i f f e r e n c e due t o f i r e w i l l l i k e l y be more than adequate t o prevent smoke migration i n t o t h e

e l e v a t o r lobby.

Figure 5 shows t h e pressure d i f f e r e n c e p r o f i l e a c r o s s t h e lobby w a l l f o r both t h e low

and high temperature f i r e s . For t h e low temperature f i r e , t h e n e u t r a l p r e s s u r e l e v e l (NPL)

is

l o c a t e d a t about t h e 5.5 f t (1.6 m) l e v e l and f o r t h e high temperature f i r e a t t h e 3.2 f t

(0.9 m) l e v e l . The l o c a t i o n of NPL depends on both t h e d i s t r i b u t i o n of leakage openings on

t h e f i r e f l o o r and t h e gas temperatures. The lower NPL f o r t h e high temperature f i r e i s due

t o t h e lower gas d e n s i t y o u t s i d e t h e e l e v a t o r lobby t h a n f o r t h e low temperature f i r e . The

maximum adverse pressure d i f f e r e n c e s of 0.026 i n of water (6.5 Pa) and 0.030 i n of water (7.5 Pa) f o r t h e low and high temperature f i r e s , r e s p e c t i v e l y , occurred near t h e c e i l i n g l e v e l of

t h e lobby wall. When t h e mechanical p r e s s u r i z a t i o n was a c t i v a t e d , t h e p r e s s u r e p r o f i l e

s h i f t e d t o t h e r i g h t t o show p o s i t i v e p r e s s u r i z a t i o n f o r t h e f u l l h e i g h t of t h e lobby, but

when t h e e l e v a t o r , lobby, and e x i t doors on t h e ground f l o o r were opened, i t s h i f t e d t o t h e

l e f t t o underpressurize t h e upper w a l l s of t h e lobby.

The v a r i a t i o n of lobby temperature, p r e s s u r e d i f f e r e n c e , and C02 c o n c e n t r a t i o n during

t h e bum, p r e s s u r i z a t i o n , and open door periods a r e g r a p h i c a l l y i l l u s t r a t e d i n Figure 6. The

time-lobby pressure d i f f e r e n c e curve shows t h a t soon a f t e r i g n i t i o n of t h e b u r n e r s , t h e r e is a sudden momentary i n c r e a s e i n adverse p r e s s u r e d i f f e r e n c e , probably caused by t h e rapid thermal expansion of gases t o 0.05 i n of water (12.5 Pa) with a s p i k e of 0.085 i n of water (21 Pa) and

a decrease t o a s t e a d y v a l u e a s t h e burn a r e a reached t h e c o n t r o l f i r e temperature. For t h e

low temperature f i r e , thermal expansion caused a maximum p r e s s u r e d i f f e r e n c e of 0.06 i n of

water (15 Pa) with a s p i k e of 0.10 i n of water (25 Pa). A h i g h e r thermal expansion e f f e c t

occurred with t h e low as compared t o t h e high temperature f i r e , probably because f o r t h e former, only one burner s t r i p was used, whereas f o r t h e l a t t e r , t h r e e burner s t r i p s were

i g n i t e d i n sequence. Pressure d i f f e r e n c e s due t o thermal expansion, which were of s h o r t

d u r a t i o n , d i d not cause s i g n i f i c a n t c o n c e n t r a t i o n of C02 i n t h e e l e v a t o r lobby i n t h e c a s e of t h e low temperature f i r e with t h e lobby d i r e c t l y p r e s s u r i z e d t o 0.05 i n of water (12.5 Pa)

p r i o r t o i g n i t i n g t h e burner. The supply a i r f o r p r e s s u r i z a t i o n probably d i l u t e d smoke t h a t

might have i n f i l t r a t e d t h e lobby.

Examination of C02 c o n c e n t r a t i o n s i n t h e e l e v a t o r lobby, a s given i n Tables 6 and 7, shows t h a t t h e C02 c o n c e n t r a t i o n s were reduced s i g n i f i c a n t l y with s h a f t p r e s s u r i z a t i o n ( s e e a l s o Figure 6) and reduced t o t h e background l e v e l with lobby p r e s s u r i z a t i o n , but C02 l e v e l s i n t h e lobby and e l e v a t o r s h a f t increased f o r both t h e s h a f t and lobby p r e s s u r i z a t i o n when t h e doors on t h e ground f l o o r were opened.

Comparison of Calcul.ated and Experimental R e s u l t s

The r e s u l t s of t h e t e s t s conducted t o check t h e equations i n Appendix A, developed f o r t h e

design of p r e s s u r i z a t i o n systems with p r e s s u r e c o n t r o l , a r e summarized i n Table 8. For both

t h e v a r i a b l e supply a i r and r e l i e f dampers f o r p r e s s u r e c o n t r o l , t h e measured and c a l c u l a t e d

values of supply a i r r a t e s and p r e s s u r e d i f f e r e n c e s agreed w e l l w i t h i n 10% of each o t h e r . To

f a c i l i t a t e comparison of t h e c a l c u l a t e d and t h e measured v a l u e s , t h e supply a i r r a t e f o r e l e v a t o r p r e s s u r i z a t i o n was kept c o n s t a n t with c l o s i n g o r opening of t h e doors on t h e ground

f l o o r . I n p r a c t i c e , t h e supply a i r r a t e , according t o t h e f a n c h a r a c t e r i s t i c , would decrease

with t h e c l o s i n g of doors due t o t h e i n c r e a s e i n t h e system's flow r e s i s t a n c e , and t h e o p p o s i t e would occur with t h e opening of doors; hence, assuming a c o n s t a n t supply a i r r a t e would give conservative v a l u e s of p r e s s u r e d i f f e r e n c e a c r o s s t h e e l e v a t o r lobby wall.

The leakage openings a t t h e t o p of t h e e l e v a t o r s h a f t were not considered i n t h e

c a l c u l a t i o n . Measurements by Tamura and Shaw (1976), i n s e v e r a l b u i l d i n g s i n d i c a t e d t h a t they

v a r i e d from 4 t o 10 f t 2 (0.37 t o 0.93 m2), except f o r one case of 0.50 f t 2 (0.046 m2) i n which

openings i n t h e c o n c r e t e f l o o r s l a b of t h e machine room were p a r t l y covered with sheet metal. The leakage openings a t t h e t o p of a p r e s s u r i z e d e l e v a t o r s h a f t should be minimized o r taken

i n t o account i n t h e c a l c u l a t i o n of supply a i r r a t e s and s i z e of r e l i e f dampers. Using t h e

equation i n Appendix A, s t e p 4, f o r an open e l e v a t o r door with A. replaced by t h e leakage a r e a

a t t h e t o p of an e l e v a t e d s h a f t w i l l g i v e c o n s e r v a t i v e values.

E l e v a t o r , Lobby, and E x i t Doors

(12)

lobby, and e x i t doors open on t h e ground f l o o r . For t h e case of a v a r i a b l e a i r supply p r e s s u r i z a t i o n system, t h e p r e s s u r e d i f f e r e n c e a c r o s s t h e e l e v a t o r lobby was intended t o be c o n t r o l l e d t o 0.05 i n . of water (12.5 Pa) f o r a low temperature f i r e . The required supply a i r r a t e f o r e l e v a t o r s h a f t p r e s s u r i z a t i o n ranged from 2000 t o 5590 cfm (0.944 t o 2.64 m3/s); i f t h e lobby doors on a l l f l o o r s except t h e f i r e f l o o r were a l s o assumed t o be open, t h e required maximum supply a i r r a t e would have been 5950 cfm (2.82 m3/s). For t h e case of a

p r e s s u r i z a t i o n system with r e l i e f dampers t o maintain t h e same p r e s s u r e d i f f e r e n c e a s i n t h e case with t h e ground f l o o r doors open, but t o 0.15 i n of water (37.5 Pa) with a l l doors

c l o s e d , t h e required s i z e s of dampers were 0.21 f t 2 (0.020 m2) and 0.11 f t 2 (0.011 m2) f o r t h e e l e v a t o r s h a f t and lobby p r e s s u r i z a t i o n systems, r e s p e c t i v e l y . To maintain t h e p r e s s u r e d i f f e r e n c e a t 0.05 i n of water (12.5 Pa) with a l l doors c l o s e d , l a r g e r s i z e r e l i e f dampers would be r e q u i r e d , and they can be c a l c u l a t e d u s i n g equations i n Appendix A, s t e p 9, with L = 1.0. For t h i s c a s e , t h e required s i z e s of damper i n t h e s h a f t w a l l s would be 0.62 f t 2 (0.057 m2) and 0.67 f t 2 (0.063 m2) f o r t h e s h a f t and lobby p r e s s u r i z a t i o n systems,

r e s p e c t i v e l y . Furthermore, i f t h e lobby doors on a l l f l o o r s except t h e f i r e f l o o r were assumed a l s o t o be open, t h e required damper s i z e s would be 0.68 f t 2 (0.063 m2) i n t h e s h a f t wall f o r t h e s h a f t p r e s s u r i z a t i o n system.

CONCLUSIONS

1. F i r e t e s t s conducted i n t h e experimental f i r e tower i n d i c a t e d t h a t t h e tower was completely contaminated w i t h smoke (C02 a s i n d i c a t o r ) due t o e f f e c t of t h e f i r e

temperature alone. The e l e v a t o r s h a f t p r e s s u r i z a t i o n system was e f f e c t i v e i n c l e a r i n g smoke i n t h e s h a f t i n a s h o r t time, but r e s i d u a l smoke with c o n c e n t r a t i o n s above t h e c r i t i c a l l e v e l remained i n t h e l o b b i e s , and, s i m i l a r l y , t h e e l e v a t o r lobby p r e s s u r i z a t i o n system was e f f e c t i v e i n c l e a r i n g smoke i n t h e l o b b i e s i n a s h o r t time, but r e s i d u a l smoke

1

remained i n t h e s h a f t f o r some time. It is important t o a c t i v a t e t h e p r e s s u r i z a t i o n

I systems b e f o r e t h e e l e v a t o r s h a f t , and l o b b i e s a r e h e a v i l y contaminated w i t h smoke.

2. Examination of t h e p r e s s u r e d i f f e r e n c e s due t o mechanical p r e s s u r i z a t i o n and those due t o I

t h e f i r e i n d i c a t e d t h a t an amount of p r e s s u r i z a t i o n e q u a l t o t h e adverse p r e s s u r e d i f f e r e n c e caused by t h e f i r e w i l l l i k e l y be more than adequate t o prevent smoke

I migration i n t o e l e v a t o r lobbies. Test r e s u l t s i n d i c a t e d t h a t a t s t e a d y f i r e temperature,

maximum adverse p r e s s u r e d i f f e r e n c e s due t o t h e thermal e f f e c t of f i r e occurred a c r o s s t h e e l e v a t o r lobby w a l l a t t h e c e i l i n g l e v e l of about 0.026 i n of water (6.2 Pa) f o r t h e low temperature f i r e and 0.03 i n of water (7.5 Pa) f o r t h e high temperature f i r e . Those due t o thermal expansion soon a f t e r i g n i t i o n were much h i g h e r but of s h o r t d u r a t i o n . It is l i k e l y t h a t a p r e s s u r i z a t i o n a c r o s s t h e e l e v a t o r lobby w a l l of 0.05 i n of water (12.5 Pa) and 0.10 i n of water (25 Pa) would be s u f f i c i e n t f o r low and high temperature f i r e s r e s p e c t i v e l y . Adverse p r e s s u r e d i f f e r e n c e s caused by o t h e r mechanisms, however, should a l s o be considered i n t h e design.

3. Opening e l e v a t o r , lobby, and e x i t doors on t h e ground f l o o r caused a r e d u c t i o n i n

p r e s s u r i z a t i o n r e s u l t i n g i n t h e contamination of t h e e l e v a t o r s h a f t and lobby on t h e f i r e f l o o r . To cope with open door s i t u a t i o n s , e q u a t i o n s were developed t o permit t h e d e s i g n of p r e s s u r i z a t i o n systems with v a r i a b l e supply a i r w i t h feedback c o n t r o l and a l s o w i t h r e l i e f dampers. These e q u a t i o n s gave r e s u l t s t h a t were w e l l w i t h i n 10% of t h e measured values i n t h e experimental f i r e tower. It should be emphasized, however, t h a t t o design an e f f e c t i v e p r e s s u r i z a t i o n system r e q u i r e s a knowledge and c o n t r o l of t h e a i r leakage c h a r a c t e r i s t i c s of t h e b u i l d i n g and, i n p a r t i c u l a r , t h o s e of t h e e l e v a t o r s h a f t and lobbies.

REFERENCES

Achakji, G.Y. 1987. "NRCC experimental f i r e tower f o r s t u d i e s on smoke movement and c o n t r o l i n t a l l buildings." I n s t i t u t e f o r Research i n Construction, National Research Council of Canada, I n t e r n a l Report No. 512.

ASHRAE. 1985. ASHRAE handbook

-

1985 fundamentals, p. 22.4 Atlanta: American S o c i e t y of Heating, R e f r i g e r a t i n g , and Air-Conditioning Engineers, Inc.

(13)

Klote, J.H. 1983. "Elevators as a means of f i r e escape." V.89, Pt. 1.

Klote, J.H., and Tamura, G.T. 1986. "Smoke c o n t r o l and f i r e evacuation by e l e v a t o r s . " ASHRAE Transactions V.92, Pt.1.

Klote, J.H., and F o t h e r g i l l , J.W. Jr. 1983. "Design of smoke c o n t r o l systems f o r buildings." Atlanta: American Society of Heating, R e f r i g e r a t i n g , and Air-Conditioning Engineers, Inc.

McGuire, J.H., Tamura, G.T., and Wilson, A.G. 1970. "Factors i n c o n t r o l l i n g smoke i n . high buildings.'? Proceedings, Symposium on F i r e Hazards i n Buildings, ASHRAE, pp. 8-13.

Tamura, G.T., and Shaw, C.Y. 1976. "Air leakage d a t a f o r t h e design of e l e v a t o r and s t a i r s h a f t p r e s s u r i z a t i o n systems-." ASHRAE Transaction, Vol. 82, p a r t 2, pp. 179-190.

Tamura, G.T., and Shaw, C.Y. 1978. "Experimental s t u d i e s of mechanical v e n t i n g f o r smoke c o n t r o l i n t a l l o f f i c e buildings." ASHRAE T r a n s a c t i o n s , Vol. 84, p a r t 1, pp. 54-71.

ACKNOWLEDGEMENT

The a u t h o r s g r a t e f u l l y acknowledge t h e c o n t r i b u t i o n of R.A. MacDonald i n s e t t i n g up and conducting t h e t e s t s i n t h e experimental f i r e tower and p r o c e s s i n g t h e test r e s u l t s ; of

J.E. Berndt i n running t h e d a t a a c q u i s i t i o n and c o n t r o l system and t h e gas burner system, and f o r preparing software f o r d a t a r e d u c t i o n ; and of o t h e r s t a f f members of t h e National F i r e Laboratory i n a s s i s t i n g d u r i n g t h e p r e p a r a t i o n and conduct of t h e t e s t s .

APPENDIX A

I

C a l c u l a t i o n of P r e s s u r e s , Flow Rates, and Vent S i z e s

I

I

I The following e q u a t i o n s were d e r i v e d f o r t h e e l e v a t o r s h a f t and lobby p r e s s u r i z a t i o n I systems, which a r e i l l u s t r a t e d i n Figures 4a and 4b, r e s p e c t i v e l y , by applying t h e equations

I f o r p a r a l l e l / s e r i e s flow and a i r f l o w through leakage openings, which a r e given i n (Klote and

I

F o t h e r g i l l 1983).

P r e s s u r i z e d E l e v a t o r S h a f t

1. Ae, o v e r a l l e q u i v a l e n t

(

A1+ '23e "4 leakage a r e a from t h e

[(*I+

A23e p r e s s u r i z e d space t o

o u t s i d e

-

where

P r e s s u r i z e d Lobbies

where

note: with lobby door open

-

-

note: with lobby door

(A3

>>

A2) open

A3 = leakage a r e a due t o door opening.

V e r t i c a l flow i n s h a f t assumed t o be n e g l i g i b l e .

(14)

2. AP, o v e r a l l p r e s s u r e d i f f e r e n c e from t h e p r e s s u r i z e d s p a c e t o o u t s i d e 3. Q f

,

p r e s s u r i z a t i o n flow r a t e p e r f l o o r 4 - Qo, f l o w r a t e a t ground f l o o r through open e l e v a t o r door w i t h lobby and e n t r a n c e d o o r s a l s o open 5. QT, t o t a l r e q u i r e d p r e s s u r i z a t i o n f l o w r a t e f o r a g i v e n AP w i t h a l l 3 doors on ground f l o o r of S t e p 4 c l o s e d where AP = p r e s s u r e d i f f e r e n c e a c r o s s t h e e l e v a t o r 3 lobby door where

-

M = AP3/AF' ( S e e S t e p 2) For a i r a t s t a n d a r d c o n d i t i o n

C

= 2400 w i t h Q ( c f m ) , Ae ( f t 2 ) , U 3 ( i n of w a t e r )

c

= 772 w i t h Q ( g / s ) , Ae (m2), @ 3 ( P a ) where A = l e a k a g e a r e a of 0 an open e l e v a t o r door N = t o t a l number of f l o o r s 6 . AP31; QT w i t h ground f l o o r e l e v a t o r , lobby, and e n t r a n c e doors open 7. Q T t , t o t a l r e q u i r e d (N-l)Qf + Qo f l o w r a t e f o r a g i v e n AP w i t h ground f l o o r 3 e l e v a t o r , lobby and e n t r a n c e doors open

(15)

2

8. AP3 ; QT1 with a l l doors closed

S h a f t wall S h a f t wall

9. A d , required s i z e of A1' =

-

*23e

[

QT' QT'

C N ( L A P ~ )

t J -

A23e = CN(LAPJ

f

-

A3 r e l i e f damper f o r each f l o o r i n t h e w a l l of t h e e l e v a t o r shaf t/lobby f o r a f a c t o r L where L = allowable f a c t o r f o r i n c r e a s e i n AP when 3 open doors on ground f l o o r a r e closed 10. QdT, required t o t a l QT' supply a i r r a t e with r e l i e f dampers Ad = A l t

-

A 1 Lobby w a l l APPENDIX B

P r e s s u r e s , Flow Rates, and Vent S i z e s f o r t h e 10-Story Experimental F i r e Tower

Leakage Areas A 1 = 0.07 ft2(0.006 m2); A 2 ( e l e v a t o r door c l o s e d ) = 0.75 ft2(0.070 m2); A2 ( e l e v a t o r door open) = 6.00 f t2(0.557 m) ; A3 = 0.30 ft2(0.028 m2); A4 = 0.79 ft2(0.073 m2)

(16)

P r e s s u r i z e d E l e v a t o r S h a f t 1. Ae ( p e r s t o r y ) 0.318 f t 2 (0.0295 m2) 1.39 AP3 900 (AP3) cfm 26.4 (dp3)+

11s

+

16980 (AP3) cfm 507 ( A P ~ ) + i/s

+

9000 (AP3) cfm 264 (AP3)+ i/s 0.13 AP3 25000 ( A P ~ ) ' c f o 745 (AP3)+

11.

7.7 APg 0.335 f t 2 , (0.0311 m2) 1.22 AP3 888 (AP3) cfm 26.0 (AP3)'

11s

11900 (AP3)+ cfm 355 ( A P ~ ) + L l s 8880 (AP3)+ cfm 265 ( AP3)+

Ys

0.20 AP3 19900 (AP3)' cfm 590 ( AP3)'

V s

5.0 AP3 S h a f t w a l l Lobby w a l l 0.21 f t 2 (0.020 m2) 0.11 f t 2 (0.010 m2) same a s 7 S h a f t w a l l 0.11 f t 2 (0.010 m2) same a s 7

(17)

TABLE 1

Leakage Flow Areas per Floor of t h e Experimental F i r e Tower

Location

-

Area Outside w a l l s 1 s t f l o o r e a s t w a l l 1 s t f l o o r west wall 2nd f l o o r e a s t w a l l (wall 2nd f l o o r e a s t w a l l ( w a l l 2nd f l o o r west w a l l (wall 2nd f l o o r west wall ( w a l l Typical f l o o r e a s t w a l l Typical f l o o r west w a l l vent c l o s e d ) vent open) vent c l o s e d ) vent open) E l e v a t o r Floor space t o e l e v a t o r s h a f t 0.07 0.006

Floor space t o e l e v a t o r lobby (lobby door closed) 0.30 0.028 Floor space t o e l e v a t o r lobby (lobby door open) 21.00 1.951 Elevator lobby t o e l e v a t o r s h a f t ( e l e v a t o r doors c l o s e d ) 0.75 0.070 Elevator lobby t o e l e v a t o r s h a f t ( e l e v a t o r doors open) 6.00 0.557 S t a i r s

Floor space t o s t a i r s h a f t

Floor space t o s t a i r lobby (lobby door closed) Floor space t o s t a i r lobby (lobby door open) S t a i r lobby t o s t a i r s h a f t ( s t a i r door closed) S t a i r lobby t o s t a i r s h a f t ( s t a i r door open) V e r t i c a l S h a f t s

Floor space t o s e r v i c e s h a f t Floor space t o supply a i r s h a f t * Floor space t o r e t u r n a i r s h a f t * C e i l i n g

(18)

TABLE 2

C0 Concent r a t i o n s w i t h High Temperature F i r e

-

E l e v a t o r S h a f t P r e s s u r i z a t i o n

Unbracketed numbers

-

45 min. a f t e r i g n i t i o n and w i t h o u t p r e s s u r i z a t i o n Bracketed numbers

-

15 min. a f t e r p r e s s u r i z a t i o n system i s a c t i v a t e d

Cog c o n c e n t r a t i o n , X of c o n c e n t r a t i o n i n t h e f i r e r e g i o n Burn E l e v a t o r E l e v a t o r S t a i r S t a i r S e r v i c e F l o o r a r e a lobby S h a f t lobby s h a f t s h a f t TABLE 3 C02 C o n c e n t r a t i o n s w i t h High Temperature F i r e

-

E l e v a t o r Lobby P r e s s u r i z a t i o n

Unbracketed numbers

-

30 min. a f t e r i g n i t i o n and w i t h o u t p r e s . s u r i z a t i o n Bracketed numbers

-

15 min. a f t e r p r e s s u r i z a t i o n system

i s

a c t i v a t e d

C02 c o n c e n t r a t i o n , X of c o n c e n t r a t i o n i n t h e f i r e r e g i o n F l o o r 10 9 8 7 6

5

4 3 2 1 Burn a r e a E l e v a t o r lobby E l e v a t o r S t a i r S h a f t lobby S t a i r S e r v i c e s h a f t s h a f t

(19)

TABLE 4

Temperature R i s e i n t h e Tower 30 Minutes A f t e r I g n i t i o n During a High Temperature F i r e T e s t

O u t s i d e t e m p e r a t u r e 45 F (7OC)

Burn E l e v a t o r E l e v a t o r S t a i r S t a i r S e r v i c e F l o o r a r e a lobby S h a f t lobby s h a f t s h a f t

F (OC) F (OC) F (OC) F (OC)

F

(OC) F (OC)

TABLE 5

P r e s s u r e D i f f e r e n c e s i n t h e Tower 30 M i n u t e s A f t e r I g n i t i o n During a High Temperature F i r e T e s t

P r e s s u r e d i f f e r e n c e

-

i n of w a t e r ( P a ) R e f e r e n c e p r e s s u r e

-

burn a r e a F l o o r 10 9 8 7 6

5

4

3 2 1 -- - S t a i r lobby - - R e t u r n A i r s h a f t S e r v i c e s h a f t E l e v a t o r lobby

(20)

TABLE

6

R e s u l t s of F i r e T e s t s w i t h E l e v a t o r S h a f t P r e s s u r i z a t i o n E l e v a t o r lobby on f i r e f l o o r (2nd f l o o r ) Temperature AP lobby w a l l C02 o u t s i d e i n s i d e i n . of w a t e r ( P a ) lobby lobby

1.33

f t

6.33

f t

10.12

f t % a b s o l u t e F(

OC)

F(

OC)

(0.40

m)

(1.93

m)

(3.08

m) r e f e r e n c e p r e s s u r e

-

burn a r e a Low Temp. F i r e P r e s s u r i z a t i o n

-

-

0.046 (11.5)

0.046 (11.5)

0.048 (11.9)

Burn

-

30

min.

760 (405) 153 (67)

0.026 (6.5)

-0.004

(-1)

-0.026 (-6.5)

2.20

Burn

+

P r e s s .

673 (356) 91 (33)

0.081 (20.2)

0.051 (12.7)

0.017 (4.2)

0.12

-

15

min. Burn

+

P r e s s .

716 (380) 116 (47)

0.055 (13.7)

0.010 (2.5)

-0.019(-4.7)

0.20

& open d o o r s on ground f l o o r

-

15

min. High Temp. F i r e

1380

F

(750°C)

P r e s s u r i z a t i o n

-

-

0.102 (25.4)

0.100 (24.9)

0.098 (24.4)

-

Burn

-

30

min.

1243 (673) 460 (238) 0.006 (1.5)

-0.018 (-4.5)

-0.030 (-7.5)

2.94

Bum

+

P r e s s .

1070 (576) 145 (63)

0.140 (34.9)

0.100 (24.9)

0.094 (23.4)

0.25

-

15

min. Bum

+

P r e s s .

1217 (630) 159 (87)

0.030 (7.5)

0.101 (2.5)

-0.010 (-2.5)

0.75

& open d o o r s on ground f l o o r

-

15

min.

Figure

TABLE  6  R e s u l t s   of  F i r e   T e s t s   w i t h   E l e v a t o r   S h a f t   P r e s s u r i z a t i o n   E l e v a t o r   lobby  on  f i r e  f l o o r   (2nd  f l o o r )   Temperature  AP  lobby  w a l l   C02  o u t s i d e   i n s i d
Figure  2 .   Plan  o f   the  experirne,ztal  f i r e   touer
Figure  3 .   Luy-out  of  t h e   national  f i r e   taboratory
Figure  6 .   Results  o f  measurements  i n  t h e   second  floor  e l e v a t o r   lobby  during  a  high  temperature  f i r e   t e s t   w i t h   e l e v a t o r   s h a f t   pressurization I  I I I  - I I 0&#34;- ---- ---- &gt;' - REFERENCE  PRE

Références

Documents relatifs

Homology modeling of isolated inhibitory (D2 and D3) domains and molecular dynamics simulations of the D2 domain complexed with wild-type cathepsin B and its mutants indicate

Canada Wood and the National Research Council (NRC) Canada are cooperating on an ongoing research project that investigates the hygrothermal (i.e. moisture and thermal)

This report describes the design and function of three flame conductivity devices used to measure the linear flame penetration along the length of seams in a floor. assembly

For this paper, the results of selected full-scale fire tests are used to investigate the potential additional effect on occupants of the target room as a result of the

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Whereas phon- ological rules can, but must not operate in terms of underlying segments, it appears that all the alternations in (39) (and any other

The mean peak forces in both horizontal and vertical directions were measured and found to be almost independent of Froude Number below 0.02, but increased significantly at

Even when browsing an identical webpage x, different object servers might be used depending on the browsing location [1][9], so we need to collect measurement data when