• Aucun résultat trouvé

3.Actionneurs:CommandedesmachinestriphaséesValentinGiesISEN Électroniquedepuissance-Mécatronique

N/A
N/A
Protected

Academic year: 2022

Partager "3.Actionneurs:CommandedesmachinestriphaséesValentinGiesISEN Électroniquedepuissance-Mécatronique"

Copied!
44
0
0

Texte intégral

(1)

university-logo

Électronique de puissance - Mécatronique

3. Actionneurs : Commande des machines triphasées

Valentin Gies

ISEN

(2)

university-logo

Plan du cours

1 Modélisation vectorielle en triphasé Triphasé équilibré et champs tournants Transformations vectorielles

2 Commande des machines triphasées

Machine synchrone : autopilotage scalaire Machine synchrone : autopilotage vectoriel Machine asynchrone : commande scalaire Machine asynchrone : commande vectorielle

Valentin Gies Électronique de puissance - Mécatronique

(3)

university-logo

Objectif du cours

Commande directe des machines synchrones et asynchrones :

Complexe.

Non linéaire.

Objectifs :

Obtenir une commande en vitesse linéaire du type de celle des moteurs à courant continu.

Maximiser l’efficacité de la commande : optimisation du

couple instantané.

(4)

university-logo

Modélisation des machines réelles

Système triphasé équilibré :

Triphasé : grandeurs déphasées de 2 3 π .

Équilibré : G a (t) + G b (t) + G b (t) = 0, ∀ grandeur G.

On note :

[v

abc

] =

v

1

v

2

v

3

 , [i

abc

] =

i

1

i

2

i

3

et

abc

] =

 Φ

1

Φ

2

Φ

3

Valentin Gies Électronique de puissance - Mécatronique

(5)

university-logo

Modélisation des machines réelles

Pourquoi le triphasé ?

Création d’un champ tournant ⇒ polyphasé.

Pourquoi ne pas utiliser du diphasé (comme dans les modèles présenté au cours n˚2) ?

Diphasé : 2 alimentations en tension en quadrature ⇒ 4 fils d’alimentation (i 1 + i 2 6 = 0).

Triphasé : 3 alimentations de tension en décalage de 120˚

3 fils d’alimentation (i 1 + i 2 + i 3 = 0) donc pas besoin de fil de retour.

Autres avantages : réduits les harmoniques de rang 3.

(6)

university-logo

Modélisation des machines réelles

Système triphasé et champs tournant :

Expression des forces magnétomotrices dans la direction OM : F

a

(θ, t) = Ki

a

(t)cos(θ)

F

b

(θ, t) = Ki

b

(t)cos(θ − 2π 3 ) F

c

(θ, t) = Ki

c

(t)cos(θ + 2π

3 )

Valentin Gies Électronique de puissance - Mécatronique

(7)

university-logo

Modélisation des machines réelles

Expression des courants :

i

a

(t) = I cos(ωt) i

b

(t) = I cos(ωt − 2π

3 ) i

c

(t) = I cos(ωt + 2π

3 ) Force magnétomotrice résultante :

F (θ, t) = 3

2 K I cos(ωt − θ)

⇒ Les 3 bobinages créent un champ tournant à la vitesse ω.

(8)

university-logo

Modélisation des machines réelles

Système triphasé équilibré et asservissement : Triphasé équilibré ⇔ système lié : G c = − G aG b Grandeurs statoriques et rotoriques : Déphasage spatio-temporel de θ = ω r t (angle entre le rotor et le stator).

L’asservissement des grandeurs triphasées non transformées est inutilement complexe.

On introduit des transformations vectorielles pour simplifier le problème.

Valentin Gies Électronique de puissance - Mécatronique

(9)

university-logo

Transformations vectorielles

Transformée de Concordia (1)

Triphasé équilibré ⇔ système lié : G c = − G aG b

Idée : Rendre ce système de tensions décorrélé.

Transformée de Concordia (matrice de passage orthogonale [Co]) :

G

0

G

α

G

β

 = 1

√ 3

 

1 1 1

√ 2

1 2

−1

√2

0

3 2

√3

√2

 

G

a

G

b

G

c

 = Co

G

a

G

b

G

c

Transformée inverse de Concordia ([Co]

1

) :

G

a

G

b

G

c

 = 1

√ 3

 

1 √

2 0

1

1 2

√3

√2

1

1 2

√3

√2

 

G

0

G

α

G

β

 = Co

1

G

a

G

b

G

c

(10)

university-logo

Transformations vectorielles

Transformée de Concordia (2)

Propriétés :

Permet de passer d’un système triphasé à un système diphasé (en quadrature) + composante homopolaire.

Conserve les puissances.

Décorrèle la matrice de couplage inductif entre phases.

G 0 : composante homopolaire ⇔ nulle si système équilibré.

Valentin Gies Électronique de puissance - Mécatronique

(11)

university-logo

Transformations vectorielles

Matrice de rotation (1)

Concordia au stator : système diphasé à axes fixes ⇒ OK Concordia au rotor : système diphasé à axes tournants

⇒ dépendant de θ.

Idée : Rendre le vecteur G

0αβ

au rotor indépendant de θ.

Matrice de rotation (matrice de passage orthogonale [ρ(θ)]) :

G

0

G

d

G

q

 =

1 0 0

0 cos θ sin θ 0 − sin θ cos θ

G

0

G

α

G

β

 = ρ(θ)

G

0

G

α

G

β

Matrice de rotation inverse ([ρ(θ)]

1

) :

G

0

G

α

G

β

 =

1 0 0

0 cos θ − sin θ 0 sin θ cos θ

G

0

G

d

G

q

 = ρ(θ)

−1

G

0

G

d

G

q

(12)

university-logo

Transformations vectorielles

Matrice de rotation (2)

Propriétés :

Permet de passer d’un système diphasé rotorique tournant à un système diphasé fixe.

Conserve les puissances.

Valentin Gies Électronique de puissance - Mécatronique

(13)

university-logo

Transformations vectorielles

Transformée de Park (1)

Combinaison de la transformée de Concordia et de la rotation : Transformée de Park (orthogonale) : [P] = [Co][ρ(θ)]

G

0

G

d

G

q

 = r 2

3

√1 2

√1 2

√1 2

cos θ cos (θ −

3

) cos (θ +

3

)

− sin θ − sin (θ −

3

) − sin (θ +

3

)

G

a

G

b

G

c

Transformée de Park inverse :[P]

1

= [ρ(θ)]

1

[Co]

1

G

a

G

b

G

c

 = r 2

3

 

√1

2

cos θ − sin θ

√1

2

cos (θ −

3

) − sin (θ −

3

)

√1

2

cos (θ +

3

) − sin (θ +

3

)

 

G

0

G

d

G

q

(14)

university-logo

Transformations vectorielles

Transformée de Park (2)

Propriétés :

Permet de passer d’un système triphasé rotorique tournant à un système diphasé fixe.

Conserve les puissances.

G 0 : composante homopolaire ⇔ nulle si système équilibré.

Il existe une transformée de Park conservant les courants

(peu d’intérêt).

Valentin Gies Électronique de puissance - Mécatronique

(15)

university-logo

Transformations vectorielles

Transformée de Park (3) : Application à une machine

Application à une machine (synchrone ou asynchrone) : Tensions statoriques dans une machine :

[v abc ] = [R][i abc ] + d dtabc ]

⇔ [P] 1 [v odq ] = [R][P] 1 [i odq ] + d dt

[P] 1odq ]

On multiplie par [P] pour passer dans le repère de Park :

⇒ [v odq ] = [R][i odq ] + [P] d dt

[P] −1odq ]

[v odq ] = [R][i odq ] + [P] d [P] 1

dtodq ] + dodq ]

dt

(16)

university-logo

Transformations vectorielles

Transformée de Park (4) : Application à une machine

On montre que :

[P] d [P] 1 dt =

dt

0 0 0

0 0 − 1

0 1 0

En projetant [v odq ], on obtient alors :

v o = Ri o + d Φ o

dt = 0 (equilibre) v d = Ri d + d

dtd θ dt Φ q v q = Ri q + d Φ q

dt + d θ dt Φ d

Valentin Gies Électronique de puissance - Mécatronique

(17)

university-logo

Transformations vectorielles

Transformée de Park (5) : Application à une machine

On obtient les puissances (active ou/et réactive) en multipliant par le courant :

Ri d 2 + ( d Φ d

dt dt Φ q )i d Ri q 2 + ( q

dt + dt Φ d )i q

Termes en Ri d 2 : dissipation thermique (P J ) Termes en d Φ d

dt i d et d Φ q

dt i q : puissance réactive (Q e ).

Termes en d θ

dt Φ d i q et − d θ

dt Φ q i d : puissance active (P e ).

(18)

university-logo

Transformations vectorielles

Transformée de Park (5) : Application à une machine

Finalement, la puissance active est égale à : P e =

dt Φ d i qd θ dt Φ q i d

or mécaniquement (p : nombre de paires de poles) : P e = C e Ω = C e 1

p d θ

dt

On a donc en éliminant P e :

C e = p(Φ d i q − Φ q i d )

Valentin Gies Électronique de puissance - Mécatronique

(19)

university-logo

Machine synchrone : commande scalaire

On considère une Machine Synchrone à Aimants Permanents (MSAP) à pôles lisses :

Rq : Dans une machine à pôles lisses, la valeur de l’inductance de

chacun des enroulements statoriques ne varie pas lorsque le rotor

tourne (les lignes de champs sont toujours canalisées de la même

manière).

(20)

university-logo

Machine synchrone : autopilotage scalaire (2)

Tensions statoriques dans une machine synchrone : [v abc ] = R[i abc ] + d

dtabc ]

[v

abc

] = R[i

abc

]+

L M M

M L M

M M L

| {z } d

dt [i

abc

] + d dt

 cos θ cos θ −

3

cos θ +

23π

 Φ

f

| {z }

Inductances statoriques Flux Φ

f

au stator

Valentin Gies Électronique de puissance - Mécatronique

(21)

university-logo

Machine synchrone : autopilotage scalaire (3)

On montre (voir plus loin) que le couple moteur est de la forme : C = k Φ f I sin δ

Pour piloter la machine il faut maintenir l’angle δ à une valeur permettant d’obtenir le couple souhaité ⇒ Autopilotage

⇒ on observe θ de manière à piloter les courants [i abc ] avec un décalage d’angle δ fixé.

Le pilotage se fait par asservissement des courants sur leur

consignes.

(22)

university-logo

Machine synchrone : autopilotage scalaire (3)

Valentin Gies Électronique de puissance - Mécatronique

(23)

university-logo

Machine synchrone : autopilotage scalaire (4)

Intérêt de l’autopilotage (scalaire ou vectoriel) : Permet de réaliser une commande en vitesse de la machine.

Fort couple au démarrage

Inconvénients de l’autopilotage scalaire :

L’asservissement se fait sur des courants sinusoïdaux ⇒ performances médiocres et difficile à implanter en temps réel.

La transformée de Park permet de transformer les courants

sinusoïdaux [i abc ] en courants constants [i odq ] : on commande

alors la norme d’un vecteur courant ⇒ Contrôle vectoriel

(24)

university-logo

Machine synchrone : autopilotage vectoriel (1)

On considère une Machine Synchrone à Aimants Permanents (MSAP) à pôles saillants (utilisée en mécatronique) :

Rq : La saillance des pôles (dissymétrie) va faire varier périodiquement (à chaque demi-tour) la valeur de l’inductance de chacun des enroulements statoriques (selon que lignes de champs sont canalisées ou non).

Valentin Gies Électronique de puissance - Mécatronique

(25)

university-logo

Machine synchrone : autopilotage vectoriel(2)

Tensions statoriques dans une machine synchrone : [v abc ] = R[i abc ] + d

dtabc ]

[v

abc

] = R[i

abc

] +

L M M

M L M

M M L

d

dt [i

abc

] + d dt

 cos θ cos θ −

2π 3

cos θ +

3

 Φ

f

+

L

s

cos(2θ) L

s

cos 2(θ +

23π

) L

s

cos 2(θ −

2

π 3

) L

s

cos 2(θ +

23π

) L

s

cos 2(θ −

2

π

3

) L

s

cos 2θ L

s

cos 2(θ −

2

π

3

) L

s

cos 2θ L

s

cos 2(θ +

23π

)

| {z }

d dt [i

abc

]

Inductances dues aux poles saillants

(26)

university-logo

Machine synchrone : autopilotage vectoriel (3)

On applique la transformée de Park :

⇒ [v odq ] =

R + sL 0 0 0

0 R + sL dL q ω 0 L d ω R + sL q

 [i odq ] +

 0 f

0

avec :

L

0

= L + 2M L

d

= LM + 3

2 L

s

L

q

= LM − 3 2 L

s

sd

dt (Laplace) ω = d θ dt

Rq : On note que la transformée de Park permet de simplifier la matrice des inductances et de ne plus la faire dépendre de l’angle θ.

Valentin Gies Électronique de puissance - Mécatronique

(27)

university-logo

Machine synchrone : autopilotage vectoriel (4)

En introduisant les flux de Park [φ odq ] on obtient :

⇒ [v

odq

] =

R 0 0

0 R 0

0 0 R

 [i

odq

] +

s 0 0 0 s − ω

0 ω s

 [φ

odq

]

avec Φ

o

= L

0

i

o

, Φ

d

= L

d

i

d

+ Φ

f

, Φ

q

= L

q

i

q

.

On en déduit l’expression du couple : C e = p(Φ d i q − Φ q i d )

= p((L d i d + Φ f )i q − (L q i q )i d )

C e = p(Φ f i q + (L dL q )i d i q )

(28)

university-logo

Machine synchrone : autopilotage vectoriel (5)

C e = p(Φ f i q + (L dL q )i d i q )

L d = L q si la saillance est nulle (invariance du rotor par rotation) ⇔ L s = 0 et les termes en cos(2θ) disparaissent.

On retrouve une expression du couple du type :

C e = p(Φ f i q ) = B 0 SI sin(δ), avec δ l’angle entre l’aimant et le champ tournant.

En pratique : L q > L dle courant i d doit être maintenu à 0 pour avoir un couple maximal : commande vectorielle.

Le réglage du couple se fait via le flux ou le courant i q .

Valentin Gies Électronique de puissance - Mécatronique

(29)

university-logo

Machine synchrone : autopilotage vectoriel (6)

Autopilotage d’une machine synchrone par commande vectorielle.

(30)

university-logo

Machine synchrone : autopilotage vectoriel (7)

Intérêt de l’autopilotage vectoriel :

Permet de réaliser une commande en vitesse de la machine.

L’asservissement de fait sur des grandeurs fixes dans le temps ([i odq ]).

Une machine synchrone autopilotée vectoriellement est techniquement supérieure en tous points à une MCC de même puissance (couple de démarrage, précision, ...) Inconvénients de l’autopilotage vectoriel :

Nécessité d’avoir un contrôleur de type DSP pour réaliser les transformations de Park.

Valentin Gies Électronique de puissance - Mécatronique

(31)

university-logo

Machine asynchrone : commande scalaire

On considère une Machine Asynchrone à cage d’écureuil :

Rq : Dans une machine asynchrone à cage d’écureuil, les spires au

rotor sont constituées par des barres de fer entourant le rotor et

formant une cage cylindrique appelée cage d’écureuil.

(32)

university-logo

Machine asynchrone : commande scalaire (2)

Enroulements dans une machine asynchrone :

Tensions statoriques dans une machine asynchrone :

[v

s abc

] = R

s

[i

s abc

] + d

dt

s abc

]

Tensions rotoriques (court-circuit) dans une machine asynchrone :

[v

r abc

] = R

r

[i

r abc

] + d

dt

r abc

] = [0]

Valentin Gies Électronique de puissance - Mécatronique

(33)

university-logo

Machine asynchrone : commande scalaire (2)

[V s ] [V r ]

= R [I s ]

[I r ]

+ d dt

[L s ] [M sr ] [M sr ] [L s ]

[I s ] [I r ]

avec

[L

s

] =

l

s

M

s

M

s

M

s

l

s

M

s

M

s

M

s

l

s

 [L

r

] =

l

r

M

r

M

r

M

r

l

r

M

r

M

r

M

r

l

r

[M

s

r ] = [M

r

s] = M

sr

cos (θ) cos (θ +

3

) cos (θ −

2π 3

) cos (θ −

3

) cos (θ) cos (θ +

3

) cos (θ +

3

) cos (θ −

3

) cos (θ)

(34)

university-logo

Machine asynchrone : commande scalaire (3)

On montre que le couple moteur moyen est égal à :

< C >= 3pω

s

Φ

2s

R g

R g

2

+ (Nω

s

)

2

= 3pΦ

2s

R ω

r

"

R ω

r

2

+ (N)

2

#

avec N =

L

r

M

2

L

s

L

s

M

2

M = 2

3 M

sr

R = R

r

L

s

M

2

Le couple peut être réglé entre autres par :

Le flux statorique (via la tension d’alimentation par exemple) La pulsation ω

s

d’alimentation.

La résistance rotorique (automatique grâce à l’effet de peau sur un rotor à cage profonde)

Valentin Gies Électronique de puissance - Mécatronique

(35)

university-logo

Machine asynchrone : commande scalaire (4)

Evolution du couple pour diverses tensions et fréquences d’alimentation.

(36)

university-logo

Machine asynchrone : commande scalaire (3)

Pour une pulsation d’alimentation ω s donnée et à flux constant, le couple est maximal lorsque la valeur du glissement vaut :

g = R s

Ce qui nous donne :

ω s = ω r + R N

Il faut donc asservir la vitesse du champ tournant statorique sur la vitesse de rotation de la machine pour maximiser le couple : On utilise un autopilotage scalaire permettant d’asservir les tensions statoriques V abc .

Valentin Gies Électronique de puissance - Mécatronique

(37)

university-logo

Machine asynchrone : commande scalaire (4)

Intérêt de la commande scalaire :

Permet de réaliser une commande en vitesse de la machine.

Fort couple au démarrage

Inconvénients de la commande scalaire :

L’asservissement se fait sur des courants sinusoïdaux ⇒ performances médiocres et difficile à implanter en temps réel.

La transformée de Park permet de transformer les courants

sinusoïdaux [i abc ] en courants constants [i odq ] : on commande

alors la norme d’un vecteur courant ⇒ Contrôle vectoriel

(38)

university-logo

Machine asynchrone : commande vectorielle (1)

Rappel : Tensions dans une machine asynchrone [V s ]

[V r ]

= R [I s ]

[I r ]

+ d dt

[L s ] [M sr ] [M sr ] [L s ]

[I s ] [I r ]

Après application de la transformée de Park, on a :

 

V

sd

V

sq

V

rd

V

rq

 

 =

 

R

s

R

s

R

r

R

r

 

 

i

sd

i

sq

i

rd

i

rq

 

 + d dt

 

 Φ

sd

Φ

sq

Φ

rd

Φ

rq

 

 +

 

 ω

s

Φ

sq

ω

s

Φ

sd

ω

r

Φ

rq

ω

r

Φ

rd

 

avec Φ

sd

= L

s

I

sd

+ Mi

rd

, Φ

sq

= L

s

I

sq

+ Mi

rq

, Φ

rd

= L

r

I

rd

+ Mi

sd

. On choisit la référence d’angle au rotor pour avoir Φ

rq

= 0.

Valentin Gies Électronique de puissance - Mécatronique

(39)

university-logo

Machine asynchrone : commande vectorielle (2)

Les enroulements au rotor sont en court-circuit, on a donc : V

rd

= R

r

i

rd

+ d Φ

rd

dt = 0 V

rq

= R

r

i

rq

+ ω

r

Φ

rd

= 0

En remplaçant i rd par L 1

r

r dMi sd ) et i rq par Mi L

sq

r

, on obtient : τ

r

d Φ

rd

dt + Φ

rd

= M i

sd

ω

r

τ

r

Φ

rd

= M i

sq

Le flux rotorique (Φ

rd

) est fixé par le courant i

sd

r

= L

r

/R

r

' 100ms).

A Φ

rd

fixé, la pulsation rotorique ω

r

(et donc le glissement) sont

fixés par i

sq

.

(40)

university-logo

Machine asynchrone : commande vectorielle (3)

Expression du couple moteur dans le repère de Park : C e = p(Φ sd i sq − Φ sq i sd )

avec Φsd = σL

s

i

sd

+

M Lr

Φ

rd

, Φsq = σL

s

i

sq

et σ = 1 −

LMrL2s

.

On obtient donc :

C e = p M

L r

Φ rd i sq

Valentin Gies Électronique de puissance - Mécatronique

(41)

university-logo

Machine asynchrone : commande vectorielle (4)

Commande vectorielle d’une machine asynchrone : C e = p

M L r

Φ rd i sq

On fixe le flux Φ rd à une valeur constante (nominale) à l’aide de i sd .

On règle le couple à la valeur souhaitée à l’aide de i sq .

La vitesse du champ tournant ω s est fixée par la mesure

de ω et par l’estimation de ω r à l’aide d’un modèle du

moteur (ω r = M i τ

r

Φ

sqrd

).

(42)

university-logo

Machine asynchrone : commande vectorielle (5)

Commande vectorielle d’une machine asynchrone : schéma synoptique

Valentin Gies Électronique de puissance - Mécatronique

(43)

university-logo

Machine asynchrone : commande vectorielle (5)

Intérêt de la commande vectorielle :

Permet de réaliser une commande en vitesse de la machine.

L’asservissement de fait sur des grandeurs fixes dans le temps.

Le réglage du flux et celui du couple sont distincts.

Une machine asynchrone pilotée en commande vectorielle est techniquement supérieure en tous points à une MCC de même puissance (couple de démarrage, précision, ...) Inconvénients de la commande vectorielle :

Nécessité d’avoir un contrôleur de type DSP pour réaliser

les transformations de Park.

(44)

university-logo

Bibliographie

Convertisseurs statiques. Modélisation et commande de la machine asynchrone. Caron Hautier. (Technip)

Introduction à l’electrotechnique approfondie. Séguier, Notelet et Lesenne (Tec et Doc).

Convertisseurs de l’électronique de puissance (Tomes 1, 2, 3, 4).

Séguier (Tec et Doc).

Techniques de l’ingénieur (http ://www.techniques-ingenieur.fr) Commande électronique des moteurs électriques. M. Pinard (Dunod).

Valentin Gies Électronique de puissance - Mécatronique

Références

Documents relatifs

صئاصخنا حسارذت كهؼتَ ححوزطلأا عىضىم حُووزتكنلاا و حَىُىثنا خاىُخىكهكن حُتازتنا خاَىهمنا و حَىُىثنا صئاصخنا و حووزمنا صئاصخ حُووزتكنلاا

Comme si les processus de commercialisation ne jouaient aucun rôle dans le succès d’une innovation et comme s’ils ne devaient pas faire l’objet d’un travail de conception

Cet effet peut être apprécié en inspectant la manière dans laquelle les fonctions de base du LMTO standard sont combinées pour décrire la fonction d’onde du

variable directement mesurable, l'observateur de type Luenberger [7, 9] permet la reconstitu- tion du flux rotorique dans les axes a, p et l'dvaluation de l'angle d'orientation p

photography.. II - ﺕﺎﻤﺍﺩﺨﺘﺴﻻﺍ ﺭﺎﻴﻁ ﻥﻭﺩﺒ ﺕﺍﺭﺌﺎﻁﻠﻟ ﺔﻴﻨﺩﻤﻟﺍ 1 - ﻡﺍﺩﺨﺘﺴﺍ ﻲﻤﻠﻌﻟﺍ ﺙﺤﺒﻟﺍ ﺽﺍﺭﻏﻷ ﺭﺎﻴﻁ ﻥﻭﺩﺒ ﺕﺍﺭﺌﺎﻁﻟﺍ ..... ﺔﻤﺩﻘﻤ : ﺯﻴﻤﺘﻴ ﺓﺭﺜﻜﻭ

Elle nous a permis de connaitre en détail chacun des six entrepreneurs primo créateurs relativement aux variables du modèle d’analyse que sont les

« Conception et Modélisation d’une Machine Synchrone à 7 Phases à Aimants Permanents et Flux Axial : Commande Vectorielle en Modes Normal et Dégradé », Thèse

La modélisation décrite dans ce chapitre a pour objet de représenter les barres ou les anneaux de court circuit par un modèle mathématique pour une machine asynchrone à