• Aucun résultat trouvé

Cortical integration of bilateral nociceptive signals: when more is less

N/A
N/A
Protected

Academic year: 2021

Partager "Cortical integration of bilateral nociceptive signals: when more is less"

Copied!
31
0
0

Texte intégral

(1)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(2)
(3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(4)

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 2.1 Participants 41 42 43 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(5)

46 47 48 49 50 51 52 2.2 Experimental procedures 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(6)

70 71 72 73 74 75 76

2.4 Painful Laser Stimulation

77 78 79 80 81 82 83 84 85 86 87 88 89 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(7)

92 93 94 95 96 97 98 99 100 101 102 103 2.5 Electroencephalographic recordings 104 105 106 107 108 109 110 111 2.6 Laser-evoked potentials 112 113 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(8)

116 117 Runica 118 119 120 121 122 123 124 125 126 127 128 129 2.7 Time-frequency analysis 130 131 132 133 134 135 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(9)

138 139 140 141 142 143 144 145 time frequency 146 147 148 149 150 151 152 153 154 155 156 157 158 159 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(10)

162 163 164 165 t 166 167 168 t t 169 170 t t 171 172 p 173 p 174 175 176 t 177 178 179 180 181 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(11)

2.8 Statistical Analysis 184 185 186 187 188 189 190 Stimulation Attention 191 2 p 192 193 194 3.1 Laser-evoked potentials 195 196 197 198 199 main effect: F 2 p 200 main effect: F 201 2 p interaction: F 202 2 p 203 main effect: F 2 p 204 main effect: F 205 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(12)

2 p 207 208 main effect: F 2 p 209 210 main effect: F 2 p 211 interaction: F 2 p 212 main effect: F 213 2 p 214 main effect: F 2 p 215 interaction: F 2 p 216 217 218 219

3.2 Event-related spectral perturbations

220 221 222 main effect: F 223 2 p F 2p 224 main effect: F 225 2 p F 2p 226 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(13)

main effect: F 2 p 229 230 231 main effect: F 232 2 p interaction: F 233 2 p 234 main effect: F 2 p 235 236 237 main effect: F 2 p 238 interaction: F 2 p 239 240 241 242 243 Hemisphere Stimulation 244 Attention 245 246 247 248 249 250 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(14)

253 254 255 256 257

3.3 Pain intensity ratings and stimulus intensity

258 259 260 261 main effect: F 262 F 263 264 F 265 266 267 268 269 270 271 272 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(15)

275 276 277 278 279 280 281 282 4.1 Changes in saliency 283 284 285 286 287 288 289 290 291 292 293 294 295 296 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(16)

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(17)

4.2 Response suppression 320 321 322 323 324 325 326 327 328 329 330 331 332 4.3 Top-down inhibition 333 334 335 336 337 338 339 340 341 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(18)

344 345 346 347 348 349 350 4.4 Brain oscillations 351 352 353 354 355 356 357 358 359 360 361 362 363 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(19)

366 367 368 369 370 371

4.5 Special considerations for gamma oscillations

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(20)

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(21)

412

[1] Babiloni C, Babiloni F, Carducci F, Cincotti F, Rosciarelli F, Arendt-Nielsen L, Chen ACN, Rossini PM. 413

Human brain oscillatory activity phase-locked to painful electrical stimulations: A multi-channel 414

EEG study. Human Brain Mapping 2002;15(2):112-123. 415

[2] Beydoun A, Morrow TJ, Shen JF, Casey KL. Variability of laser-evoked potentials: attention, arousal 416

and lateralized differences. Electroencephalogr Clin Neurophysiol 1993;88(3):173-181. 417

[3] Brodie SM, Villamayor A, Borich MR, Boyd LA. Exploring the specific time course of interhemispheric 418

inhibition between the human primary sensory cortices. J Neurophysiol 2014;112(6):1470-1476. 419

[4] Croft RJ, Williams JD, Haenschel C, Gruzelier JH. Pain perception, hypnosis and 40 Hz oscillations. Int J 420

Psychophysiol 2002;46(2):101-108. 421

[5] D'Amour S, Harris LR. Contralateral tactile masking between forearms. Exp Brain Res 422

2014;232(3):821-826. 423

[6] D'Amour S, Harris LR. Testing Tactile Masking between the Forearms. J Vis Exp 2016(108):e53733. 424

[7] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics 425

including independent component analysis. Journal of neuroscience methods 2004;134(1):9-21. 426

[8] Desbois C, Le Bars D, Villanueva L. Organization of cortical projections to the medullary subnucleus 427

reticularis dorsalis: a retrograde and anterograde tracing study in the rat. The Journal of 428

comparative neurology 1999;410(2):178-196. 429

[9] Franz M, Nickel MM, Ritter A, Miltner WH, Weiss T. Somatosensory spatial attention modulates 430

amplitudes, latencies, and latency jitter of laser-evoked brain potentials. J Neurophysiol 431

2015;113(7):2760-2768. 432

[10] Fries P. Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation. 433

Annual Review of Neuroscience 2009;32(1):209-224. 434

[11] Hauck M, Domnick C, Lorenz J, Gerloff C, Engel AK. Top-down and bottom-up modulation of pain-435

induced oscillations. Front Hum Neurosci 2015;9:375. 436

[12] Hauck M, Lorenz J, Engel AK. Attention to painful stimulation enhances gamma-band activity and 437

synchronization in human sensorimotor cortex. J Neurosci 2007;27(35):9270-9277. 438

[13] Hoechstetter K, Rupp A, Stan ák A, Meinck H-M, Stippich C, Berg P, Scherg M. Interaction of Tactile 439

Input in the Human Primary and Secondary Somatosensory Cortex—A 440

Magnetoencephalographic Study. NeuroImage 2001;14(3):759-767. 441

[14] Hu L, Peng W, Valentini E, Zhang Z, Hu Y. Functional features of nociceptive-induced suppression of 442

alpha band electroencephalographic oscillations. J Pain 2013;14(1):89-99. 443

[15] Hullemann P, Mahn F, Shao YQ, Watfeh R, Wasner G, Binder A, Baron R. Repetitive ipsilateral 444

painful A-delta fibre stimuli induce bilateral LEP amplitude habituation. Eur J Pain 445

2013;17(10):1483-1490. 446

[16] Iannetti GD, Hughes NP, Lee MC, Mouraux A. Determinants of laser-evoked EEG responses: pain 447

perception or stimulus saliency? J Neurophysiol 2008;100(2):815-828. 448

[17] Iannetti GD, Zambreanu L, Tracey I. Similar nociceptive afferents mediate psychophysical and 449

electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. J 450

Physiol 2006;577(Pt 1):235-248. 451

[18] Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal 452

horn convergent neurones in the rat. Pain 1979;6(3):283-304. 453

[19] LeBars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on 454

non-convergent neurones, supraspinal involvement and theoretical implications. Pain 455 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(22)

detection effects on laser evoked potentials. Pain 2002;99(1-2):21-39. 461

[22] Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: a salience detection system 462

for the body. Prog Neurobiol 2011;93(1):111-124. 463

[23] Legrain V, Perchet C, Garcia-Larrea L. Involuntary orienting of attention to nociceptive events: 464

neural and behavioral signatures. J Neurophysiol 2009;102(4):2423-2434. 465

[24] Liberati G, Algoet M, Klocker A, Ferrao Santos S, Ribeiro-Vaz JG, Raftopoulos C, Mouraux A. 466

Habituation of phase-locked local field potentials and gamma-band oscillations recorded from 467

the human insula. Scientific reports 2018;8(1):8265. 468

[25] Madden VJ, Catley MJ, Grabherr L, Mazzola F, Shohag M, Moseley GL. The effect of repeated laser 469

stimuli to ink-marked skin on skin temperature—recommendations for a safe experimental 470

protocol in humans. PeerJ 2016;4. 471

[26] Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. 472

Electroencephalogr Clin Neurophysiol 1993;86(4):283-293. 473

[27] Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. Journal of 474

neuroscience methods 2007;164(1):177-190. 475

[28] Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. 476

Brain structure & function 2010;214(5-6):655-667. 477

[29] Moayedi M, Di Stefano G, Stubbs MT, Djeugam B, Liang M, Iannetti GD. Nociceptive-Evoked 478

Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric 479

Coordinates. eNeuro 2016;3(3). 480

[30] Mouraux A, Iannetti GD. Across-trial averaging of event-related EEG responses and beyond. Magn 481

Reson Imaging 2008;26(7):1041-1054. 482

[31] Mouraux A, Iannetti GD. Nociceptive laser-evoked brain potentials do not reflect nociceptive-483

specific neural activity. J Neurophysiol 2009;101(6):3258-3269. 484

[32] Pang CY, Mueller MM. Competitive interactions in somatosensory cortex for concurrent vibrotactile 485

stimulation between and within hands. Biological psychology 2015;110:91-99. 486

[33] Perchet C, Godinho F, Mazza S, Frot M, Legrain V, Magnin M, Garcia-Larrea L. Evoked potentials to 487

nociceptive stimuli delivered by CO2 or Nd:YAP lasers. Clinical neurophysiology : official journal 488

of the International Federation of Clinical Neurophysiology 2008;119(11):2615-2622. 489

[34] Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: 490

basic principles. Clin Neurophysiol 1999;110(11):1842-1857. 491

[35] Plaghki L, Mouraux A. How do we selectively activate skin nociceptors with a high power infrared 492

laser? Physiology and biophysics of laser stimulation. Neurophysiol Clin 2003;33(6):269-277. 493

[36] Ploner M, Sorg C, Gross J. Brain Rhythms of Pain. Trends Cogn Sci 2017;21(2):100-110. 494

[37] Quevedo AS, Coghill RC. Attentional modulation of spatial integration of pain: evidence for dynamic 495

spatial tuning. JNeurosci 2007;27(43):11635-11640. 496

[38] Raij TT, Forss N, Stancak A, Hari R. Modulation of motor-cortex oscillatory activity by painful Adelta- 497

and C-fiber stimuli. Neuroimage 2004;23(2):569-573. 498

[39] Ronga I, Valentini E, Mouraux A, Iannetti GD. Novelty is not enough: laser-evoked potentials are 499

determined by stimulus saliency, not absolute novelty. J Neurophysiol 2013;109(3):692-701. 500

[40] Saija JD, Andringa TC, Baskent D, Akyurek EG. Temporal integration of consecutive tones into 501 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(23)

[42] Seminowicz DA, Moayedi M. The Dorsolateral Prefrontal Cortex in Acute and Chronic Pain. J Pain 506

2017;18(9):1027-1035. 507

[43] Shimojo M, Kakigi R, Hoshiyama M, Koyama S, Kitamura Y, Watanabe S. Intracerebral interactions 508

caused by bilateral median nerve stimulation in man: a magnetoencephalographic study. 509

Neuroscience Research 1996;24(2):175-181. 510

[44] Tame L, Braun C, Holmes NP, Farne A, Pavani F. Bilateral representations of touch in the primary 511

somatosensory cortex. Cogn Neuropsychol 2016;33(1-2):48-66. 512

[45] Terhaar J, Viola FC, Franz M, Berger S, Bar KJ, Weiss T. Differential processing of laser stimuli by 513

Adelta and C fibres in major depression. Pain 2011;152(8):1796-1802. 514

[46] Tiemann L, May ES, Postorino M, Schulz E, Nickel MM, Bingel U, Ploner M. Differential 515

neurophysiological correlates of bottom-up and top-down modulations of pain. Pain 516

2015;156(2):289-296. 517

[47] Tiemann L, Schulz E, Gross J, Ploner M. Gamma oscillations as a neuronal correlate of the 518

attentional effects of pain. Pain 2010;150(2):302-308. 519

[48] Torta DM, Liang M, Valentini E, Mouraux A, Iannetti GD. Dishabituation of laser-evoked EEG 520

responses: dissecting the effect of certain and uncertain changes in stimulus spatial location. Exp 521

Brain Res 2012;218(3):361-372. 522

[49] Treede RD. Neurophysiological studies of pain pathways in peripheral and central nervous system 523

disorders. JNeurol 2003;250(10):1152-1161. 524

[50] Truini A, Panuccio G, Galeotti F, Maluccio MR, Sartucci F, Avoli M, Cruccu G. Laser-evoked potentials 525

as a tool for assessing the efficacy of antinociceptive drugs. Eur J Pain 2010;14(2):222-225. 526

[51] Valentini E, Betti V, Hu L, Aglioti SM. Hypnotic modulation of pain perception and of brain activity 527

triggered by nociceptive laser stimuli. Cortex 2013;49(2):446-462. 528

[52] Villanueva L, D. LB. The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse 529

noxious inhibitory controls. BiolRes 1995;28(1):113-125. 530

[53] Yarnitsky D, Bouhassira D, Drewes AM, Fillingim RB, Granot M, Hansson P, Landau R, Marchand S, 531

Matre D, Nilsen KB, Stubhaug A, Treede RD, Wilder-Smith OH. Recommendations on practice of 532

conditioned pain modulation (CPM) testing. European journal of pain 2015;19(6):805-806. 533

[54] Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD. Gamma-band oscillations in the primary 534

somatosensory cortex--a direct and obligatory correlate of subjective pain intensity. J Neurosci 535 2012;32(22):7429-7438. 536 537 538 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(24)

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(25)

562 563 564 565 566 567 568 569 570 571 t 572 573 574 575 576 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(26)

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

(27)
(28)
(29)
(30)
(31)

Références

Documents relatifs

Early biogeochemical models computed fl uxes in the global carbonate-silicate cycle to explore control of global surface temperature and atmospheric CO 2 concentration over the last

Haas, “A general framework for performance analysis of space shift keying (SSK) modulation for MISO correlated Nakagami–m fading channels”, IEEE Trans. Marichev, Integrals

This section presents the method used to integrate the spatial operations (unary, binary, 2D and 3D operations) with the help of Horn clauses (SWRL language)

We find that the methodologies assessing the degree of market integration have evolved from simple static empirical works, based solely on price data analyses, to more complex

The reviewed studies address a wide range of integration challenges, starting with techniques to analyse where fi shermen actually fi sh, assessing the drivers for fi shermen's

Information Source to Local Ontology Mapping The local ontologies cor- responding to each database are built using two languages, namely the Resource Description Framework (RDF) and

Nano-XPS scans indeed suggest a chemical potential shift of 0.1eV between graphene areas in contact with either silica or tungsten oxide, which is further confirmed by

The reverse is not true, i.e the dispersion of low-skilled does not lead to the dispersion of high-skilled, because the agglomeration rent of productive firms is higher and so, even