• Aucun résultat trouvé

INTERPRETATION OF GRAIN BOUNDARY NONEQUILIBRIUM IN TERMS OF GEOMETRICALLY NECESSARY AND STATISTICALLY STORED DISLOCATIONS

N/A
N/A
Protected

Academic year: 2021

Partager "INTERPRETATION OF GRAIN BOUNDARY NONEQUILIBRIUM IN TERMS OF GEOMETRICALLY NECESSARY AND STATISTICALLY STORED DISLOCATIONS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00230295

https://hal.archives-ouvertes.fr/jpa-00230295

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTERPRETATION OF GRAIN BOUNDARY NONEQUILIBRIUM IN TERMS OF

GEOMETRICALLY NECESSARY AND STATISTICALLY STORED DISLOCATIONS

W. Lojkowski, J. Wyrzykowski, J. Kwieci�ski

To cite this version:

W. Lojkowski, J. Wyrzykowski, J. Kwieci�ski. INTERPRETATION OF GRAIN BOUNDARY NONEQUILIBRIUM IN TERMS OF GEOMETRICALLY NECESSARY AND STATISTICALLY STORED DISLOCATIONS. Journal de Physique Colloques, 1990, 51 (C1), pp.C1-239-C1-244.

�10.1051/jphyscol:1990137�. �jpa-00230295�

(2)

COLLOQUE DE PHYSIQUE

Colloque Cl, suppl6ment au nol, Tome 51, janvier 1990

INTERPRETATION OF GRAIN BOUNDARY NONEQUILIBRIUM IN TERMS OF GEOMETRICALLY NECESSARY AND STATISTICALLY STORED DISLOCATIONS

W. LOJKOWSKI , J

.

WYRZYKOWSKI" and J. KWIECI~SKI*

UNIPRESS, High Pressure Research Centre, Polish Academy of Sciences,

~ o k o d o w s k a 29, PL-01-142 Warsaw, Poland

Institute of Materials Science and Engineering, Warsaw University of Technology, Narbutta 85, Warsaw, Poland

BBSTR9C;L

-

I t is proposed that t h e energy of grain boundaries in the s t a t e of non-equilibrium caused by trapped lattice dislocations ( T L D s ) c a n be calculated based o n the theory of geometrically necessary d i s l o c a t i o n s of Ashby. For that purpose products of T L D s dissociation c a n be divided into t w o groups: statistically stored ( S S 6 B D s ) and geometrically necessary ( G N G B D s ) g r a i n boundary dislocations. Recovery of S S G B D s leads t o the relaxation of s h o r t range s t r a i n fields c l o s e to g r a i n boundaries. The energy of S S G B D s is only a small fraction of t h e energy of non-equilibrium g r a i n boundaries. Most of t h i s energy is related t o the long range s t r a i n f i e l d s of GNGBDs. G r a i n boundaries which a b s o r b e d high densities of T L D s and therefore having a large number of G N G B D s a r e under a high driving force for s l i d i n g and migration.

T h e purpose of t h e present paper is to present s o m e recent progress in understanding t h e g r a i n boundary ( G B ) nonequilibrium induced by s p r e a d i n g of Trapped L a t t i c e D i s l o c a t i o n s CTLDs) ( 1 - 7 ) in c o n n e c t i o n with dynamical recovery mechanism in polycrystals

( 8 ) . The T L D spreading is understood either a s c o n t i n u o u s

spreading of its c o r e parallel t o the GB plane ( 9 - 1 2 ) or splitting of t h e T L D s into Extrinsic G r a i n Boundary D i s l o c a t i o n s CEGBDs) moving apart under mutual repulsion < 1 3 , 1 4 1 . G B s will be

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990137

(3)

Cl-240 COLLOQUE DE PHYSIQUE

considered a s "active" i f at the g i v e n temperature the T L D s a r e a b l e t o spread or dissociate. Hence, t h e a c t i v e bcrundaries a r e characterised by a high diffusion coefficient (18). T h e other boundaries, in which T L D s do not spread or dissociate in a measurable time, will be called 'epassive". T h e problem of calculating the energy of a G B in the nonequilibrium a t a t e c a u s e d by trapping of t h e T L D s or their dissociation. will be solved by combining the Grabski ( 1 ) model of recovery of d i s l o c a t i o n s a t G B s during superplastic deformation and the theory of geometrically necessary d i s l o c a t i o n s of Ashby ( 1 5 ) . In that respect E G B O s will be divided into t w o groups: S S G B D s

-

Statistically Stored GB Dislocations and G N G B D s

-

Geometrically Necessary G B Dislocations.

T h e a d v a n t a g e of the proposed model is that t h e energy of nonequilibrium G B s c a n be calculated. Its application to real experimental s i t u a t i o n s will be illustrated for the c a s e o f s t r a i n induced G B migration ( 7 ) .

2

-

AI OBSFRVATION OF G 8 W N F Q U I I f BR1 W m

A comprehensive description of the experimental procedure is

given in ref . ( 7 > . Aluminium s p e c i m e n s of 9 9 . 9 9 % purity and g r a i n s i z e 5 4 pm have been annealed at 6 B 0 K for 1 hour and divided into two groups. S p e c i m e n s A have been deformed at room temperature by

2% and subsequent1 y annealed a t 58BK for 1 hour. Optical

microscopic investigations have s h o w n that only a few g r a i n boundaries in s p e c i m e n s A could migrate CFig.1a). T h e s p e c i m e n s B have been deformed by 2% at 5 8 0 K . In these s p e c i m e n s almost all G B s h a v e migrated. T h e average migration distance h a s been 14 p m <Fig.lb).

Fig.1. S t r a i n induced GB migration in Al. a: Only few G B migrated i f deformation preceded annealing. b: Host G B migrated i f deformation w a s a t 588K. Note shrinking of a g r a i n like in fig.2.

For both types of s p e c i m e n s the fraction of "active" G B s w a s investigated by Transmission Electron Microscopy (TEM). It h a s been found that 4% of t h e G B s have been a c t i v e at room temperature f o r spreading time 1 hour while for spreading times of 18 min. at 588K 9 6 % of G B s h a v e been a c t i v e ,

(4)

It a p p e a r s t h a t in s p e c i m e n s w h e r e o n l y f e w b o u n d a r i e s m i g r a t e d o n l y f e w o n e s a r e a c t i v e in s p r e a d i n g of T L D s . H e n c e s p r e a d i n g a n d e x t e n t of g r a i n g r o w t h may b e i n t e r r e l a t e d . F o r .specimens A, o n e may c o m e t o t h e c o n c l u s i o n t h a t o n l y t h o s e b o u n d a r i e s m i g r a t e d d u r i n g a n n e a l i n g a t 5 8 8 K w h i c h w e r e " a c t i v e " a t 293 K. F o l l o w i n g V a l i e v e t a l . C4,5), t h e i n t e r p r e t a t i o n w o u l d b e t h a t t h e s p r e a d i n g t r a n s f o r m s G B s t r u c t u r e i n t o a m o r e m o b i l e o n e , s o t h a t a f t e r s p r e a d i n g G B s m i g r a t e f a s t e r . However. t h i s i n t e r p r e t a t i o n is not s a t i s f a c t o r y in t h e p r e s e n t c a s e . T h e r e a s o n is t h a t in s p e c i m e n s A a f t e r a n n e a l i n g a t 5 8 8 K s p r e a d i n g m u s t h a v e o c c u r r e d o n a l l G B s . T h i s i s b e c a u s e a f t e r 2% d e f o r m a t i o n all G B s h a v e t r a p p e d a d e n s i t y of a t least

1e7

1/m C16,17). T h o u g h o n 96% of G B s t h e s e d i s l o c a t i o n s a r e e x p e c t e d t o s p r e a d o u t d u r i n g a n n e a l i n g a t 5 0 8 K , o n l y f e w G B s h a v e m i g r a t e d , T h e r e f o r e , it h a s b e e n p r o p o s e d t h a t for e n h a n c e d G B m o b i l i t y it i s n e c e s s a r y t h a t t h e T L D s s p r e a d rlurinq p l a s t i c d e f o r m a t i o n a n d n o t p r i o r t o it.

It will b e f u r t h e r s h o w n t h a t it is not t h e c h a n g e of G B s t r u c t u r e c a u s e d by s p r e a d i n g o f T L D s t h a t is c r u c i a l for t h e i n t e r p r e t a t i o n of s t r a i n i n d u c e d G B m i g r a t i o n . T h e e x t e n d of G B m i g r a t i o n d e p e n d s o n t h e level of s t r a i n in t h e p o l y c r y e t a l a n d o n t h e d e g r e e of r e l a x a t i o n of t h a t s t r a i n t h a t is p o s s i b l e o w i n g t o G B s l i d i n g a n d m i g r a t i o n . It will b e s h o w n t h a t t h e f r a c t i o n of s t r a i n e n e r g y t h a t c a n u n d e r g o r e l a x a t i o n by G B s l i d i n g a n d m i g r a t i o n d e p e n d s o n t h e d e n s i t y of T L D s a b s o r b e d . T h e a b o v e i n t e r p r e t a t i o n is b a s e d o n t h e G r a b s k i model of d y n a m i c a l r e c o v e r y of d i s l o c a t i o n s a t G B s d u r i n g s u p e r p l a s t i c d e f o r m a t i o n ( l , 7 1 . I n t h e c o u r s e of d e f o r m a t i o n , a h i g h e r d e n s i t y of T L D s c a n b e a b s o r b e d by t h e a c t i v e G B s t h a n by t h e p a s s i v e o n e s . T h i s is b e c a u s e T L D s a c c u m u l a t e d o n p a s s i v e G B s g e n e r a t e a s t r e s s f i e l d b a r r i e r for d i s l o c a t i o n s a p p r o a c h i n g t h e GBs. O n a c t i v e GBs, h o w e v e r , t h i s b a r r i e r may b e r e l a x e d o w i n g t o t h e d i s s o c i a t i o n of T L D s . A d y n a m i c a l e q u i l i b r i u m may b e a c h i e v e d b e t w e e n t h e f l u x of d i s l o c a t i o n s a p p r o a c h i n g t h e G B s t o i n c r e a s e of t h i s b a r r i e r a n d t h e r e c o v e r y p r o c e s s e s r e s p o n s i b l e t o r e l a x t h i s s t r a i n f i e l d . H e n c e , t h e d e n s i t y of T L D s a b s o r b e d by t h e a c t i v e G B 5 is h i g h e r t h a n t h e d e n s i t y a b s o r b e d by p a s s i v e o n e s . F o l l o w i n g G r a b s k i (l), t h e r e c o v e r y m e c h a n i s m i s p r o p o s e d t o i n c l u d e r e l a x a t i o n of pile- u p s f o r m e d by E O B D s a t g r a i n b o u n d a r y t r i p l e j u n c t i o n s . S u c h pile-ups may lead t o i n c o m p a t i b i l i t y s t r a i n s w h i c h a s well r e p e a l l a t t i c e d i s l o c a t i o n s from g r a i n b o u n d a r i e s ( f i g . 3 ) . A s i l l u s t r a t e d in f i g s . 2 a n d 3, G B m i g r a t i o n a n d s l i d i n g may c o n t r i b u t e t o r e l a x a t i o n of s u c h s t r a i n s . I n t h e p r e s e n t p a p e r , a q u a n t i t a t i v e a p p r o a c h t o t h e model of G r a b s k i C l ) is d e v e l o p e d .

3

-

G B NONFQUIL lBR IUM C A U S F D R Y T1 Ds

G B n o n e q u i l i b r i u m will be d e f i n e d h e r e a s a s t a t e of t h e G B w h e n i t s e n e r g y is h i g h e r t h a n t h e m i n i m u m e n e r g y posssible for t h e g i v e n c r y s t a l l o g r a p h i c p a r a m e t e r s . F i g , 4 i l l u s t r a t e s t h e e n e r g e t i c s t a t e of a n o n e q u i l i b r i u m G B , t h e t r a n s f o r m a t i o n l e a d i n g t o e q u i l i b r i u m a n d a t r a n s f o r m a t i o n of t h e G B s t r u c t u r e t a k i n g p l a c e in e q u i l i b r i u m . I n s e t s i l l u s t r a t e w h a t k i n d of r e a c t i o n s b e t w e e n G B d i s l o c a t i o n s w o u l d lead t o t h e a b o v e c h a n g e s of G B e n e r g y i n t h e e n e r g y v s . m i s o r i e n t a t i o n d i a g r a m , a s s u m i n g t h a t long r a n g e s t r a i n f i e l d s o f G B d i s l o c a t i o n s a r e n e g l e c t e d . T h e p a t h a-b c o r r e s p o n d s t o t h e r e c o v e r y of S S G B D s w h i l e t h e p a t h b-c r e p r e s e n t s t h e r e c o v e r y of G N G B D s . R e c o v e r y of G N G B D s is e q u i v a l e n t t o r e l a x a t i o n of i n c o m p a t i b i l i t y s t r a i n s of a b o v e

(5)

COLLOQUE DE PHYSIQUE

F i g . 2 . a : A g r a i n w h e r e a h i g h d e n s i t y o f g e o m e t r i c a l l y d ) n e c e s s a r y d i s l o c a t i o n s ( G N G B D s )

C) is p r e s e n t a t g r a i n b o u n d a r i e s ,

b : T h a n k s t o G B m i g r a t i o n t h e

. /

v G N G B D s f r o m o p p o s i t e g r a i n b o u n d a r i e s c a n m u t u a l l y a n n i h i l a t e m o v i n g by p u r e g l i d e .

F i g . 3 . a : D i s l o c a t i o n s r u n i n t o t h e G B a n d T L D s a r e c r e a t e d , b:

T L D s d i s s o c i a t e a n d m a k e p l a c e for n e w d i s l o c a t i o n s . c : T h e c a p a b i l i t y of t h e G B for a b s o r b i n g new d i s l o c a t i o n s is e x h a u s t e d . d : T h a n k s t o g r a i n b o u n d a r y m i g r a t i o n t h e s u r p l u s d e n s i t y of g r a i n b o u n d a r y d i s l o c a t i o n s c a n m o v e a w a y a t r e l a t i v e l y low t e m p e r a t u r e s b Y p u r e g l i d e and r e a c t w i t h d i s l o c a t i o n s o n o t h e r g r a i n b o u n d a r i e s . T h e g r a i n b o u n d a r y is a g a i n c a p a b l e of a b s o r b i n g

l a t t i c e d i s l o c a t i o n s .

F i g . 4 . T h e G B e n e r g y v.s m i s o r i e n t a t i o n r e l a t i o n s h i p . E n e r g y of long r a n g e s t r a i n f i e l d s o f G B d i s l o c a t i o n s w a s n e g l e c t e d , T h e i n s e t s d i s p l a y s c h e m a t i c a l l y t h e transf or- m a t i o n s of G B s t r u c t u r e . T h e p o i n t a c o r r e s p o n d s t o G B non- e q u i l i b r i u m . T h e t r a j e c t o r y a + b c o r r e s p o n d s t o m u t u a l a n n i h i - lation of d i s l o c a t i o n s w i t h a n t i p a r a l l e l B u r g e r s v e c t o r s I S S G B D s )

.

T h e t r a j e c t o r y b+c c or r e s p o n d t o r e c o v e r y of g e o m e t r i c a l l y n e c e s s a r y g r a i n b o u n d a r y d i s l o c a t i o n s ( G N 6 B D s ) by p r o c e s s e s s i m i l a r t o p r e s e n t e d in f i g s . 2 a n d 3.

'\\

>

d

z z

0 m

2 --

l + L M . I S - OR1 ENTATION ANGLE 4 -

a

(3

-

(3 a

W Z W

>

a

c

(6)

m e n t i o n e d p i l e - u p s of E G B D s a t G B t r i p l e j u n c t i o n s . T r a n s f o r m a t i o n s of a r r a y s of G B d i s l o c a t i o n s s h o w n in i n s e t s in F i g s . 4 h a v e b e e n f r e q u e n t l y o b s e r v e d by T E M < 1 3 , 1 4 , 1 9 > .

T L D s may g i v e t h e f o l l o w i n g c o n t r i b u t i o n t o G B e n e r g y : e n e r g y of T L D c o r e s , e n e r g y of t h e i r s h o r t r a n g e s t r a i n f i e l d s a n d e n e r g y of t h e long r a n g e s t r a i n f i e l d s . T h e s h o r t r a n g e s t r a i n f i e l d s a r e d e f i n e d a s s t r a i n f i e l d s a c t i n g o v e r d i s t a n c e s s m a l l e r t h a n t h e s p a c i n g of d i s l o c a t i o n s . T h e c o r e e n e r g y and s h o r t r a n g e s t r a i n f i e l d s e n e r g y i s m a x i m u m b e f o r e T L D s d i s s o c i a t i o n t a k e s p l a c e . T h e s u m of t h e s e t w o f a c t o r s c o r r e s p o n d s t o t h e l e n g t h a-b in f i g . 4 a n d c a n be e x p r e s s e d as:

w h e r e AyQe

-

i n c r e a s e of t h e e n e r g y of t h e G B c o r e , p T L D

-

p l a n a r d e n s i t y of T L D s , G

-

s h e a r m o d u l u s , b

-

T L D B u r g e r s v e c t o r , S,

-

T L D c o r e w i d t h b e f o r e s p r e a d i n g a n d R is g r a i n s i r e . F o r t y p i c a l v a l u e s of p,,, a f t e r 2 % d e f o r m a t i o n , i.e, 1 0 7 m-' 1 6 , 1 7 3 t h e m a x i m u m p o s s i b l e e x c e s s e n e r g y of G B s c a u s e d by T L D s , n e g l e c t i n g their long r a n g e s t r a i n f i e l d s , is of t h e o r d e r of 10% of t h e a v e r a g e G B e n e r g y . T h e m a g n i t u d e of t h i s e n e r g y r e f l e c t s t h e e x t e n t of p o s s i b l e c h a n g e s of G B p r o p e r t i e s c a u s e d by t h e p r e s e n c e of T L D s or t h e i r d i s s o c i a t i o n p r o d u c t s . U s i n g t h e B o r i s o v r e l a t i o n s h i p f o r t h e c o r r e l a t i o n b e t w e e n G B e n e r g y a n d d i f f u s i o n ( s e e for i n s t a n c e t h e work of G u p t a : 18), it c a n b e s h o w n t h a t a 18% i n c r e a s e of G B e n e r g y c a n c a u s e a n i n c r e a s e of G B d i f f u s i o n c o e f f i c i e n t by a f a c t o r 3. O n l y s h o r t r a n g e s t r a i n f i e l d s h a v e b e e n t a k e n i n t o a c c o u n t i n t h a t c a l c u l a t i o n b e c a u s e t h e long r a n g e s t r a i n f i e l d s a r e of m u c h s m a l l e r a m p l i t u d e t h a n t h e s h o r t r a n g e o n e s a n d c a n n o t a f f e c t s i g n i f i c a n t l y t h e G B s t r u c t u r e o r c a u s e a n i n c r e a s e o f v a c a n c y c o n c e n t r a t i o n in G B s .

F u r t h e r , it may b e s h o w n t h a t t h e l o n g r a n g e s t r a i n f i e l d s a r e c o n n e c t e d w i t h m u c h h i g h e r e n e r g i e s t h a n t h e s h o r t r a n g e o n e s . T h e e n e r g y of t h e s e s t r a i n f i e l d s d e p e n d s o n t h e d e n s i t y of G N G B D s . t o j k o w s k i e t a l . ( 7 ) , b a s e d o n t h e t h e o r y of g e o m e t r i c a l l y n e c e s s a r y d i s l o c a t i o n s of A s h b y ( 1 5 3 , h a v e d e r i v e d t h e f o l l o w i n g e q u a t i o n s :

1 . F o r t h e d e n s i t y cif G N G B D s :

w h e r e : E

-

p l a s t i c s t r a i n , n

-

r a t i o of t h e T L D B u r g e r s v e c t o r t o t h e G N G B D B u r g e r s v e c t o r a n d B

>

8 . 5

-

f r a c t i o n of geometr.ically n e c e s s a r y d i s l o c a t i a n s w h i c h a r e s i t u a t e d a t G B s , C

=

18. For n=l a n d E - 1 % . pQNQeD=10-6m-2, i.e, a b o u t 10% of t h e t o t a l d e n s i t y of T L O s . T h i s v a l u e i s r e a s o n a b l e .

2 . F o r t h e e n e r g y of long r a n g e s t r a i n f i e l d s of G N G B D s :

In a l u m i n i u m , i f E = 1 or 2%, R = 20 pm, A Y L E = 1 4 8 - 5 7 0 m J / m 2 . T h i s i s a b o u t t h e a v e r a g e G B e n e r g y .

3. F o r t h e r e p e l l i n g f o r c e b e t w e e n G N G B D s a n d l a t t i c e d i s l o c a t i o n s :

If E = 2%, Q R E P ~ 2 5 M P a s w h i c h is c l o s e t o t h e y i e l d s t r e s s .

(7)

Cl-244 COLLOQUE DE PHYSIQUE

4 . B e s i d e s , t h e e q u a t i o n for t h e r a t e of r e c o v e r y of T L D s is:

w h e r e -c is t h e e f f e c t i v e T L D r e l a x a t i o n t i n e , i n c l u d i n g all t h e p o s s i b l e r e l a x a t i o n m e c h a n i s m s , t is t h e d e f o r m a t i o n r a t e a n d A i s t h e t i m e in w h i c h t h e m a x i m u m p o s s i b l e d e n s i t y of d i s l o c a t i o n s c l o s e t o t h e G B w o u l d b e a c h i e v e d i f n o r e l a x a t i o n t a k e s p l a c e . It f o l l o w s f r o m e q . C 5 ) t h a t t h e s m a l l e r t h e d e n s i t y of T L D s a t G B s for c o n s t a n t d e f o r m a t i o n r a t e , t h e m o r e t h e n u m b e r of T L D s a b s o r b e d by G B s . O n t h e o t h e r h a n d , t h e m o r e t h e n u m b e r of a b s o r b e d T L D s , t h e larger is t h e d e n s i t y of G N G B D s a n d h i g h e r a r e t h e i n c o m p a t i b i l i t y s t r a i n s . A s a c o n s e q u e n c e , G B s a c t i v e in s p r e a d i n g h a v e a h i g h e r d r i v i n g f o r c e for s l i d i n g a n d m i g r a t i o n . T h u s , a s i m p l e e x p l a n a t i o n for t h e o f t e n e n c o u n t e r e d p h e n o m e n o n of h i g h m o b i l i t y of t h e G B s d u r i n g h i g h t e m p e r a t u r e d e f o r m a t i o n ( 2 8 ) w a s p r o p o s e d . H e n c e , i n o r d e r t o e x p l a i n s t r a i n i n d u c e d G 8 m i g r a t i o n a n d s l i d i n g , t h e r e is n o n e e d t o i n t r o d u c e n e w c o n c e p t s l i k e h i g h m o b i l i t y , n o n e q u i l i b r i u m G B s t r u c t u r e s c a u s e d by t h e s p r e a d i n g of T L D s l i k e t h e s e p r o p o s e d by V a l i e v et a 1 . < 4 , 5 1 .

1 . B o u n d a r i e s w h e r e m e c h a n i s m s of T L D r e c o v e r y a r e a c t i v e a r e a b l e t o a b s o r b h i g h e r d e n s i t i e s of TLDs t h a n t h e p a s s i v e o n e s . A b s o r p t i o n of T L D s a n d t h e i r d i s s o c i a t i o n c a u s e s i n c o m p a t i b i l i t y s t r a i n s e n h a n c i n g G B m i g r a t i o n a n d s l i d i n g . In o r d e r t o e x p l a i n s t r a i n i n d u c e d G B m i g r a t i o n t h e r e is n o n e e d t o u s e t h e c o n c e p t of s p r e a d i n g i n d u c e d G B n o n e q u i l i b r i u m s t r u c t u r e s .

2 . T h e t h e o r y of g e o m e t r i c a l l y n e c e s s a r y d i s l o c a t i o n s p r o v i d e s a useful m a t h e m a t i c a l a p p r o a c h t o t h e q u e s t i o n of G B n o n e q u i l i b r i u m c a u s e d by i n t e r a c t i o n of G B s a n d d i s l o c a t i o n s .

RrFERENCES

1 ) G r a b s k i M.W., " N a d p l a s t y c z n o S t S t r u k t u r a l n a Metalig', S l o s k e d i t i o n s , K a t o w i c e , 1 9 7 3 ( i n P o l i s h )

2) V a r i n R.A., p h y s . s t a t , s o l . (a), 52_ 11979) 347

3) V a r i n R.A., K u r z y d $ o w s k i K.J., Z . f u r M e t a l l k u n d e , U ( 1 9 8 3 ) 177 4) V a l i e v R.Z., G e r t s m a n n V.Yu.. K a j b y s h r v O.A.,

phys.stat.sol.(a), 9L (1986) l 1

5 ) V a l i e v R.Z., G e r t s m a n n V . Y u , K a j b y s h e v O . A . , S c r i p t a M e t .

,LL

( 1 9 8 3 ) 8 5 3

6) G r a b s k i M.W.. V a l i e v R . Z . , W y r z y k o w s k i J . W . , C o j k o w s k i W., R e s Mechanics L e t t e r s ,

L

(1981) 489

7 ) L o j k o w s k i W., W y r z y k o w s k i J.W., Kwiecifiski J . , A r c h i v e s of M e t a l l u r g y , in p r e s s

8 1 G r a b s k i M.W., J . d e P h y s i q u e 46 ( 1 9 8 5 ) C4-567

9) J o h a n n e s s o n T , , T h o l e n A , , M e t . S c i . J . , b ( 1 9 7 2 ) 189 18) P u m p h r e y P.H.. G l e i t e r H.. P h i l , H a g . , Z 2 ( 1 9 7 5 ) 881 1 1 1 L o j k o w s k i W., G r a b s k i M.W., S c r i p t a Met. (1979) 511 1 2 ) C o j k o w s k i W., K i r c h n e r H . O . K , G r a b s k i M.W.,

S c r i p t a Met.= ( 1 9 7 7 ) 1127

1 3 ) Clark W.A.T.. S m i t h D.A., J . M a t . S c i . , M (1979) 776 1 4 ) H o w e l l P.R.. J o n e s A . R . , H o r s w e l l A., R a l p h B.,

Phil.Mag. , S (1976) 21

1 5 ) Ashby M , F . , Phil.Mag.,ill_ (1978) 399

16) L i n T . L . , M c L e a n D., M e t . S c i . J . 2 (1968) 188

17) V a r i n R.A., T a n g r i K . , , M e t , T r a n s . & , l 2 C19811 1 8 5 9

1s)

G u p t a D . , P h i l . M a g . , 33 (1976) 189

19) C a j k o w s k i W., P r z e t a k i e w i c r W . , G r a b s k i M.W., H e t a l o z n a w s t w o i O b r d b k a C i e p l n a , 42 ( 1 9 7 9 ) 17 281 Clark H.A., A l d e n T.H., A c t a Met.;LL ( 1 9 7 3 ) 1 1 9 5

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to