• Aucun résultat trouvé

APPLICATIONS OF a-Si FIELD EFFECT TRANSISTORS IN LIQUID CRYSTAL DISPLAYS AND IN INTEGRATED LOGIC CIRCUITS

N/A
N/A
Protected

Academic year: 2021

Partager "APPLICATIONS OF a-Si FIELD EFFECT TRANSISTORS IN LIQUID CRYSTAL DISPLAYS AND IN INTEGRATED LOGIC CIRCUITS"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00220947

https://hal.archives-ouvertes.fr/jpa-00220947

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

APPLICATIONS OF a-Si FIELD EFFECT

TRANSISTORS IN LIQUID CRYSTAL DISPLAYS AND IN INTEGRATED LOGIC CIRCUITS

P. Le Comber, A. Snell, K. Mackenzie, W. Spear

To cite this version:

P. Le Comber, A. Snell, K. Mackenzie, W. Spear. APPLICATIONS OF a-Si FIELD EFFECT TRAN-

SISTORS IN LIQUID CRYSTAL DISPLAYS AND IN INTEGRATED LOGIC CIRCUITS. Journal

de Physique Colloques, 1981, 42 (C4), pp.C4-423-C4-432. �10.1051/jphyscol:1981490�. �jpa-00220947�

(2)

JOURNAL DE PHYSIQUE

CoZloque C4, suppZ6ment au n0lO, Tome 42, octobre 1981 page c4-4.23

APPLICATIONS OF a-Si FIELD EFFECT TRANSISTORS IN LIQUID CRYSTAL DISPLAYS AND IN INTEGRATED LOGIC CIRCUITS

P.G. Le Comber, A.J. S n e l l , K.D. Mackenzie and W.E. Spear

Carnegie Laboratory o f Physics, t h e University, Dundee, DDl 4HN, Scotland, U.K.

A b s t r a c t . - This paper reviews t h e development and a p p l i c a t i o n s of a-Si i n s u l a t e d g a t e f i e l d e f f e c t t r a n s i s t o r s which have become a s u b j e c t o f much c u r r e n t i n t e r e s t . The p h y s i c a l p r i n c i p l e s underlying t h e o p e r a t i o n of t h e d e v i c e s , t h e i r f a b r i c a t i o n and t h e i r s t a t i c and dynamic c h a r a c t e r i s t i c s a r e d i s c u s s e d i n t h e f i r s t p a r t of t h e paper. Recent work on t h e a p p l i c a t i o n of t h e s e d e v i c e s i n a d d r e s s a b l e l i q u i d c r y s t a l d i s p l a y p a n e l s , i n b a s i c i n t e g r a t e d l o g i c c i r c u i t s and i n a d d r e s s a b l e image s e n s i n g a r r a y s i s t h e n reviewed i n some d e t a i l .

1. I n t r o d u c t i o n

I n r e c e n t y e a r s t h e r e has been a r a p i d l y growing i n t e r e s t i n t h e p r o p e r t i e s of amorphous (a-) S i prepared by t h e glow d i s c h a r g e p r o c e s s , p a r t i c u l a r l y w i t h a view t o i t s a p p l i c a t i o n s i n l a r g e - a r e a t h i n f i l m d e v i c e s . Many groups throughout t h e world a r e a c t i v e l y involved i n t h i s f i e l d and, a s can b e seen from t h e papers pres-

ented a t t h i s Conference, t h e range of p o s s i b l e a p p l i c a t i o n s of t h i s m a t e r i a l i s a l s o i n c r e a s i n g . Ever s i n c e t h e f i r s t r e p o r t (1,2) o f t h e doping of a-Si t h e r e has been c o n s i d e r a b l e i n t e r e s t i n i t s u s e a s a s o l a r c e l l m a t e r i a l ( 3 ) . This a p p l i c -

a t i o n probably p k e s e n t s t h e b i g g e s t c h a l l e n g e t o t h e m a t e r i a l p r e s e n t l y a v a i l a b l e b u t , because of i t s c o n s i d e r a b l e p o t e n t i a l , a t t r a c t s a g r e a t d e a l of investment i n both time and money. This a s p e c t i s d e a l t w i t h i n a number of papers a t t h i s conference and we s h a l l not t h e r e f o r e go i n t o f u r t h e r d e t a i l s h e r e .

One of t h e most a t t r a c t i v e f e a t u r e s of t h e glow d i s c h a r g e t e c h n i q u e i s i t s extreme v e r s a t i l i t y . For example, t h e b a r r i e r p r o f i l e of t h e a-Si j u n c t i o n can b e c o n t r o l l e d continuously over wide l i m i t s d u r i n g d e p o s i t i o n from t h e gas phase. By a s u i t a b l e c h o i c e of t h e doping p r o f i l e , a-Si d i o d e s have been prepared (4,5) t h a t p a s s c u r r e n t s up t o 40A cm-2 i n t h e forward d i r e c t i o n w i t h r e c t i f i c a t i o n r a t i o s up t o

lo5.

These r e s u l t s a r e encouraging and suggest t h a t a-Si d i o d e s may f i n d a p p l i c - a t i o n s i n c a s e s where some r e l a x a t i o n i n e l e c t r i c a l c h a r a c t e r i s t i c s from t h o s e of c r y s t a l l i n e j u n c t i o n s w i l l b e a c c e p t a b l e .

The v e r s a t i l i t y of t h e glow d i s c h a r g e p r o c e s s i s f u r t h e r i l l u s t r a t e d by t h e work of Shimizu e t a 1 (6,7) who demonstrated t h e u s e of a-Si a s t h e photo-receptor i n electrophotography. This a p p l i c a t i o n r e q u i r e s a m a t e r i a l w i t h a h i g h e l e c t r i c a l r e s i s t i v i t y and a h i g h p h o t o s e n s i t i v i t y . I n g e n e r a l , a-Si i s extremely photo-

conductive (8,9) and meets t h e second of t h e s e requirements. To o b t a i n a s u f f i c i e n t - l y h i g h r e s i s t a n c e f o r r e a s o n a b l e charge r e t e n t i o n a number of d i f f e r e n t approaches have been t r i e d , such a s blocking l a y e r s of doped a-Si (7,10,11) o r t h e a d d i t i o n of oxygen t o t h e gas plasma (12). The requirements f o r t h e p r o d u c t i o n of a v i d i c o n tube a r e s i m i l a r t o t h o s e of electrophotography. r h e f i r s t a-Si v i d i c o n was r e p o r t - ed by Imamura e t a 1 (13) who prepared t h e d e v i c e by s p u t t e r i n g i n an A r / H 2 gas mix- t u r e which produced a m a t e r i a l of s u f f i c i e n t l y l a r g e r e s i s t a n c e . The a l t e r n a t i v e approach of i n c o r p o r a t i n g a d i o d e - l i k e b l o c k i n g l a y e r (prepared by t h e glow d i s c h a r g e technique) was used by Shimizu e t a 1 ( 1 4 ) . I t i s claimed (13) t h a t t h e a-Si v i d i c o n h a s many advantages over conventional pickup t u b e s . F u r t h e r d e t a i l s on t h e p r e s e n t s t a g e of t h e development of a-Si f o r b o t h electrophotography and v i d i c o n tubes w i l l b e r e p o r t e d a t t h i s conference by D r . Shimizu.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981490

(3)

JOURNAL DE PHYSIQUE

Another advantage of t h e glow d i s c h a r g e technique i s t h a t i t can b e used t o d e p o s i t s e q u e n t i a l l y t h i n l a y e r s of d i f f e r e n t m a t e r i a l s , simply by changing t h e gas composition. This procedure has found i n c r e a s i n g use i n t h e production of t h i n f i l m f i e l d e f f e c t t r a n s i s t o r s ( t o be r e f e r r e d t o a s FETs i n t h e f o l l o w i n g ) , c o n s i s t - i n g of an amorphous s i l i c o n n i t r i d e g a t e d i e l e c t r i c and an a-Si a c t i v e l a y e r . The o r i g i n of t h i s device can be t r a c e d back t o 1972 when Spear and Le Comber (15) employed f i e l d e f f e c t s t r u c t u r e s t o i n v e s t i g a t e t h e d e n s i t y of s t a t e d i s t r i b u t i o n i n glow d i s c h a r g e a-Si. The subsequent use of s i l i c o n n i t r i d e a s t h e g a t e i n s u l a t o r (16) made i t p o s s i b l e t o extend t h e measurements of t h e d e n s i t y of s t a t e s over a wider range of energy. These experiments demonstrated t h a t a-Si h a s a remarkably low d e n s i t y of gap s t a t e s , and t h a t i t s c o n d u c t i v i t y can b e i n c r e a s e d by o r d e r s of magnitude w i t h t h e a p p l i c a t i o n of modest g a t e v o l t a g e s . The o b j e c t i v e of t h i s paper i s t o review t h e p o s s i b l e a p p l i c a t i o n s of t h e s e a-Si FETs. The p h y s i c a l p r i n c i p l e s underlying t h e o p e r a t i o n of t h e d e v i c e s , t h e i r f a b r i c a t i o n and t h e i r s t a t i c and dynamic c h a r a c t e r i s t i c s w i l l b e d i s c u s s e d i n some d e t a i l i n s e c t i o n 2.

The r e s u l t s o b t a i n e d by v a r i o u s groups w i l l a l s o b e compared. I n s e c t i o n 3 we s h a l l review t h e a p p l i c a t i o n of t h e s e d e v i c e s i n a d d r e s s a b l e l i q u i d c r y s t a l d i s p l a y panels, an a r e a t h a t looks extremely promising f o r t h e immediate f u t u r e . Within t h e l a s t year o r s o t h e r e has been an i n c r e a s i n g i n t e r e s t i n t h e a p p l i c a t i o n of a-Si PETS i n i n t e g r a t e d l o g i c c i r c u i t s and we s h a l l review t h e s e p o s s i b i l i t i e s i n s e c t i o n 4.

2. Device F a b r i c a t i o n and dc C h a r a c t e r i s t i c s of Elemental Device

The b a s i c d e s i g n of t h e e l e m e n t a l a-Si FET i s shown s c h e m a t i c a l l y i n t h e i n s e r t t o f i g . 1 . It i s a d i r e c t development of t h e arrangement o r i g i n a l l y used i n t h e f i e l d e f f e c t experiments (15,16,17) f o r t h e s t u d y of t h e l o c a l i z e d s t a t e d i s t r i b u t - i o n i n t h e m o b i l i t y gap of a-Si. A metal e l e c t r o d e , t y p i c a l l y 50 um wide, i s evap- o r a t e d onto a g l a s s s u b s t r a t e t o form t h e g a t e e l e c t r o d e . A t h i n i n s u l a t i n g l a y e r , t y p i c a l l y about 0.4 pm of amorphous s i l i c o n n i t r i d e (Si-N), i s t h e n d e p o s i t e d by t h e glow d i s c h a r g e t e c h n i q u e t o form t h e g a t e d i e l e c t r i c . An a-Si l a y e r , a l s o about 0.4 um t h i c k , i s next d e p o s i t e d onto t h e Si-N a g a i n by t h e glow d i s c h a r g e p r o c e s s . The f i n a l s t e p c o n s i s t s of d e p o s i t i n g t h e r e q u i r e d p a t t e r n of source and d r a i n c o n t a c t s on t o t h e a-Si s u r f a c e .

Fig.1. T r a n s f e r c h a r a c t e r i s t i c s of a-Si FET element. The d r a i n c u r r e n t ID i s p l o t t e d a g a i n s t t h e g a t e v o l t a g e VG f o r t h r e e d r a i n p o t e n t i a l s VD. (From ref.18)

1

1

1 I

-2 0 2 I

Surface Field (105~!c/cml

6

Fig.2. Sheet conductance p l o t t e d a g a i n s t s u r f a c e f i e l d f o r a-Si FETs. Curve D:

Recent Dundee d a t a ; Curve P: Powell e t a 1 (19); Curve H-M: Hayama and Matsumura (20); Curve N-M; Neudeck and Malhotra (21).

(4)

I n a r e c e n t paper (18) w i t h D r . A . J . Hughes of RSRE, we showed t h a t convention- a l p h o t o l i t h o g r a p h i c techniques can b e a p p l i e d t o t h e f a b r i c a t i o n of a r r a y s of a-Si FETs f o r a p p l i c a t i o n i n l i q u i d c r y s t a l d i s p l a y p a n e l s ( s e e s e c t i o n 3). This i s an important p o i n t s i n c e i t i s e s s e n t i a l f o r any f u t u r e a p p l i c a t i o n s of t h e s e d e v i c e s t h a t l a r g e a r e a a r r a y s can b e produced reproduceably and cheaply.

The dc performance of a n elementary device w i t h a 40 um chan\el l e n g t h and a 500

um

channel width, produced by p h o t o l i t h o g r a p h i c t e c h n i q u e s , i s i l l u s t r a t e d by t h e t r a n s f e r c h a r a c t e r i s t i c s shown i n f i g . 1 . The source-drain curreaB ID i s p l o t t e d l o g a r i t h m i c a l l y a g a i n s t t h e g a t e v o l t a g e VG f o r d r a i n p o t e n t i a l s of 2V, LQV, and 20V.

It can b e seen t h a t w i t h +15V on t h e g a t e , d r a i n c u r r e n t s i n excess of 1 PA can b e achieved f o r d r a i n v o l t a g e s a s low a s 5V. I n t h e o f f - c o n d i t i o n , w i t h VG = 0 , t h e c u r r e n t through t h e d e v i c e drops below 1 0 - l l ~ . The remarkable r i s e i n ID i s caused by an e l e c t r o n accumulation l a y e r formed a t t h e Si/Si-N i n t e r f a c e , which produces an e f f i c i e n t c u r r e n t p a t h between t h e s o u r c e and d r a i n e l e c t r o d e s .

A number of d i f f e r e n t groups have r e p o r t e d r e s u l t s f o r s i m i l a r a-Si FETs. To compare t h e d a t a , which has been o b t a i n e d f o r d i f f e r e n t d e v i c e geometries and u s i n g d i f f e r e n t g a t e d i e l e c t r i c s , we f o l l o w Powell e t a1 (19) and p l o t i n f i g . 2 t h e s h e e t conductance l o g a r i t h m i c a l l y a g a i n s t t h e f i e l d i n t h e semiconductor a t t h e i n s u l a t o r / a-Si i n t e r f a c e . The s u r f a c e f i e l d h a s been c a l c u l a t e d from E ~ V ~where e i / E ~ ~i s ~ t h e r e l a t i v e p e r m i t t i v i t y of t h e i n s u l a t o r , G S ~ t h e r e l a t i v e p e r m i t t i v i t y of t h e a-Si and d t h e t h i c k n e s s of t h e g a t e i n s u l a t o r . The curve denoted by D i s r e c e n t Dundee d a t a o b t a i n e d w i t h a 0.4 um t h i c k glow d i s c h a r g e Si-N i n s u l a t o r ; curve P i s from Powell e t a1 (19) a t t h e P h i l i p s Research L a b o r a t o r i e s who a l s o used a glow d i s c h a r g e SF-N f i l m of about 0 . 3 um t h i c k n e s s ; c u r v e H-M r e f e r s t o t h e d a t a of Hayama and Matsumura (20) u s i n g a 1 pm s i l i c o n d i o x i d e l a y e r , t h e r m a l l y grown on t h e s u r f a c e of h i g h l y doped s i n g l e - c r y s t a l s i l i c o n , and a 0.13 pm a-Si l a y e r d e p o s i t e d i n a dc glow d i s c h a r g e ; f i n a l l y c u r v e N-M r e f e r s t o t h e d a t a of Neudeck and Malhotra (21) f o r 0.3 pm Si02 and w i t h a t h e r m a l l y evaporated a-Si l a y e r about 0.06 pm t h i c k annealed f o r f o u r hours a t 400°C. I n p l o t t i n g t h e d a t a shown i n f i g . 2 we have taken t h e d i e l e c t r i c c o n s t a n t of Si-N a s 6 . 4 , of S i 0 2 a s 3.9 and t h a t of a-Si a t 11.8. For d e v i c e a p p l i c a t i o n s t h e t r a n s f e r c h a r a c t e r i s t i c s shown i n f i g s . 1 and 2 should have t h e f o l l o w i n g p r o p e r t i e s ( i ) low off-conductance, ( i i ) high on-conduct- ance, and ( i i i ) a r a p i d r i s e from t h e o f f - t o t h e on- s t a t e a t g a t e v o l t a g e s below 15V so t h a t devices a r e compatible w i t h modern i n t e g r a t e d c i r c u i t v o l t a g e l e v e l s . A l l t h e d a t a i n f i g . 2 s a t i s f y t h e f i r s t of t h e s e c r i t e r i a s o t h i s i s u n l i k e l y t o p r e s e n t any problems. The a b i l i t y t o o b t a i n a h i g h on-current i s c l e a r l y a much

l a r g e r c h a l l e n g e . From t h e d a t a p u b l i s h e d t o

8 d a t e , our own d e v i c e s a r e t h e b e s t i n t h i s

r e s p e c t g i v i n g over 1 pA a t VSD = 10V and VG = +15V even w i t h a 500 pm channel l e n g t h .

6 The t h i r d c r i t e r i o n i s a l s o r e l a t i v e l y

d i f f i c u l t t o achieve. Only curves P and D i n

ID f i g . 2 appear t o be s u i t a b l e i n t h i s r e s p e c t .

OJA

1

The o u t p u t c h a r a c t e r i s t i c s , p l o t t e d i n f i g . 3 , of t h e Dundee d e v i c e s show t h a t t h e on-current

L tends t o s a t u r a t i o n f o r g a t e v o l t a g e s between

10 and 15V compared w i t h , f o r example, t h e 50 t o l O O V r e q u i r e d by t h e d e v i c e s of Hayama and Matsumura. The devices of Powell e t a 1 (19) r e q u i r e even s m a l l e r VG ( < 5V) b u t , a s can b e

2 seen from f i g . 2 , t h e r a t e of r i s e of s h e e t con-

ductance a s a f u n c t i o n of VG i s almost e x a c t l y t h e same f o r t h e Dundee and t h e P h i l i p s d a t a , a t l e a s t a s f a r a s t h e l a t t e r extend. The main 0 d i f f e r e n c e l i e s i n t h e o f f s e t v o l t a g e

-

t h e

0 10 20 30 LO P h i l i p s d e v i c e t u r n s on j u s t above z e r o where-

vD ( v )

a s t h e Dundee FETs s t a y o f f up t o about 5 v o l t s . Experiments i n our l a b o r a t o r y have Fig.3. Output c h a r a c t e r i s t i c s of shown t h a t i t i s p o s s i b l e t o vary t h e o f f s e t a-Si FET element. (From r e f . 1 8 ) . v o l t a g e by s u i t a b l e changes i n t h e a-Si prop- e r t i e s c l o s e t o t h e i n s u l a t o r / a - S i i n t e r f a c e .

(5)

JOURNAL DE PHYSIQUE

I t i s perhaps worth emphasising a t t h i s p o i n t t h a t t h e formation w i t h p o s i t i v e g a t e v o l t a g e of t h e h i g h l y conducting e l e c t r o n accumulation l a y e r , which determines t h e p r o p e r t i e s of t h e o n - s t a t e , i s governed by two fundamental m a t e r i a l p r o p e r t i e s : ( i ) a low d e n s i t y of l o c a l i z e d gap s t a t e s i n t h e bulk of t h e a-Si m a t e r i a l i t s e l f , and ( i i ) a low d e n s i t y of i n t e r f a c e s t a t e s a t t h e Si-N t o a-Si boundary. The poor response of t h e d e v i c e N-M i n f i g . 2 , f a b r i c a t e d from evaporated a-Si, may e a s i l y b e understood i n terms of ( i i ) s i n c e even annealed evaporated a-Si i s b e l i e v e d t o have a h i g h e r l o c a l i z e d gap s t a t e d e n s i t y than glow d i s c h a r g e m a t e r i a l ( 1 6 ) . The d i f f e r - ences i n t h e o t h e r samples may a l s o a r i s e a t l e a s t p a r t l y f o r t h i s r e a s o n , s i n c e l o c a l i z e d s t a t e d e n s i t i e s tend t o depend c r i t i c a l l y on t h e p r e c i s e c o n d i t i o n s i n t h e plasma d u r i n g t h e glow d i s c h a r g e process. It i s e q u a l l y l i k e l y however t h a t d i f f e r - e n t L a b o r a t o r i e s produce d e v i c e s w i t h d i f f e r e n t i n t e r f a c e s t a t e d e n s i t i e s . I n f a c t i t would b e s u r p r i s i n g i f t h e u s e of d i f f e r e n t i n s u l a t o r m a t e r i a l s d i d n o t produce d i f f e r e n t i n t e r f a c e s t a t e d e n s i t i e s . From t h e a d m i t t e d l y l i m i t e d d a t a i n f i g . 2 i t would appear a t t h i s s t a g e of t h e development t h a t glow d i s c h a r g e Si-N i s a s u p e r i o r g a t e m a t e r i a l t h a n thermally grown S i 0 2 b u t more work i s needed b e f o r e f i r m conclus- i o n s can b e drawn.

For l a r g e s c a l e a p p l i c a t i o n s t h e ac o p e r a t i o n of t h e FETs becomesof more r e l e v - ance t h a n t h e i r dc performance. We s h a l l d i s c u s s t h e ac c h a r a c t e r i s t i c s and a l s o t h e i r r e p r o d u c i b i l i t y and s t a b i l i t y i n t h e c o n t e x t of t h e experiments we have- c a r r i e d o u t on t h e use of a-Si FETs i n l i q u i d c r y s t a l d i s p l a y p a n e l s i n t h e follow- i n g s e c t i o n .

Recently we began an i n v e s t i g a t i o n of t h e e f f e c t of y - r a d i a t i o n from c o b a l t 60 on t h e dc c h a r a c t e r i s t i c s of t h e a-Si FETi. P r e l i m i n a r y r e s u l t s show t h a t doses up t o 11 Mrads, t h e maximum used t o d a t e , have r e l a t i v e l y l i t t l e e f f e c t . I n t h e devices i n v e s t i g a t e d so f a r t h e FETs r e t a i n e d t h e i r h i g h o f f r e s i s t a n c e and r e l a t - i v e l y h i g h on-conductance. More d e t a i l e d r e s u l t s w i l l b e p u b l i s h e d i n due c o u r s e . 3. A p p l i c a t i o n of a-Si FETs i n Addressable Liquid C r y s t a l E i s p l a y P a n e l s .

I n 1976, t h e Dundee group and c o l l e a g u e s a t RSRE, Malvern, j o i n t l y proposed t h e use of a-Si f i e l d e f f e c t d e v i c e s i n t h e a d d r e s s i n g of l i q u i d c r y s t a l m a t r i x d i s p l a y s a s an a l t e r n a t i v e t o t h e t h i n f i l m CdSe t r a n s i s t o r s which had been developed by Brody and co-workers (22). They reasoned t h a t an elemental c o v a l e n t l y bonded mater- i a l such a s a-Si should have d i s t i n c t advantages over t h e more complex 1 1 - V I com- pounds a s f a r a s e a s e of preparation,reproducibility and s t a b i l i t y a r e concerned.

Subsequently, Le Comber e t a 1 (23) p u b l i s h e d t h e d e s i g n and c h a r a c t e r i s t i c s of an a-Si i n s u l a t e d g a t e f i e l d e f f e c t t r a n s i s t o r s u i t a b l e f o r d r i v i n g l i q u i d c r y s t a l d i s - p l a y s , and experiments a t RSRE showed t h a t such a d e v i c e could switch l i q u i d c r y s t a l elements s a t i s f a c t o r i l y .

Liquid c r y s t a l d i s p l a y s a r e p o t e n t i a l l y v e r y a t t r a c t i v e f o r l a r g e - a r e a a p p l i c - a t i o n s a s they a r e low power d e v i c e s and have good v i s i b i l i t y i n h i g h ambient l i g h t c o n d i t i o n s . However, t h e d i f f i c u l t y of m u l t i p l e x i n g l a r g e a r r a y s of such d e v i c e s has so f a r l i m i t e d t h e i r use. I f a small n o n l i n e a r device, such a s an FET, i s used t o c o n t r o l each d i s p l a y element, much l a r g e r a r r a y s could i n p r i n c i p l e b e add- r e s s e d . Liquid c r y s t a l devices t y p i c a l l y r e q u i r e an a c d r i v e s i g n a l of 3-6V with- out dc component, a s t h e l a t t e r t e n d s t o degrade t h e m a t e r i a l . The d e v i c e responds t o t h e rms v a l u e of t h e a c s i g n a l , and h a s a t h r e s h o l d of 1-2V rms. Voltages below t h i s l e v e l w i l l n o t t u r n on t h e d i s p l a y .

We s h a l l b e g i n t h i s s e c t i o n by looking a t t h e f a b r i c a t i o n of t h e a-Si FET a r r a y and t h e n review i t s dynamic behaviour i n a l i q u i d c r y s t a l d i s p l a y (18).

3.1 F a b r i c a t i o n of Display Panel.

F i g u r e 4 shows a schematic diagram of a number of elements i n t h e d i s p l a y panel.

A t r a n s i s t o r i s i n c o r p o r a t e d i n a corner of each element of t h e a r r a y . The FETs a r e i n t e r c o n n e c t e d by means of X and Y buses, G1, G2... and S1, 52

...,

l i n k i n g g a t e and source c o n t a c t s , r e s p e c t i v e l y . The d r a i n c o n t a c t of each t r a n s i s t o r i s connected t o t h e IT0 s q u a r e s , D. From t h e s e c t i o n through t h e panel i n Fig.4b i t can b e s e e n t h a t t h e l i q u i d c r y s t a l m a t e r i a l i s sandwiched between t h e s u b s t r a t e c a r r y i n g t h e FETs and an IT0 coated g l a s s top p l a t e which i s normally r e t u r n e d t o ground. The

(6)

Fig.4a and b. Schematic lay-out of an Fig.5a and b . Design o f a-Si f i e l d e f f e c t a d d r e s s a b l e l i q u i d c r y s t a l panel. ( a ) t r a n s i s t o r element ( a ) s e c t i o n through p l a n view, (b) s i d e view. (From r e f . 1 8 ) d e v i c e , (b) FET i n p a r t of t h e m a t r i x

a r r a y . (From r e f . l 8 )

l i q u i d c r y s t a l element i s t h e r e f o r e i n s e r i e s w i t h t h e d r a i n c i r c u i t and behaves e l e c t r i c a l l y a s a c a p a c i t o r CLC w i t h some leakage r e s i s t a n c e RLC.

F i g u r e 5a shows a s e c t i o n through an i n d i v i d u a l a-Si d e v i c e and F i g . % i l l u s - t r a t e s t h e d e s i g n of t h e FET i n p a r t of t h e m a t r i x a r r a y . The f i r s t s t e p i n t h e f a b r i c a t i o n c o n s i s t s i n e t c h i n g t h e p a t t e r n of t r a n s p a r e n t conducting Indium T i n Oxide (ITO) t h a t forms t h e back c o n t a c t s of t h e l i q u i d c r y s t a l c e l l ( s e e a l s o Fig.4).

I n t h e p r e s e n t work we used an a r r a y of IT0 s q u a r e s of 1 mm s i d e - l e n g t h on t h e Corn- i n g g l a s s s u b s t r a t e . A chromium f i l m i s then evaporated and e t c h e d t o p r o v i d e t h e 60 u m wide g a t e e l e c t r o d e s G . The prepared s u b s t r a t e i s now c o a t e d w i t h 0.4 ym t h i c k l a y e r s of s i l i c o n n i t r i d e and s i l i c o n , b o t h d e p o s i t e d i n a n r f glow d i s c h a r g e . The unwanted s i l i c o n i s e t c h e d away, j u s t l e a v i n g t h e small i s l a n d s a t each FET s i t e

( F i g . 5 b ) . Contact h o l e s , denoted by A i n F i g . 5 , a r e etched through t h e n i t r i d e down t o t h e IT0 f o r connection t o t h e d r a i n c o n t a c t D. F i n a l l y , t h e aluminium t o p met- a l l i s a t i o n i s a p p l i e d t o form t h e s o u r c e and d r a i n c o n f i g u r a t i o n s , S and D. A t a l l s t a g e s t h e p r o c e s s i n g i s c a r r i e d o u t by s t a n d a r d p h o t o l i t h o g r a p h i c techniques and w i t h c o n v e n t i o n a l e t c h e s .

a-Si i s a h i g h l y s e n s i t i v e photoconductor ( 8 , 9 ) and i t i s important t o c o n s i d e r what e f f e c t s t r a y l i g h t might have on t h e c h a r a c t e r i s t i c s of t h e FET. Recent measurements have shown t h a t ambient l i g h t h a s l i t t l e i n f l u e n c e on t h e on-current b u t d e c r e a s e s t h e o f f - r e s i s t a n c e by an o r d e r of magnitude o r s o . I f t h i s proves u n d e s i r a b l e t h e n it should b e p o s s i b l e t o reduce t h i s e f f e c t by t h e i n c l u s i o n during f a b r i c a t i o n of a s u i t a b l e mask f o r t h e a-Si.

3 . 2 Dynamic Performance.

I n t h i s s e c t i o n we s h a l l c o n s i d e r t h e ac o p e r a t i o n of t h e elementary d e v i c e w i t h i t s l i q u i d c r y s t a l element. A more e x t e n s i v e d i s c u s s i o n i s g i v e n i n r e f . ( l 8 ) . To s i m u l a t e t h e o p e r a t i o n of t h e FETs i n an a d d r e s s a b l e a r r a y , t h e response of s i n g l e elements t o t y p i c a l p u l s e v o l t a g e s on t h e g a t e and source b u s e s was i n v e s t - i g a t e d . I n t h e s e experiments t h e d r a i n was connected t o ground through a 10 pF c a p a c i t o r t o s i m u l a t e t h e l i q u i d b r y s t a l c a p a c i t y CLC of t h e 1 mm IT0 elements ( s e e f i g . 4 ) . An important parameter, a s f a r a s m u l t i p l e x i n g i s concerned, i s t h e r i s e time of t h e p o t e n t i a l VLC a c r o s s t h e l i q u i d c r y s t a l element. I n Fig.6 t h e v o l t a g e

(7)

JOURNAL DE PHYSIQUE

F i g . 6 , Voltage l e v e l VLC a c r o s s t h e lOpF l i q u i d c r y s t a l element p l o t t e d a g a i n s t t h e width of t h e g a t e p u l s e n e c e s s a r y t o o b t a i n t h e v a l u e of VLC. (From r e f . 1 8 ) .

l e v e l VLC a c r o s s t h e lOpF element i s p l o t t e d a g a i n s t t h e width of t h e g a t e p u l s e C L , necess- a r y t o produce t h e v a l u e of VLC. I t can be seen t h a t a d r i v e p o t e n t i a l of 3V i s reached i n 30- 40 ps.

I n a n o t h e r s e r i e s of experiments d r i v i n g commercial l i q u i d c r y s t a l elements w i t h t h e a-Si FETs, i t was demonstrated t h a t c h a r g e r e t e n t i o n was l i m i t e d e n t i r e l y by t h e l i q u i d c r y s t a l prop-

e r t i e s t o about 40 ms. I n view of t h e above 30- 40 ps r e q u i r e d t o produce t h e d r i v e p o t e n t i a l f o r t h e l i q u i d c r y s t a l , i t can b e s e e n t h a t even w i t h

t h e p r e s e n t d e v i c e s i t i s p o s s i b l e i n p r i n c i p l e t o s c a n 1000 l i n e s of d i s p l a y i n t h i s time. I n p r a c t i c e , u s i n g a frame time of 25 m s , s a t i s f a c t - o r y o p e r a t i o n of a l i q u i d c r y s t a l element was achieved w i t h p u l s e s e q u i v a l e n t t o t h o s e used i n a 250 l i n e d i s p l a y .

S u c c e s s f u l 7 x 5 a r r a y s have been f a b r i c - a t e d i n our l a b o r a t o r y and we a r e p r e s e n t l y a s s - e s s i n g a 20 x 25 panel b e f o r e s c a l i n g up t o 100 x 100 and l a r g e r a r r a y s .

3.3 R e p r o d u c i b i l i t y and S t a b i l i t y of a-Si FETs.

An important f a c t o r i n t h i s development i s t h e r e p r o d u c i b i l i t y and u n i f o r m i t y of c h a r a c t e r i s t i c s of a r r a y s of elements. F i g u r e 7 shows t h e t r a n s f e r c h a r a c t e r - i s t i c s of a l i n e a r a r r a y of elements, spaced 2.5 nun a p a r t ( 1 8 ) . For c l a r i t y succ- e s s i v e c u r v e s have been d i s p l a c e d along t h e VG a x i s by 10V. The s i m i l a r i t y of

t h e s e curves demonstrates t h e remarkable

1 0 ' ~ 1 1 1 1 1 1 1 1 1 u n i f o r m i t y of performance t h a t can b e ach-

ieved i n a given d e p o s i t i o n . P r o b i n g t e s t s on a complete 7 x 5 a r r a y showed s i m i l a r e x c e l l e n t u n i f o r m i t y . A l l elements had --- Roff > 1011 S2 and a l l t h r e s h o l d v o l t a g e s V D = 2 V were w i t h i n i. 0.4V of t h e mean v a l u e .

Comparison between a r r a y s produced i n d i f f - e r e n t d e p o s i t i o n s i s a l s o v e r y encouraging.

So f a r , t h e i n f o r m a t i o n on long term s t a b i l i t y of t h e a-Si d e v i c e s i s

s t i l l

1 0 ' ~

v,

( V )

Fig.7. T r a n s f e r c h a r a c t e r i s t i c s of s i x FETs i n a l i n e a r a r r a y a s a t e s t of d e v i c e r e p r o d u c i b i l i t y . For c l a r i t y s u c c e s s i v e c h a r a c t e r i s t i c s have been d i s p l a c e d by 10V along t h e VG AXIS. (From r e f . 1 8 ) .

-

1 2 3 4 5 6

10 Volts

-

I t 1

somewhat l i m i t e d . I n a t e s t an element h a s now been run a t 100 Hz w i t h VS = k 10V and VG = 15V f o r 9 months, i . e . f o r over 2 x 10' s w i t c h i n g o p e r a t i o n s . There has been no s i g n of d e t e r i o r a t i o n o r change i n t r a n s f e r c h a r a c t e r i s t i c s of t h i s d e v i c e , which i s u n p a s s i v a t e d and unencapsulated.

(8)

4. A p p l i c a t i o n of a-Si FETs i n Logic C i r c u i t s and Image Sensors.

Recently, Matsumura, Hayama and coworkers a t t h e Tokyo I n s t i t u t e of Technology have shown t h a t an i n t e g r a t e d i n v e r t e r c i r c u i t (24) and an image s e n s o r (25) can be f a b r i c a t e d f r o n a-Si FETs. The devices used i n t h e i r work were made from a-Si dep- o s i t e d i n a dc glow d i s c h a r g e and w i t h low p r e s s u r e CVD S i 0 2 a s t h e g a t e i n s u l a t o r (24). Although t h e s e FETs were relatively leaky and had a slower t u r n on t h a n t h e i r previous d e v i c e s included i n f i g . 2 (curve H-M) they demonstrated t h e f e a s i b i l i t y of u s i n g t h e a-Si technology i n t h e s e c i r c u i t s . At t h e same time work i n our l a b o r a t - ory h a s been concerned w i t h s i m i l a r a p p l i c a t i o n s , i n i t i a l l y aimed a t p r o v i d i n g i n t - e g r a t e d a-Si d r i v e c i r c u i t s f o r t h e l i q u i d c r y s t a l d i s p l a y p a n e l s d i s c u s s e d i n s e c t i o n 3. I n t h e following we s h a l l review t h e work on t h e i n v e r t e r s and image s e n s o r s and r e p o r t b r i e f l y t h e a p p l i c a t i o n s of a-Si FETs i n N A N D and NOR g a t e s , i n a b i s t a b l e m u l t i v a b r a t o r and i n a s h i f t r e g i s t e r .

Three b a s i c c i r c u i t s f o r producing t h e i n v e r t e r l o g i c a r e shown i n f i g . 8 . Matsumura and Hayama used c i r c u i t ( c ) , which r e q u i r e s two FETs and an a d d i t i o n a l

supply VG. I n our own work we chose t h e simpler c i r c u i t ( a ) and made t h e load r e s i s t o r from an i n t e g r a t e d a-Si gap c e l l . This i s simpler and h a s t h e f u r t h e r advantage t h a t t h e a-Si r e s i s t o r r e q u i r e s l e s s space t h a n an FET l o a d . Fig.9 shows a s e c t i o n through t h e i n t e g r a t e d d e v i c e and a l s o i t s l a y o u t i n p l a n view. The i n p u t v o l t a g e i s a p p l i e d t o t h e g a t e of t h e FET, t h e source i s connected t o ground and t h e o u t p u t taken from t h e d r a i n connection. To o b t a i n t h e a p p r o p r i a t e v a l u e of

load r e s i s t a n c e a doped a-Si l a y e r , about 250A t h i c k and about 3 x

lo8

010

,

was d e p o s i t e d . This was e t c h e d away from t h e source-drain gap of t h e FET a f t e r t h e t o p A 1 m e t a l l i s a t i o n , l e a v i n g doped a-Si under t h e source and d r a i n , which had t h e added advantage of improving t h e e l e c t r i c a l c o n t a c t a t t h e s e e l e c t r o d e s .

The dashed curve i n f i g . 1 0 shows t h e t r a n s f e r c h a r a c t e r i s t i c s of such a d e v i c e having a l o a d of approximately 30M0 and measured w i t h a supply p o t e n t i a l of 15V.

The i n v e r t e r l o g i c i s c l e a r l y seen: t h e o u t p u t changes from about 14.5 t o 2V a s t h e i n p u t swings from about 5 t o 15V. The f u l l F i g . 8 . Three examples of i n v e r t e r l i h e i n f i g . 1 0 shows t h e c h a r a c t e r i s t i c s of

c i r c u i t s . t h r e e such d e v i c e s connected i n s e r i e s .

A s w e l l a s sharpening t h e c h a r a c t e r i s t i c s

a-Si Doped a-Si

t h i s demonstrates t h e important p o i n t t h a t t h e o u t p u t from one d e v i c e can b e success- f u l l y used a s t h e i n p u t f o r s u c c e s s i v e s t a g e s .

By simple e x t e n s i o n of t h e above b a s i c c i r c u i t s , we have produced l o g i c c i r c u i t s such a s N A N D and NOR g a t e s and a l s o t h e b i s t a b l e m u l t i v i b r a t o r t h e c i r c u i t of which i s shown i n f i g . 1 1 . The s w i t c h i n g times of t h e s e c i r c u i t s were t y p i c a l l y of t h e o r d e r of a ms, which would l i m i t t h e i r use t o f r e q u e n c i e s below 1kHz. However, we should emphasize t h a t t h e s e e x p l o r a t o r y a-Si d e v i c e s were i n no way optimised f o r speed of response. The main l i m i t a t i o n i n t h i s r e s p e c t i s t h e magnitude of t h e a-Si FET o n - r e s i s t a n c e

-

an a s p e c t which we w i l l r e t u r n t o b r i e f l y i n t h e n e x t s e c t i o n .

As s t a t e d p r e v i o u s l y , one o f t h e prim- - -

Fig.9. I n t e g r a t e d a-Si i n v e r t e r . a r y aims of o u r p r e s e n t work is t o i n v e s t - i g a t e t h e p o s s i b i l i t y of d r i v e c i r c u i t s f o r

(9)

JOURNAL DE PHYSIQUE

Fig.10. C h a r a c t e r i s t i c s of ( a ) s i n g l e Pig.11. C i r c u i t used f o r a-Si b i s t a b l e a-Si i n v e r t e r and (b) t h r e e i n v e r t e r s m u l t i v i b r a t o r and p u l s e sequence

connected i n s e r i e s . t y p i c a l l y observed.

t h e l i q u i d c r y s t a l p a n e l s . Of p a r t i c u l a r importance i n t h i s r e s p e c t i s t h e f a b r i c - a t i o n of a s h i f t r e g i s t e r t o s e q u e n t i a l l y a d d r e s s t h e g a t e buses G G2,

...

i n

f i g . & . Recently we have made a f o u r s t a g e s h i f t r e g i s t e r u s i n g a-b?1 FETs i n which each s t a g e can s h i f t a 20 m s p u l s e by 10 m s . Although t h e s e c i r c u i t s a r e slow by c r y s t a l l i n e s t a n d a r d s we b e l i e v e optimised d e v i c e geometry w i l l c o n s i d e r a b l y improve m a t t e r s and t h a t t h e s e c i r c u i t s w i l l u l t i m a t e l y f i n d a u s e i n l e s s c r i t i c a l a p p l i c - a t i o n s .

F i n a l l y we review t h e work of Matsumura e t a 1 (25) and our own r e s u l t s on t h e a-Si image s e n s o r s . The c i r c u i t used by b o t h groups i s shown i n t h e t o p p a r t of f i g . 1 2 and i s t h a t o r i g i n a l l y suggested by Weimer e t a1 ( 2 6 ) . Light i n c i d e n t on t h e a-Si photoconductor charges up t h e c a p a c i t o r w h i l s t t h e FET i s o f f . The FET

i s t h e n p u l s e d on and t h e c a p a c i t o r d i s - charges r a p i d l y p r o v i d i n g an o u t p u t c u r r e n t t h e magnitude of which i s a f u n c t i o n of t h e l i g h t i n t e n s i t y a s shown i n f i g . 1 2 . Although t h e d e v i c e s of Matsumura e t a 1 (25) provide much lower c u r r e n t s t h a n t h o s e shown i n t h i s f i g u r e , t h e s e a u t h o r s s u g g e s t t h a t t h e i r p r e s e n t d e v i c e s can b e o p e r a t e d up t o f r e q u e n c i e s of about 2OkHz w i t h poss- i b l e a p p l i c a t i o n s i n l a r g e g a i n , l a r g e a r e a image s e n s o r s .

1o6-

10, (AMP53

Fig.12. C i r c u i t of a-Si image s e n s o r and measured o u t p ~ i t c u r r e n t a s a f u n c t i o n of l i g h t i n t e n s i t y f o r v a r i o u s p u l s e f r e q u e n c i e s .

1 mSec LIGHT WLSE IFREQ Yl

0-Sl PHOTO-CONDUCTOR

0-8

/o- o/

18-

Y=2Hz /O

100 1000

LIGHT INTENSITY (LUX1

(10)

5 . L i m i t a t i o n s of t h e P r e s e n t a-Si FETs.

The work d e s c r i b e d above has c l e a r l y demonstrated t h e f e a s i b i l i t y of u s i n g a-Si FETs i n a number of p r a c t i c a l c i r c u i t s . I n p a r t i c u l a r , t h e d e v i c e s p r e s e n t l y a v a i l - a b l e a l r e a d y o f f e r a v i a b l e s o l u t i o n t o t h e problem of m u l t i p l e x i n g l i q u i d c r y s t a l d i s p l a y s ( s e c t i o n 3 ) . However, t h e f a c t o r t h a t appears most l i k e l y t o l i m i t t h e i r use i n o t h e r a p p l i c a t i o n s i s t h e i r r e l a t i v e l y slow s w i t c h i n g t i m e . This q u a n t i t y w i l l g e n e r a l l y b e determined by t h e time r e q u i r e d f o r t h e on-current t o charge c i r c u i t c a p a c i t a n c e s , s o t h a t an obvious improvement would b e achieved w i t h h i g h e r on-currents. A f i r s t s t e p i n t h i s d i r e c t i o n would b e a r e d u c t i o n i n t h e source- d r a i n s e p a r a t i o n , a t p r e s e n t 40 pm. As d i s c u s s e d i n s e c t i o n 2 , t h e p h y s i c a l f a c t o r s t h a t l i m i t t h e on-conductance a r e t h e i n t e r f a c e s t a t e d e n s i t y a t t h e a-Si t o

i n s u l a t o r boundary and t h e d e n s i t y of s t a t e s i n t h e a-Si. Even w i t h n e g l i g i b l e i n t e r f a c e s t a t e s t h e r a p i d l y r i s i n g t a i l s t a t e d i s t r i b a t i o n , which i s a fundamental p r o p e r t y of a-Si, w i l l l i m i t t h e amount of band bending such t h a t E ~ - E F s E ~ - E A Y

0.2 eV. Under t h e s e c o n d i t i o n s t h e s h e e t conductance i n a 0.1

um

t h i c k f i l m 1s e s t i m a t e d t o be about

~-l/n .

The b e s t d a t a (curve D) i n f i g . 2 approaches t h i s v a l u e a t t h e h i g h e s t g a t e v o l t a g e s b u t is approximately an o r d e r of magnitude lower a t VG = 15V. I t would t h e r e f o r e n o t seem unreasonable t o a n t i c i p a t e t h a t t h e h i g h l y v e r s a t i l e glow d i s c h a r g e p r o c e s s , which a t p r e s e n t p r o v i d e s t h e b e s t d e v i c e s , can b e used i n t h e f u t u r e t o produce m a t e r i a l t h a t w i l l go a t l e a s t some way t o overcome t h e p r e s e n t frequency l i m i t a t i o n s .

6. Conclusions.

The work reviewed above l e a d s t o t h e f o l l o w i n g conclusions:

( i ) glow d i s c h a r g e a-Si and s i l i c o n n i t r i d e f i l m s can b e p a t t e r n e d photolithographL i c a l l y by s t a n d a r d c r y s t a l l i n e semiconductor technology t o produce v i a b l e t h i n f i l m f i e l d e f f e c t t r a n s i s t o r s which o p e r a t e a t v o l t a g e s compatible w i t h t h o s e used i n modern i n t e g r a t e d c i r c u i t s .

( i i ) t h e r e p r o d u c i b i l i t y i n t h e c h a r a c t e r i s t i c s of d i f f e r e n t FET elements i s good and s o f a r s t a b l e o p e r a t i o n f o r over 2 x

lo9

s w i t c h i n g c y c l e s h a s been observed.

P a s s i v a t i o n o r e n c a p s u l a t i o n of t h e d e v i c e s does n o t appear t o b e necessary.

( i i i ) a-Si FETs have c o n s i d e r a b l e p o t e n t i a l a s s w i t c h i n g elements i n l i q u i d c r y s t a l d i s p l a y p a n e l s . P r e s e n t FETs could, i n p r i n c i p l e , b e used i n 1000 l i n e d i s p l a y s . ( i v ) t h e f e a s i b i l i t y of applying a-Si FETs i n l o g i c c i r c u i t s h a s been demonstrated.

I n v e r t e r s , NAND and NOR g a t e s , a b i s t a b l e m u l t i v i b r a t o r and a s h i f t r e g i s t e r have a l l been f a b r i c a t e d from a-Si FETs and i n t e g r a t e d a-Si r e s i s t o r s .

(v) by making use of t h e e x c e l l e n t photoconductivity of t h e m a t e r i a l , i n t e g r a t e d a-Si FET image s e n s o r s have been c o n s t r u c t e d .

Acknowledgments

The a u t h o r s would l i k e t o thank S t e w a r t Kinmond, Ally F a l c o n e r and Don M i t c h e l l f o r t h e i r t e c h n i c a l a s s i s t a n c e . Thanks a r e a l s o due t o I a n French f o r h i s h e l p w i t h t h e f a b r i c a t i o n and t e s t i n g of t h e a-Si s h i f t r e g i s t e r s . The s u p p o r t of t h e p r o j e c t by CVD and SRC i s g r a t e f u l l y acknowledged.

References

1. Spear, W.E. and Le Comber, P.G., S o l i d S t a t e Commun.

17

(1975) 1193.

2. Spear, W.E. and Le Comber, P.G., P h i l . Mag.

2

(1976) 935.

3. Carlson, D.E. and Wronski, C.R., Appl. Phys. L e t t .

2

(1976) 671.

4. Gibson, R.A., Spear, W.E., Le Comber, P.G. and S n e l l , A.J., J. Non-Cryst.

S o l i d s

2

&

2

(1980) 725.

5. Gibson, R.A., Le Comber, P.G. and S p e a r , W.E., Appl. Phys.

2

(1980) 307.

6 . Shimizu, I . , Komatsu, T., S a i t o , K. and Inoue, E . , J . Non-Cryst. S o l i d s

2

&

36

(1980) 773.

(11)

JOURNAL Dl3 PHYSIQUE

Shimizu, I . , Komatsu, T., and I n o u e , E . , Photo. S c i . & Eng. (USA)

2

(1980) 251.

C h i t t i c k , R.C., A l e x a n d e r , J . H . and S t e r l i n g , H.F., J . Electrochem. Soc. 116 (1969) 77; C h i t t i c k , R.C., J . Non-Cryst. S o l i d s

3

(1970) 255.

Anderson, D.A. and S p e a r , W.E., P h i l . Mag.

36

(1977) 695 and r e f e r e n c e s c i t e d t h e r e i n .

Shimizu, I., S h i r a i , S. and I n o u e , E., J . Appl. Phys. a t p r e s s .

Mort, J . , G r a m i n a t i c a S . , K n i g h t s , J . C . and L u j a n , R., P h o t o . S c i . & Eng. (USA) 24 (1980) 241.

-

Yamamoto e t a l . , 1 2 t h Conf. S o l i d S t a t e Devices, B4-7 S e p t . 1980.

Imamura, U., Ataka, S., T a k a s a k i , Y . , Kusano, C . , H i r a i , T. and Maruyama, E . , Appl. Phys. L e t t .

2

(1979) 349.

Shimizu, I . , Oda, S . , S a i t o , K. and I n o u e , E., J . Appl. Phys.

55

(1980) 6422.

S p e a r , W.E. and Le Comber, P.G., J . Non-Cryst. S o l i d s

2 - g

(1972) 727.

Madan, A,, Le Comber, P.G. a n d S p e a r , W.E., J. Non-Cryst. S o l i d s (1976) 239.

Madan, A. a n d Le Comber, P.G., Amorphous and L i q u i d Semiconductors, e d . by W.E. S p e a r (CICL, U n i v e r s i t y o f Edinburgh 1977) 377.

S n e l l , A.J., ~ a c k e n z i e , K.D., S p e a r , W.E., Le Comber, P.G. and Hughes, A . J . ,

Appl. Phys. (1981 357.

Powell, M . J . , E a s t o n , B . C . and H i l l , O.F., Appl. Phys. L e t t . , May 1981.

Hayama, H. and Matsumura, M . , Appl. Phys. L e t t .

2

(1980) 754.

Neudeck, G.W., and M a l h o t r a , A.K. S o l i d S t a t e E l e c t r o n i c s

19

(1976) 721.

Brody, T.P., A s a r s , 3 .A. and Dixon, G.D., IEEE T r a n s . E D - 2 (1973) 995.

Le Comber, P.G., S p e a r , W.E. and G h a i t h , A., E l e c t r o n . L e t t .

15

(1979) 179.

Matsumura, M. and Hayama, H . , Proc. IEEE

68

(1980) 1349

Matsumura, M., Hayama, H., Nara, Y . and I s h i b a s h i , K . , IEEE EDL-1 (1980) 182.

Weimer, P.K., P i k e , W.S., S a d a s i v , G . , S h a l l c r o s s , F.V. and Meray-Horvath, L., IEEE Spectrum

2

(1969) 52.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to