• Aucun résultat trouvé

ATOMIC TRANSPORTDIFFUSION IN LIQUID METALS AND SIMPLE LIQUIDS

N/A
N/A
Protected

Academic year: 2021

Partager "ATOMIC TRANSPORTDIFFUSION IN LIQUID METALS AND SIMPLE LIQUIDS"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00220539

https://hal.archives-ouvertes.fr/jpa-00220539

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ATOMIC TRANSPORTDIFFUSION IN LIQUID METALS AND SIMPLE LIQUIDS

M. Gerl, A. Bruson

To cite this version:

M. Gerl, A. Bruson. ATOMIC TRANSPORTDIFFUSION IN LIQUID METALS AND SIMPLE LIQ- UIDS. Journal de Physique Colloques, 1980, 41 (C8), pp.C8-335-C8-344. �10.1051/jphyscol:1980885�.

�jpa-00220539�

(2)

JOURNAL DE PHYSIQUE CoZZoque C8, suppz&ment au n08, Tome 41, aoct 1980, page

C8-335

ATOMIC TRANSPORT.

DIFFUSION IN LIQUID METALS AND SIMPLE LIQUIDS

M. Gerl and A . Bruson

Laboratoire de Physique des SoZides, Uniuersite' de Nancy I , CO. 140, 54037 Nancy CGdex, France.

1

-

Ih'TROZ)uCTION

where -f r i ( t ) denotes t h e p o s i t i o n of one o f t h e N A s good reviews o f t h e experimental measure- tagged p a r t i c l e s . For times l o n g compared w i t h t h e ments") and o f model c a l ~ u l a t i o n s ( ~ ) o f d i f f u s i o n c o l l i s i o n t i m e , G s ( r , t ) obeys t h e d i f f u s i o n equa- c o e f f i c i e n t s i n l i q u i d m e t a l s have been given i n t i o n ( 3 )

.

p r e v i o u s LAM c o n f e r e n c e s , t h e p r e s e n t paper w i l l D V 2 ~ ~ ( r , t ) =

-

aGs ( 4 ) be mainly devoted t o t h e t h e o r e t i c a l d e s c r i p t i o n

a t

of t h e i r atomic t r a n s p o r t p r o p e r t i e s . Liquid metals whose s o l u t i o n corresponding t o a p a r t i c l e a t t h e a r e a c t u a l l y two component f l u i d s : t h e y can be o r i g i n a t t = I) can b e w r i t t e n :

c o n s i d e r e d a s made o f heavy p o s i t i v e i o n s immersed i n a b a t h o f conduction e l e c t r o n s . A good approxi-

1 2

G s ( r , t ) = exp (-

-

( 5 )

( ~ I T D lt1)312 .

. 4

D

l t l

mation t o t h e dynamics o f t h e i o n s i s t o assume

I n t h e same l i m i t , it i s p o s s i b l e t o o b t a i n t h a t t h e e l e c t r o n s f o l l o w them a d i a b a t i c a l l y ; t h i s

t h e i n t e r m e d i a t e s c a t t e r i n g f u n c t i o n : l e a d s t o a pseudo-atom d e s c r i p t i o n , where t h e t o t a l

energy o f t h e m e t a l can be w r i t t e n : F ( k , t ) = exp (-k 2 D t )

( 6 )

U = U

+ l

( 1 and t h e s e l f p a r t o f t h e dynamic s t r u c t u r e f a c t o r : 0 2

iij

Q ( r i j )

1 +co 1

sS(k,w) =,

1

~ ~ ( k , t ) eiwt d t =; ~ k ~ ( 7 )

where U i s a l a r g e energy which depends s t r o n g l y o f -00 w2 + ( ~ k 2 ) ~

t h e volume allowed t o t h e system, and ~ ( r ) i s a 2

which t a k e s t h e form o f a L o r e n t z i a n of w i d t h 2 Dk

.

two-body e f f e c t i v e p o t e n t i a l . A t c o n s t a n t volume,

S (k,w) a s measured by i n c o h e r e n t n e u t r o n s c a t t e - one may assume t h a t t h e dynamics o f t h e i o n s a r e

r:ng(4) on a mixture of s u i t a b l e i s o t o p e s , o r by governed by t h i s r e l a t i v e l y s h o r t ranged p o t e n t i a l

u s i n g p o l a r i z e d n e u t r o n s , should t h e r e f o r e begave and t h e r e f o r e , t h e dynamical d e s c r i p t i o n of l i q u i d

a s shown by t h e Eq. ( 7 ) n e a r t h e o r i g i n o f t h e m e t a l s should not d i f f e r s t r o n g l y from t h a t of

(k,w) p l a n e . m e g a u s s i a n f o m o f G s ( r , t ) i s . a l s o n e u t r a l monatomic l i q u i d s . I n t h i s review, we w i l l

v a l i d a t very s h o r t t i m e s ( f r e e p a r t i c l e behaviour) t h e r e f o r e be concerned with t h e dynamics of t h i s

and t h e r e f o r e a f a i r l y good approximation t o g e n e r a l c l a s s o f l i q u i d s .

~ ~ ( r , t ) a t a l l t i m e s : The d i f f u s i o n c o n s t a n t D measures t h e r a t e o f 312

v a r i a t i o n i n time of t h e mean s q u a r e displacement G ~ ( T , ~ ) = (

7

a ( t ) ) exp ( - r 2 a ( t ) ) ( 8 )

o f a tagged p a r t i c l e : k2 2

o r ~ ~ ( k , t ) = exp ( -

7

<r ( t ) > ) ( 9 )

< r 2 ( t ) > =

6

D t ( l a r g e t ( 2 )

An a l t e r n a t i v e e x a c t form f o r D can b e given hi^ is c l e a r l y a concept v a l i d f o r s u f f i c i e n t - i n terms o f $ ( t ) t h e v e l o c i t y a ~ t 0 ~ 0 r r e l a t i o n func- l y l o n g t i m e s ; f o r i n s t a n c e i f t i s s m a l l e r t h a n t h e t i o n (VAF). S t a r t i n g from t h e d e f i n i t i o n ( 2 ) o f D ,

- 1

i n v e r s e

r

o f t h e c o l l i s i o n frequency, t h e tagged We Can w r i t e : p a r t i c l e moves f r e e l y and (r 2 ( t ) > Q, t2. The l i n e a r

= lim

$ % [

ds2 < q o ) (;. s2-s

1,

( v a r i a t i o n o f < r 2 > w i t h t i s only observed when t h e t-

tagged p a r t i c l e has experienced many c o l l i s i o n s w i t h where we have used the fact that $ ( t )

= - < q t

1 ).

bath p a r t i c l e s . A t any time t h e s t a t i s t i c s of t h e 3 1

a t 2 ) > does not depend on t h e o r i g i n o f time.

tagged p a r t i c l e s a r e d e s c r i b e d by t h e s e l f p a r t G

The VAF $ ( t ) measures t o what e x t e n t t h e system of t h e d e n s i t y - d e n s i t y c o r r e l a t i o n f u n c t i o n :

N r e t a i n s t h e memory o f t h e v e l o c i t y and it can b e

$ ( r , t ) =

<iil b ( f

+ :i(o) - :i(t) )> ( 3 ) shown from ( 1 0 ) t h a t : Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980885

(3)

JOURNAL DE PHYSIQUE

D =

J;

$ t ) d t ( 1 1 )

I n o r d e r t o emphasize t h e r e l a t i o n between t h i s d e f i n i t i o n o f D and t h e e q u a t i o n s

( 6 )

and ( 7 ) , l e t u s n o t i c e t h a t :

where

P . - ( t ) = e i Z . F ( t )

K

and Z k ( t ) = G ( t ) e i Z . g ( t )

i r e t h e s p a t i a l F o u r i e r t r a n s f o r a s o f t h e d e n s i t y and c u r r e n t o f t h e tagged p a r t i c l e ; (31, and j k a r e r e l a t e d by t h e e q u a t i o n o f c o n t i n u i t y :

and t h e r e f o r e :

Taking t h e v e c t o r

2

a l o n g t h e x a x i s we o b t a i n :

0

o r , i n F o u r i e r t r a n s f o r m with r e s p e c t t o t :

T h e r e f o r e

a r e s u l t c o n s i s t e n t w i t h t h e e q u a t i o n ( 7 ) . The d e f i n i t i o n of

D

i n terms o f @ ( t ) proves more f r u i t f u l t h a n t h e d e f i n i t i o n ( 2 ) . I n t h e pre- s e n t paper we w i l l g i v e a review o f d i f f e r e n t me- thods used f o r c a l c u l a t i n g D . One approach t o t h e d i f f u s i o n c o n s t a n t i s t o w r i t e t h e k i n e t i c equa- t i o n s governing t h e d e n s i t y of t h e tagged p a r t i c l e . The Boltzmann e q u a t i o n , a p p r o p r i a t e t o d i l u t e gases, c o n s i d e r s t h a t t h e c o l l i s i o n s a r e independent, l o c a l i n time and s p a c e , and w e l l s e p a r a t e d . An improve- ment on t h i s e q u a t i o n i s t h e Enskog approximation, where t h e g e o m e t r i c a l c o r r e l a t i o n s between p a r t i c l e s a r e c o n s i d e r e d , b u t t h e c o l l i s i o n s a r e s t i l l assumed independent. These t h e o r i e s l e a d t o a simple expo- n e n t i a l decay o f t h e VAF whereas molecular dynamics c a l c u l a t i o n s show t h a t J, ( t ) has a r a t h e r complicated s t r u c t u r e . This s t r u c t u r e a r i s e s from d y n a n i c a l cor- r e l a t i o n s which a r e t a k e n i n t o account i n t h e theo-

r i e s we w i l l d e s c r i b e i n S e c t i o n 11. I n p a r t i c u l a r , t h e VAF becomes n e g a t i v e a f t e r a r e l a t i v e l y s h o r t time i n high d e n s i t y f l u i d s and e x h i b i t s a l o n g time t a i l due t o t h e coupling o f t h e tagged p a r t i c l e t o t h e hydrodynamic modes o f t h e f l u i d . The f i r s t pro- p e r t y o f $ ( t ) can b e u n t e r s t o o d by u s i n g a genera- l i z e d Langevin e q u a t i o n t o d e s c r i b e t h e s h o r t t i m e dynamics. We w i l l show i n S e c t i o n I11 how simple approximations t o t h e memory f u n c t i o n e n t e r i n g t h i s e q u a t i o n l e a d t o an o s c i l l a t o r y VAF. F i n a l l y t h e l o n g time t a i l of t h e VAF can be e a s i l y e x p l a i n e d u s i n g hydrodynamics o r g e n e r a l i z e d hydrodynamics, a s shown i n S e c t i o n I V .

I ?

-

KINETIC EQUATIONS

2. 1 .

-

The

BoRtztnann and

E v ~ ~ k o g - g ~ g t i ~ g

...

We c o n s i d e r h e r e t h e o n e - p a r t i c l e phase space d i s t r i b u t i o n f u n c t i o n fs(;,:,t) which g i v e s t h e d e n s i t y of t h e tagged p a r t i c l e s having t h e v e l o c i t y

+ +

v and l o c a t e d a t r a t time t . I n a d i l u t e g a s it i s p o s s i b l e t o c o n s i d e r o n l y b i n a r y c o l l i s i o n s , w e l l s e p a r a t e d i n time. The r a t e o f change i n time of

f s ( r , v , t ) + + i s given by t h e w e l l known e q ~ a t i o n ( ~ - ~ ~ ) :

-+

-+ -f

afs

3 f ( r , v , t ) + v.

7

t s

a

r = n c S ( ' ) f s ( ~ , ~ , t ) (1.0 where C S ( l ) i s t h e o p e r a t o r d e s c r i b i n g t h e d e t a i l e d mechanics o f t h e c o l l i s i o n s

,

and n i s t h e number d e n s i t y o f t h e f l u i d . By F o u r i e r t r a n s f o r m a t i o n of ( 1 7 ) we o b t a i n f o r each component f :

s q

a,

fsq = A f s q with

A =

-

i q v X

+

n

cs

( 1 ) ( 1 8 ) where we assume t h a t q p o i n t s along t h e -+ x a x i s . It i s i n p r i n c i p l e p o s s i b l e t o determine t h e eigen- f u n c t i o n s J, and t h e e i g e n v a l u e s o f t h e opera-

n

t o r A appearing i n t h e r. h. s . of t h e Eq.(18) :

A c t u a l l y , i n t h e l i m i t o f l o n g t i m e s , n

= I *

dv f G , t ) obeys t h e d i f f u s i o n e q u a t i o n :

s q s q

and t h i s e q u a t i o n i s a l s o v e r i f i e d by f ( v , t ) . + s q

This t e l l s us t h a t t h e o n l y e i g e n v a l u e r e l e v a n t t o t h e s e l f - d i f f u s i o n problem i s AOq which v a n i s h e s a s q-m and

(4)

I n t h e l i m i t o f s m a l l q t h e o p e r a t o r - iqvx which appears i n A can b e considered a s a small per- t u r b a t i o n and it i s e a s y t o c a l c u l a t e

ttoq

u s i n g s t a n d a r d p e r t u r b a t i o n t h e o r y :

where t h e s c a l a r product i s d e f i n e d by

and 3/2 2

eq ( v ) = ( --2!-- ) exp ( -

-

) ( 2 3 )

21~krkT 2kT

i s t h e Maxwell d i s t r i b u t i o n f u n c t i o n . I n t h e s e equa- t i o n s we have assumed ( i ) t h a t t h e d i s t r i b u t i o n f u n c t i o n o f t h e b a t h p a r t i c l e s i s n o t p e r t u r b e d by t h e presence o f t h e tagged p a r t i c l e and ( i i ) t h a t t h e p r o b a b i l i t y of c o l l i s i o n between two tagged p a r t i c l e s i s very s m a l l , s o t h a t t h e o p e r a t o r Cs ( 1 ) i s l i n e a r .

The complicated i n t e g r a l a p p e a r i n g i n t h e r . h s . o f t h e e q u a t i o n ( 2 1 ) can be c a l c u l a t e d u s i n g a v a r i a t i o n a l procedure. I n t h e lowest approximation, one o b t a i n s t h e simple r e s u l t :

where t h e c o l l i s i o n i n t e g r a l C 2 ( ' ) ( 1 ) depends on t h e i n t e r a t o m i c p o t e n t i a l . I n t h e simple c a s e of h a r d s p h e r e s o f diameter o, t h i s e x p r e s s i o n reduces t o :

This r e s u l t provides a u s e f u l d e s c r i p t i o n o f d i l u t e g a s e s (n a 3 << 1) b u t f a i l s t o be v a l i d as t h e d e n s i t y i n c r e a s e s , because many s i m p l i f i c a t i o n s

(10) have been i n t r o d u c e d i n t h e Boltzmann e q u a t i o n

.

( i ) only independent b i n a r y c o l l i s i o n s have been c o n s i d e r e d ;

( i i ) t h e s e c o l l i s i o n s a r e c o n s i d e r e d l o c a l i n space and time. When a c o l l i s i o n o c c u r s at p o i n t r , +-

-+ -+

t h e d i s t r i b u t i o n f u n c t i o n f s ( r , v , t ) h a s been used i n t h e c o l l i s i o n i n t e g r a l whereas one should u s e

-+

.+

f,($

-

A;,

3,t -

At) where r

-

A r i s t h e p o i n t t h e molecule i s coming from and A t i s t h e t i m e necessary

f o r - t h e molecule t o r e a c h t h e p o i n t +- r , from t h e pre- ceding c o l l i s i o n .

( i i i ) t h e p r o b a b i l i t y o f c o l l i s i o n of two mo- l e c u l e s i s r e l a t e d t o t h e two-body d i s t r i b u t i o n

+ +

f u n c t i o n f(Z)(:,

3

;

r ,

v r ; t ) . Tn t h e Boltzmann

e q u a t i o n it i s assumed t h a t :

This approximation i s very crude : it n e g l e c t s t h e geometcical c o r r e l a t i o n s between p a r t i c l e s , which a r e b u i l t up by t h e i r i n t e r a c t i o n s .

A g r e a t improvement over t h e Boltzmann r e s u l t ( 2 5 ) has been o b t a i n e d semi-empirically by Enskog

I ) . ~e t a k e s i n t o account t h e s e g e o m e t r i c a l cor- r e l a t i o n s by o b s e r v i n g t h a t t h e c o l l i s i o n r a t e i s n o t governed by n t h e d e n s i t y of b a t h p a r t i c l e s , b u t by n g ( o ) where g ( a ) i s t h e r a d i a l d i s t r i b u t i o n

f u n c t i o n (RDF) a t c o n t a c t . Therefore t h e b i n a r y c o l l i s i o n d i f f u s i o n c o e f f i c i e n t of h a r d spheres i n t h e Enskog approximation i s simply :

If one u s e s r e a s o n a b l e hard s p h e r e (HS) d i a m e t e r s a , t h i s simple r e s u l t p r o v i d e s v a l u e s of s e l f d i f f u s i o n c o e f f i c i e n t s which a r e o f t h e r i g h t o r d e r

(12)

of magnitude

.

2 . 2 . -

Denndg expannion oj Zhe dijdunion - - _ _ _ - _ _ - - - _ - --- --- _--- -_---

codd&Gc@

A s t h e d e n s i t y i n c r e a s e s , it i s no more v a l i d t o c o n s i d e r only u n c o r r e l a t e d b i n a r y c o l l i s i o n s . I n high d e n s i t y f l u i d s s u c c e s s i v e c o l l i s i o n s a r e high- l y c o r r e l a t e d . Some sequences o f such c o r r e l a t e d

c o l l i s i o n s a r e s c h e m a t i c a l l y d e p i c t e d i n f i g u r e 1.

I n f i g u r e 1 ( a ) a p r o c e s s by which t h e tagged p a r t i c l e ( 1 ) undergoes two s u c c e s s i v e u n c o r r e l a t e d c o l l i s i o n s i s d e s c r i b e d ; ( 1 ) c o l l i d e s f i r s t w i t h

( 4 )

and s u b s e q u e n t l y with p a r t i c l e ( 2 ) and p a r t i - c l e s ( 2 ) and ( 4 ) do n o t i n t e r a c t ( d i r e c t l y o r i n - d i r e c t l y ) w i t h one a n o t h e r when t h e t a g g e d p a r t i c l e ( 1 ) t r a v e l s between t h e space time p o i n t s A and B.

F i g u r e 1 ( b ) shows a sequence o f two c o r r e l a t e d col- l i s i o n s : a t t h e space time p o i n t B t h e tagged par- t i c l e c o l l i d e s a g a i n w i t h t h e p a r t i c l e ( 2 ) wit11 which it had c o l l i d e d b e f o r e . These c o l l i s i o n s a r e of t h e g e n e r a l t y p e d e p i c t e d i n f i g u r e 1 ( c ) : a f t e r t h e f i r s t c o l l i s i o n between ( I

1-

and (2) a t A : t h e b a t h p a r t i c l e e x p e r i e n c e s a sequence o f c o l l i s i o n s with o t h e r b a t h p a r t i c l e s ; i n t h e same time t h e tagged p a r t i c l e undergoes a s e r i e s o f , u n c o r r e l a t e d c o l l i s i o n s with b a t h p a r t i c l e s and c o l l i d e s a t B w i t h a b a t h p a r t i c l e ( n ) which has ( d i r e c t l y o r in- d i r e c t l y ) i n t e r a c t e d w i t h t h e i n i t i d b a t h p a r t i c l e

(5)

c8-338

JOURNAL DE PHYSIQUE

( 2 ' ) . Notice t h a t p a r t i c l e ( n ) may be t h e same a s sequence d e s c r i b e d by c ~ ( ~ ) i s d e p i c t e d i n f i g u r e p a r t i c l e ( 2 ) , a s i n f i g u r e 1 (b). I n t h i s " r i n g cO1- 1 ( b ) . C o n s i s t e n t l y with t h e Eq. ( 29) we may t r y l i s i o n " t h e second c o l l i s i o n r e t a i n s t h e memory of to expand t h e d i f f u s i o n D in successive t h e f i r s t one and it i s c l e a r t h a t such c o r r e l a t e d powers o f t h e d e n s i t y n :

sequences must b e t a k e n i n t o account i n o r d e r t o

D = (D")

+

n D(2)

+

n2 D(3)+

. . .

.) ( 3 0 ) p r o p e r l y d e s c r i b e s e l f d i f f u s i o n o r i m p u r i t y d i f f u -

s i o n .

Figune 1 :

Two successive c o ~ i o i o v l s

06

*he fagged pamXcLe ( 1

I vkniz

b& tx~~tLCee5

may

be uncom&ed

la),

oh coh- h&ed ( b and

d) .

f i g . 1 ( c ) : hing c o L l h i o n

A f i r s t s t e p toward t h e i n t r o d u c t i o n o f c o r r e - l a t i o n s c o n s i s t s i n a g e n e r a l i z a t i o n of t h e Eq.(21) which can be f o r m a l l y w r i t t e n ( 9 ) :

The s i m p l e s t g e n e r a l i z a t i o n o f t h i s e x p r e s s i o n i s :

Using a p e r t u r b a t i o n expansion, t h e f i r s t c o r r e c t i o n D ( ~ ) can be f o r m a l l y w r i t t e n :

The important p o i n t t o n o t i c e i s t h a t t h i s c o r r e c t i o n d i v e r g e s a s n% i n a Ed-system,There- f o r e t h e expansion (30) i s not l e g i t i m a t e . It i s p o s s i b l e t o f i n d simple arguments (') t o show t h e ( u n p h y s i c a l ) o r i g i n of t h i s divergence. L e t us c o n s i d e r f o r i n s t a n c e t h e diagram d e p i c t e d i n f i g u r e 1 (b) ; i t can b e shown t h a t t h e f r a c t i o n o f b i n a r y c o l l i s i o n s which g i v e r i s e t o a r e c o l l i s i o n o f t h i s type a t any l a t e r time d i v e r g e s i n a 2d- system. But a c t u a l l y b o t h p a r t i c l e s a c t a s a s c r e e n which e l i m i n a t e s long time r e c o l l i s i o n s s o t h a t t h e d i f f u s i o n c o n s t a n t t a k e s t h e form (14)

.

The p r o p e r way t o t a c k l e t h i s divergence pro- blem i s t o c o n s i d e r r i n g s (') which exhaust t h e c l a s s o f t h e most d i v e r g i n g diagrams. A t y p i c a l r i n g i s d e p i c t e d i n f i g u r e 1 ( c ) . T h e o r i e s which i n c l u d e , i n a d d i t i o n t o t h e Enskog t e r m , t h e s e r i n g e v e n t s

arq

k n w a s r i n g t h e o r i e s

'

15-19' and have been used t o o b t a i n t h e l o n g time t a i l of t h e v e l o c i t y auto- c o r r e l a t i o n f u n c t i o n (20

$*'

) d i s c o v e r e d by molecu- l a r dynamics c a l c u l a t i o n s ( 2 2 ' , and t o c a l c u l a t e s e l f - d i f f u s i o n c o e f f i c i e n t s . Repeated r i n g s a r e a l s o i n c l u d e d by Mehaffey and C ~ k i e r ' ~ ~ ) i n t h e i r k i n e t i c t h e o r y o f s i n g l e - p a r t i c l e motion i n a f l u i d .

2.3. - Ring

and

Repeated Ring T h e o h i a

--- --- --- ---

D 1 L - L

The essence o f t h e c a l c u l a t i o n o f Mehaffey

s and Cukier i s a s follows. They d e f i n e t h e Laplace

with Cs

=

n C S ( ' )

+

n2 Cs(2)+

. . . . .

( 29) Transfoim of t h e VAF a s

where c ~ ( ~ ) d e s c r i b e s a p r o c e s s i n v o l v i n g two b a t h $J(z)

" - I

dl v l x Cs(12) V2x p a r t i c l e s . Among t h e s e p r o c e s s e s , some a r e uncorre- ni

fi

l a t e d and have t h e r e f o r e a l r e a d y been c o n s i d e r e d where ni i s t h e number o f tagged p a r t i c l e s p e r u n i t by i t e r a t i o n o f c s ( )

.

An example of c o r r e l a t e d volume, 52 i s t h e volume o f t h e system and Cs(12) i s

(6)

t h e Laplace Transform (LT) of t h e tagged p a r t i c l e d e n s i t y c o r r e l a t i o n f u n c t i o n :

They show t h a t Cs(12) obeys t h e well-known e q u a t i o n

where L o ( ? ) i s t h e tagged p a r t i c l e f r e e streaming L i o u v i l l e o p e r a t o r , Qs(13) i s t h e LT o f t h e me- mory f u n c t i o n and ?s(12) i s t h e e q u a l time c o r r e - l a t i o n f u n c t i o n . The e q u a t i o n o f motion of Qs i n v o l v e s h i g h e r o r d e r c o r r e l a t i o n f u n c t i o n s which must b e approximated i n some way b u t Qs can b e f o r m a l l y w r i t t e n :

where

EM

i s t h e mean f i e l d v a l u e of t h e four-point c o r r e l a t i o n f u n c t i o n G (17, 22) d e s c r i b i n g t h e event where t h e tagged p a r t i c l e l o c a t e d a t t h e p o i n t 1 i n t e r a c t s f i r s t w i t h a b a t h p a r t i c l e a t

i

and l a t e r w i t h a n o t h e r ( o r t h e same) b a t h p a r t i c l e a t p o i n t

2.

Geometrical c o r r e l a t i o n s a r e i n c l u d e d i n

EM

b u t all dynamical e j f e c t s a r e n e g l e c t e d s o t h a t t h e f i r s t term i n t h e Eq. ( 3 5 ) c o n t a i n s t h e Enskog approxima- t i o n t o Qs. Vs i n t h e Eq.(37) r e p r e s e n t s t h e i n t e r - a c t i o n between t h e t a g g e d p a r t i c l e and b a t h p a r t i - c l e s . Due t o s c l e e n i n g and excluded volume e f f e c t s , t h e p a r t i c l e s i n t e r a c t by t h e p o t e n t i a l Of mean f o r c e ( - k ~ I n g ( r ) ) r a t h e r t h a n by t h e b a r e i n t e r - atomic p o t e n t i a l ~ ( r ) . I f one u s e s t h e Eq. ( 3 5 ) , n e g l e c t s t h e c o r r e c t i n g term 6QS and makes simple approximations t o

EM ,

one r e c o v e r s t h e Enskog t h e o r y i n which t h e tagged p a r t i c l e undergoes o n l y u n c o r r e l a t e d c o l l i s i o n s with b a t h p a r t i c l e s .

The c o r r e c t i o n s t o t h e Enskog t h e o r y a r e con- t a i n e d i n 6QS. They can be s e p a r a t e d i n two c l a s - s e s :

a) i n t h e r i n g approximation one w r i t e s :

where T and i t s t r a n s p o s e T~ r e p r e s e n t Enskog bina- r y encounters between t h e tagged p a r t i c l e and b a t h p a r t i c l e s . The e q u a t i o n ( 3 6 ) r e p r e s e n t s an i n i t i a l c o l l i s i o n between t h e tagged p a r t i c l e

a

and a b a t h p a r t i c l e

B

( T T ), t h e n some complicated i n t e r m e d i a t e propagation ( G ' ) and a t e r m i n a t i n g c o l l i s i o n ( T )

between a and 6 o r a n o t h e r b a t h p a r t i c l e which h a s i n t e r a c t e d dynamically w i t h 6 s i n c e t h e f i r s t col- l i s i o n ; -cT and T a r e t h e r e f o r e c o r r e l a t e d c o l l i - s i o n s . Using t h i s approximation, Mehaffey and Cukier c a l c u l a t e t h e VAF + ( t ) and t h e d i f f u s i o n c o n s t a n t D. o f h a r d s p h e r e s of diameter Ui and mass misin d i l u t e s o l u t i o n i n a bath of s p h e r e s w i t h diameter 0 and mass ms, i n t h e l i m i t oi >> Us

3

1 where 1 i s t h e mean f r e e p a t h o f b a t h p a r t i c l e s . I f One defines t h e Enskog v e l o c i t y r e l a x a t i o n frequency X E :

where T T ' i s t h e tagged p a r t i c l e - b a t h p a r t i c l e

1 s

c o l l i s i o n frequency, one g e t s i n t h e Enskog appro- ximation :

and

DiE =

-

kT ( 3 9 )

mi X~

C l e a r l y t h e t i m e dependence o f J I ~ ( ~ ) i s n o t c o r r e c t e i t h e r a t . s h o r t o r l o n g t i m e s .

I n t h e r i n g approximation one g e t s i n s t e a d of ( 3 8 ) and ( 3 9 ) :

and vE i s t h e Enskog kinematic s h e a r v i s c o s i t y . The e q u a t i o n ( 4 0 ) e x h i b i t s t h e c o r r e c t l o n g time behaviour o f $ ( t ) b u t , when t h e t a g g e d p a r t i - c l e i s l a r g e (0.; >>

o

), t h e c o e f f i c i e n t o f t -3/2 depends on t h e r a t i o ( o i / o ) 2 whereas f l u c t u a t i n g

'J i

hydrodynamics p r e d i c t s t h a t , f o r

-

>> 1

,

t h i s c o e f f i c i e n t i s independent of oi. us Moreover, t h e Eq. ( 4 1 ) p r e d i c t s t h a t , a s r l / A i n c r e a s e s ,

R E E

Di

/

D. i n c r e a s e s and becomes n e g a t i v e when r , >

E' a r e s u l t which i s c l e a r l y unphysical.

L e t us n o t i c e however t h a t f o r t a g g e d p a r t i - c l e s which a r e not t o o l a r g e , t h e r i n g t h e o r y pro- v i d e s a good d e s c r i p t i o n o f $(t) and D. For i n s t a n c e F u r t a d o e t a1 ( 2 1 ) w r i t e t h e memory f u n c t i o n ~ ( t ) o f t h e VAF a s f o l l o w s :

(7)

JOURNAL DE PHYSIQUE

~ ( t ) = XE 6 ( t ) + 6 K ( t ) where rlE =

v

En s m s i s t h e Enskog v a l u e o f t h e f l u i d s h e a r v i s c o s i t y . The c o e f f i c i e n t o f t-3/2 i n where XE ~ ( t ) i s t h e Enskog c o n t r i b u t i o n . The p a r t $ ( t ) a g r e e s w e l l with t h e r e s u l t s of f l u c t u a t i n g of 6 ~ ( t ) due t o r i n g c o l l i s i o n s i s c a l c u l a t e d in hydrodynamics. For very l a r g e p a r t i c l e s , t h e second a quasi-hydrodynallli~ approximation : t h e c o n t r i b u - term i n D? representing t h e c o n t r i b u t i o n o f succes- t i o n o f t h e f i v e hydrodynamic states is s i v e c o r r e l a t e d c o l l i s i o n s dominates eyer t h e f i r a t

e x a c t l y and t h e non-hydrodynamic modes a r e appro- and t h e d i f f u s i o n c o e f f i c i e n t t a k e s on t h e Stokes xirnately t a k e n i n t o account. The VAF and t h e r a t i o form.

D/D c a l c u l a t e d u s i n g t h i s procedure e x h i b i t t h e E

same v a r i a t i o n w i t h d e n s i t y a s t h e computer simula- A g e n e r a l i z a t i o n o f t h e s e c a l c u l a t i o n s t o sys- t i o n r e s u l t s ( f i g u r e 2 ) tems w i t h continuous i n t e r a c t i o n p o t e n t i d s can be

found i n a s e r i e s o f papers by Sjijlander e t al (24- 26)

(C(S)

I11

-

GENERALIZED LANGEVlN EQUATION AND SZMPLE MODELS

0.6

L,

,

[Pi y

K i n e t i c t h e o r i e s a r e n e c e s s a r y t o u n d e r s t a n d t h e

0.4 -

1.0 d e t a i l s o f t h e p h y s i c s i n v o l v e d i n t r a n s p o r t pro-

0 2 V l V 0

c e s s e s . The main d i f f i c u l t y with them i s t h a t t h e y

0 0.8

(4

become very i n t r i c a t e when one t r i e s t o r e a l i s t i c a l -

2 4 6 8 1 0 1 2 s l y d e s c r i b e t h e motion o f a tagged p a r t i c l e i n a f l u i d . One may t h e r e f o r e t r y t o r e l y on phenomenolo- Figune 2 : g i c a l t h e o r i e s . The f i r s t s t e p i n t h i s d i r e c t i o n

-

i s ( a ) VeLocity a&ocohrr&~tLon duncfhn $ ( A ) i n a t o use t h e w e l l known Langevin s t o c h a s t i c t h e o r y ( 2 8 )

bmd bphet~e @iiid do&

di+jdehent

v&en od

t h e

dm&.(on y i J a )

y

=

0.0741

; ( b ) y =

0.2468

which d e s c r i b e s t h e motion of a l a r g e and massive ( c ) y

- 0.462ti

; b = - 2

X E t.

p a r t i c l e ( t h e i m p u r i t y ) i n a b a t h of s m a l l e r and ( 6 ) ~ a t L i a t i o n

06

be&-diddunion ~0

VIDE ul.iAh

V/Vo l i g h t e r p a r t i c l e s . I n t h i s c a s e t h e decay o f t h e

(dmm

he-6. ( 2 1 )

1.

v e l o c i t y of t h e i m p u r i t y o c c u r s i n a much l a r g e r in particular the enhancement of D,Dg at inter- t i m e t h a n t h e c o l l i s i o n t i m e . It i s t h e r e f o r e con- mediate d e n s i t y i s o b t a i n e d , a s w e l l a s t h e l o n g v e n i e n t t o w r i t e t h e e q u a t i o n o f motion o f t h e t i m e t a i l o f $ ( t ) . These f e a t u r e s a r e a l s o a p p a r e n t impurity as :

i n t h e c a l c u l a t i o n of Mazenko ( 1 5 ' 1 6 ) who c o n s i d e r s

i. + K vx = F ( t ) o n l v hvdrodvnamic c o n t r i b u t i o n s . and i n t h e work o f " " X

R s s i b o i s (19'20) who determines t h e c o n t r i b u t i o n o f where

-

is a sternatic retarding force c o r r e l a t e d sequences of two b i n a r y c o l l i s i o n s b e t - X

a c t i n g on t h e i m p u r i t y and m F ( t ) i s a random f o r c e ween t h r e e p a r t i c l e s .

&ch i s assumed t o have t h e f o l l o w i n g p r o p e r t i e s : b ) As t h e s i z e of t h e tagged p a r t i c l e i n c r e a s e s ,

r e p e a t e d c o l l i s i o n s become more important because t h e b a t h p a r t i c l e s r e p e a t e d l y r e t u r n t o t h e tagged p a r t i - c l e . The r e p e a t e d r i n g approximation i s n e c e s s a r y i n o r d e r t o remove t h e unphysical divergence of D found i n t h e r i n g t h e o r y . Using t h i s approximation, Mehaffey and Cukier show t h a t t h e l o n g time beha- v i o u r o f + ( t ) i s :

and t h a t t h e diff'usion c o e f f i c i e n t can be w r i t t d n

( a ) it v a n i s h e s i n t h e average ; ( b ) it i s uncorre- l a t e d w i t h t h e v e l o c i t y ( < F ( t ) v X ( o ) >

=

0 ) ; ( c ) i t s c o r r e l a t i o n time vanishes :< F ( t ) F ( o ) > =

2 B 6 ( t ) . Let us n o t i c e t h a t F and K a r e n o t inde- pendent : i f we i n t e g r a t e t h e e q u a t i o n ( 5 2 ) , use t h e p r o p e r t i e s of

F

and e x p r e s s t h e f a c t t h a t 1/2 m<vx> 2 t e n d s t o kT/2 because t h e i m p u r i t y become t h e r m a l i - zed i n t h e l o n g t i m e l i m i t , we o b t a i n a r e l a t i o n between t h e s t r e n g t h o f t h e f l u c t u a t i n g f o r c e and t h e magnitude K o f t h e f r i c t i o n c o e f f i c i e n t :

B = kT K (46)

This e q u a t i o n i s a c t u a l l y a simple v e r s i o n o f t h e (44 f l u c t u a t i o n d i s s i p a t i o n theorem (29y30).

(8)

Because F ( t ) i s not c o r r e l a t e d w i t h vx, it i s s t r a i g h t f o r w a r d t o show t h a t $ ( t ) = < v x ( t ) v x ( o ) >

obeys t h e e q u a t i o n :

and t h e r e f o r e decays e x p o n e n t i a l l y . Using t h e Eq.

( 1 1 ) t h e d i f f u s i o n c o e f f i c i e n t becomes :

a r e s u l t known a s t h e E i n s t e i n formula.

I n t h i s simple approximation t h e v a l u e of D depends d i r e c t l y on t h e v a l u e o f t h e f r i c t i o n coef- f i c i e n t K ( ~ ' ) which i s r e l a t e d t o t h e i n t e g r a l Of

t h e f o r c e - f o r c e c o r r e l a t i o n f u n c t i o n . K h a s been c a l - c u l a t e d u s i n g v a r i o u s approximations with r e a l i s t i c p o t e n t i a l s m d experimental s t r u c t u r e f a c t o r s .

The p r e c e d i n g simple a n a l y s i s u n f o r t u n a t e l y s u f f e r s from t h r e e major d e f i c i e n c i e s :

( a ) $ ( t ) e x h i b i t s a cusp at t = 0 , when it should be rounded a s t h e VAF i s an even function o f time ;

( b ) J, ( t ) decays e x p o n e n t i a l l y whereas molecu- l a r dynamics c a l c u l a t i o n s show t h a t ( i ) $ ( t ) may become n e g a t i v e i n high d e n s i t y f l u i d s and ( i i )

$ ( t ) has a Long t i m e t a i l d e c r e a s i n g slowly i n ti- me a s t-3'2 i n 3d systems.

The g r e a t advantage o f t h e Langevin e q u a t i o n i s t h a t it can e a s i l y b e g e n e r a l i z e d u s i n g t h e Mori formalism (31'32). The v e l o c i t y \(t) a c t u a l -

.-

l y obeys a very complicated L i o u v i l l e e q u a t i o n which d e s c r i b e s a l l t h e dynamics o f t h e d i f f u s i o n p r o c e s s . Mori h a s shown however t h a t t h i s L i o u v i l l e e q u a t i o n

i s e q u i v a l e n t t o t h e g e n e r a l i z e d Langevin e q u a t i o n : t

G

+

j

d r K ( t

-

r ) v - r ) = a ( t )

X 0

(49 ) where ~ ( t ) i s t h e memory f u n c t i o n and a ( t ) is a random f o r c e ( i t is a c t u a l l y an a c c e l e r a t i o n ) which i s o r t h o g o n a l t o ( i

.

e. u n c o r r e l a t e d w i t h ) t h e velo- c i t y . The VAF t h e r e f o r e obeys t h e simple e q u a t i o n :

which ,makes s u r e t h a t $(o) = 0 i f t h e memory func- t i o n i s given a simple f u n c t i o n a l form: Moreover, it can b e shown t h a t :

( a ) a ( t ) a l s o obeys a g e n e r a l i z e d Langevin e q u a t i o n :

t

+

1

d r M ( t

-

r ) a ( r ) = ~ ( t ) (51 )

0

where M i s t h e memory f u n c t i o n o f a and R i s a new f l u c t u a t i n g f o r c e , o r t h o g o n a l t o a and v ;

( b ) K ( t ) i s r e l a t e d t o t h e f o r c e - f o r c e c o r r e l a - t i o n f u n c t i o n :

s o t h a t :

i s t h e s q u a r e o f t h e E i n s t e i n frequency of t h e i m p u r i t y , i . e . t h e frequency it would have i f t h e b a t h p a r t i c l e s were k e p t f i x e d a t t h e i r i n i t i a l p o s i t i o n . From t h e Eq. (51) and (52), it i s easy t o show t h a t t h e e q u a t i o n of motion of K ( t ) i s :

( 5 4 )

The p r o c e s s l e a d i n g t o t h e Eq. (50) and (54) can be i t e r a t e d w i t h t h e hope t h a t , a s one goes f u r t h e r , t h e memory f u n c t i o n s decay on a s h o r t e r a d s h o r t e r t i m e s c a l e . The sequence of e q u a t i o n s can b e

'I,

s o l v e d by L a p l a c e t r a n s f o r m a t i o n . I f $ ( s ) i s t h e t r a n s f o r m o f $ ( t ) we g e t :

It i s c l e a r t h a t t h e f a r t h e r one goes i n t h e con- t i n u e d f r a c t i o n expansion (551, t h e b e t t e r i s t h e d e s c r i p t i o n o f t h e s h o r t time dynamics of t h e d i f -

f u s i o n p r o c e s s . Even t h e s i n g l e r e l a x a t i o n time ap- proximation, where one assumes a n e x p o n e n t i a l decay of K ( t ) ( o r e q u i v a l e n t l y , a white spectrum f o r

~ ( t ) :

may p r o v i d e an o s c i l l a t o r y $ ( t ) . According t o t h e Eq. (52), we g e t :

which, a f t e r Laplace i n v e r s i o n g i v e s :

(9)

JOURNAL DE PHYSIQUE

~ 8 - 3 4 2

where s+ and s- a r e t h e r o o t s o f t h e denominator of t h e Eq. (58 ) . These r o o t s have an imaginary p a r t i f

~ K ( o ) > cx 2 o r :

I n t h i s c a s e , t h e VAF i s g i v e n by t h e e x p r e s s i o n :

$ ( t ) = $ ( o ) e - i / e c c t [ c o s ~ t + g s i n ~ t ] ( 6 1 ) R

where R2 = 4

no2 -

cc 2

A s

no

i s known from t h e i n t e r a t o m i c p o t e n t i a l and t h e e q u i l i b r i u m s t r u c t u r e o f t h e f l u i d , t h e p r e s c r i p t i o n (60) i s very u s e f u l t o determine i f t h e VAF has an o s c i l l a t o r y behaviour o r n o t . The s i n g l e r e l a x a t i o n t i m e approximation has been used by Berne, Boon and Rice(33) t p i n t e r p r e t t h e mole- c u l a r dynamics d a t a o b t a i n e d by Rahman i n argon. I f one wants t o improve t h e d e s c r i p t i o n o f t h e s h o r t time dynamics, one h a s t o use more s o p h i s t i c a t e d forms o f ~ ( t ) ( 3 4 ) , a s f o r i n s t a n c e t h e gaussian approximation o f Singwi and Tosi ( 3 5 )

o r t h e approximation o f Martin and Yip (36' :

which i n v o l v e s t h e c o r r e l a t i o n f u n c t i o n o f t h e time d e r i v a t i v e & o f t h e a c c e l e r a t i o n .

The main d e f i c i e n c i e s of t h e p r e c e d i n g a n a l y s i s a r e t h e f o l l o w i n g :

( a ) it does n o t p r e d i c t a v a l u e f o r t h e d i f f u - s i o n c o n s t a n t b u t r a t h e r makes use o f it a s a para- meter i n t h e c a l c ~ l a t i 0 n S ;

( b )

ii

i s e s s e n t i a l l y v a l i d a t s h o r t o r interme.

d i a t e times.

A c t u a l l y t h e coherent s t a t e of t h e tagged par- t i c l e changes by e x c i t a t i o n o r a b s o r p t i o n o f exci- t a t i o n s i n t h e f l u i d , which decay slowly i n time.

This g i v e s r i s e t o t h e l o n g time t a i l o f t h e VAF whose F o u r i e r Transform behaves a s a

-

b w

'I2

when w+O. T h i s b e h a v i o u r i s n o t expected i n t h e con- t i n u o u s f r a c t i o n expansion ( ~ q . 5 3 . I n o r d e r t o o b t a i n t h e l o n g time behaviour, o f $ ( t ) and t o b r i d - ge t h e gav'between l o n g and s h o r t t i m e s , Bosse . e t a 1 (37) approximately d e s c r i b e t h e c o u p l i n g o f t h e tagged p a r t i c l e t o l o n g i t u d i n a l and t r a n s v e r s e cur- r e n t e x c i t a t i o n s . They c a l c u l a t e M(t) t o l e a d i n g

o r d e r by assuming simple decay p r o c e s s e s by which t h e tagged p a r t i c l e e x c i t e s s i n g l e c u r r e n t mo'des i n t h e l i q u i d through an average dynamical m a t r i x . Using t h i s procedure t h e y can s e p a r a t e l y c a l c u l a t e t h e c o n t r i b u t i o n s o f l o n g i t u d i n a l and t r a n s v e r s e ex- c i t a t i o n s . T h e i r r e s u l t s compare favourably with t h e d a t a o b t a i n e d by molecular dynamics c a l c u l a t i o n s i n argon and rubidium. The main f e a t u r e s of t h e VAF spectrum a r e w e l l reproduced ( f i g u r e ( 3 ) ) , and i n p a r t i c u l a r t h e peak a t w % Qo i n argon o r w % 1,5 Ro i n rubidium.

Figme

3 :

V d o c i t y a L L t o c o h r r W o n hpecttuun $(wl i n cotnpahinon l u i t h

Rahmaah

'i MP daAa (dashed cwcve] and uLith &e ken& obRained cntitkin $he hingLe h&xa;tion h e apphoxicimcttion (SRTJ l,jnarn

bed

(37) j.

Let us n o t i c e t h a t t h e e q u a t i o n ( 6 1 ) o b t a i n e d i n t h e s i n g l e r e l a x a t i o n t i m e approximation i s t y p i - c a l o f a damped harmonic o s c i l l a t o r : $ ( t ) e x h i b i t s o s c i l l a t i o n s a t s h o r t t i m e s ('r

g

10 -12 s ) and de- cays a t l a r g e t when d i f f u s i v e motions a c t u a l l y occur. A s a consequence t h e average p o s i t i o n -+ R o f t h e t a g g e d

article

changes much more slowly t h a n i t s a c t u a l p o s i t i o n + Ro. This remark l e d S e a r s ( 3 2 ) t o t h e i t i n e r a n t o s c i l l a t o r model where t h e t a g g e d p a r t i c l e v i b r a t e s i n t h e cage o f i t s n e a r e s t neigh- bours. The cage i t s e l f i s s u b j e c t e d t o a random f o r -

t

ce r f ( t ) and t o a s y s t e m a t i c r e t a r d i n g f o r c e - v R ( t ) . Using t h e e x p e r i m e n t a l v a l u e o f D and molecular dynamics d a t a , t h e spectrum of $ ( t ) he o b t a i n s f i t s reasonably w e l l t o t h e computer d a t a . Let us n o t i c e however t h a t t h i s a n a l y s i s i s n o t v a l i d a t s h o r t ti- me because t h e f o r c e s a r e n o t s t o c h a s t i c a t t h i s s c a l e o f t i m e . A s i m i l a r , q u a s i - c r y s t a l l i n e model

(391 h a s been used by Rahman e t al.

.

(10)

c o e f f i c i e n t s c o n t a i n an imaginary p a r t :

IV - HYDRODYNAMIC T H E O R Y

I n o r d e r t o t h e o r e t i c a l l y i n v e s t i g a t e t h e o r i - g i n of t h e l o n g time t a i l o f t h e VAF, it i s n a t u r a l t o r e l y on hydrodynamics. This h a s - b e e n done by Alder and Wainwright ( 2 2 ) who showed t h a t a t i n t e r - mediate d e n s i t y , t h e s o l u t i o n o f t h e Navier-Stokes e q u a t i o n l e a d s t o a hydrodynamic s t r u c t u r e of t h e v e l o c i t y f i e l d observed i n computer experiments on h a r d s p h e r e systems.

A s i m i l a r a n a l y s i s has been made by Zwanzig and Bixon ( 4 0 ) . According t o t h e Stokes-Einstein formula, t h e d i f f u s i o n c o e f f i c i e n t of a sphere of diameter i n a f l u i d with v i s c o s i t y 0 i s given by :

where

a

= 3 i f t h e f l u i d s t i c k s p e r f e c t l y t o t h e s u r f a c e o f t h e sphere and

a

= 2 i f t h e f l u i d s l i p s p e r f e c t l y o v e r t h i s s u r f a c e . Using experimental va- l u e s of D i n l i q u i d argon o r i n m e t a l s , t h e Eq.(64) l e a d s t o diameters

u

which a r e not unreasonable ( e s p e c i a l l y w i t h a = 2 ) . This remark g i v e s i t s f u l l value t o t h e a n a l y s i s of S t o k e s - E i n s t e i n , which can be improved i n two ways :

a ) I n t h e s t a n d a r d S t o k e s - E i n s t e i n t h e o r y t h e Navier-Stokes e q u a t i o n s a r e l i n e a r i z e d and, s t e a d y motion of t h e sphere i s assumed s o t h a t a l l d e r i - v a t i v e s a r e s e t equal t o z e r o . This amounts t o assu- ming t h a t t h e f l u i d i s incompressible, even i f i t i s a gas. It i s c l e a r t h a t , i n o r d e r t o d e s c r i b e t h e e r r a t i c motion of t h e sphere, one h a s t o extend t h i s t h e o r y t o t h e c a s e where t h e v e l o c i t y of t h e d i f f u s i n g s p h e r e v a r i e s w i t h time.

Using t h e same approximations a s b e f o r e (incom- p r e s s i b i l i t y of t h e f l u i d ) Stokes and Boussinesq g e t v a l u e s f o r t h e

VAF

which

do

n o t agree a t a l l w e l l with computer experiments.

b ) The reason f o r t h i s discrepancy can b e t r a - ced t o t h e inadequacy of t h e i n c o m p r e s s i b i l i t y ap- proximation. The time required f o r a sound wave t o propagate over an i n t e r a t o m i c d i s t a n c e i s about

s when t h e time s c a l e f o r d i f f u s i o n ( T % m/c) i s o f t h e same o r d e r o f magnitude. It i s t h e r e f o r e not l e g i t i m a t e t o n e g l e c t sound propagation. Moreo- v e r , it i s w e l l known t h a t f o r t h e high f r e q u e n c i e s

( 1 0 ' ~ s - l ) o f i n t e r e s t i n t h i s problem, a l i q u i d behaves v i s c c e l a s t i c a l l y . It i s t h e r e f o r e n a t u r a l t o assume t h a t t h e frequency dependent v i s c o s i t y

where K i s t h e v i s c o e l a s t i c r e l a x a t i o n time ( T %lo-13s i n l i q u i d a r g o n ) .

The l i n e a r i z e d f u l l Navier-Stokes e q u a t i o n s can then be s o l v e d , assuming t h a t t h e p r e s s u r e g r a d i e n t i s p r o p o r t i o n a l t o t h e g r a d i e n t o f t h e d e n s i t y .

Using r e a l i s t i c v a l u e s f o r t h e parameters ente- r i n g t h e t h e o r y , Zwanzig and Bixon o b t a i n a VAF

$ ( t ) and a frequency spectrum o f $ which compare favourably with t h e d a t a o f ~ a h m a i .

Let us a l s o mention t h e c a l c u l a t i o n o f Dorfnan ( 1 8 )

and Cohen

,

E r n s t e t a1.(41) who o b t a i n a de- t a i l e d e x p r e s s i o n f o r t h e l o n g time behaviour o f

$ ( t ) :

w h e r e v - n/nm i s t h e kinematic v i s c o s i t y . T h i s behaviour o f $ ( t ) has been checked on HS systems by Alder e t a l . ( 2 2 ) and by ~ e v e s q u e and Ashurst on Lennard-Jones f l u i d s (44)

VI - CONCLUSION

It t h i s review we have t r i e d t o show t h e d i f - f i c u l t y of t h e o r e t i c a l l y p r e d i c t i n g d i f f u s i o n coef- f i c i e n t s i n l i q u i d s . This d i f f i c u l t y a r i ~ e s essen- t i a l l y from t h e f a c t t h a t t h e d i f f u s i v e behaviour o f a tagged p a r t i c l e t a k e s p l a c e a f t e r t h e p a r t i c l e h a s experienced a g r e a t number of c o r r e l a t e d col- l i s i o n s . If t h e s e c o l l i s i o n s a r e c o n s i d e r e d indepen- dent from one a n o t h e r , t h e simple k i n e t i c models p r o v i d e d by t h e Boltzmann

-

Enskog e q u a t i o n s e a s i l y p r o v i d e v a l u e s o f d i f f u s i o n c o e f f i c i e n t s which a r e o f t h e r i g h t o r d e r of magnitude, b u t t h e d e t a i l e d dynamics a r e completely ignored. A s u s u a l i n s t r o n - g l y i n t e r a c t i n g many-body systems, p e r t u r b a t i o n ex- p a n s i o n s a r e v e r y d i f f i c a t t o perform because o f t h e c o r r e l a t i o n s between c o l l i s i o n s . A tagged par- t i c l e a t time t induces a backflow i n t h e f l u i d which r e a c t s b a c k on it a t a l a t e r t i m e , l e a d i n g t o memory e f f e c t s . C a l c u l a t i n g t h e e f f e c t o f t h e backflow i n d e t a i l s i s a very d i f f i c u l t t a s k b u t molecular dynamics c a l c u l a t i o n s have shed some l i g h t on some simple e f f e c t s .

(11)

C8-344 JOURNAL DE PHYSIQUE

There e x i s t t h e o r i e s which d e s c r i b e e i t h e r t h e 24 s h o r t time dynamics o f t h e tagged p a r t i c l e o r i t s 2 5 l o n g time behaviour. The d i f f i c u l t problem i s t o

b r i d g e t h e gap i n between e s p e c i a l l y with r e a l i s t i c 26 p o t e n t i a l s .

R E F E R E N C E S

- - -

1 D.A. RIGNEY, i n "Liquid Metals 1976", I n t . Phys. Conf. Ser. No 30, The I n s t i t u t e o f P h y s i c s , 1977, p. 619.

2 N . H . NACHTRIEB, i n "The P r o p e r t i e s of L i q u i d

~ e t a l s " , Taylor and F r a n c i s , 1973, p. 521 3 N.H. MARCH, M.P. TOSI, Atomic Dynamics i n Li-

q u i d s , MacMillan P r e s s , 1976. 29

4 J . R . D . COPLEY, S.W. LOVESEY, Reports on Prog.

i n Phys.

3,

461

,

1975 30

5 G.H. VINEYARD, Phys. Rev.

110,

999

,

1958

6

J . P . HANSEN, I . R . McDONALD, Theory of Simple

L i q u i d s , Acad. P r e s s .

,

1976. 3 1 7 J'.P. HANSEN, i n "Microscopic S t r u c t u r e and Dy-

namics of Liquids" (Ed. J. Dupuy, A . J . 3 2

~ i a n o u x )

,

Nato Adv. Study I n s t . S e r i e s no B 33 (Plenum P r e s s ) 1978.

8 D. LEVESQUE, L. VERLET, Phys. Rev.

&,

2514 33

1970

9 P. R ~ S I B O I S , M.DE LEENER, C l a s s i c a l K i n e t i c 34 Theory o f F l u i d s

,

J. Wiley, 1977 35 10 R . BALESCU, Equilibrium and Non E q u i l i b r i u m

S t a t i s t i c a l Plechanics,

J.

Wiley, 1975 36

11 S. CHAPMAN, T. COWLING, The Mathematical 37

Theory of Non-Uniform Gases, Cambridge

U n i v e r s i t y P r e s s , 1939 38

12 P. PROTOPAPAS, H.C. ANDERSEN, N.A.D. PARLEE

J . Chem. Phys.

59,

15,1975; 39

13 N.F. CARNAWJ, K.E. STARLING, J. Chem. Phys.

51, 635

,

1969

- 40

J . H . DYMOND, B.J. ALDER, J. Chem. Phys.

5,

4 1

2061, 1966 ;

9,

343, 1968

14 J. VAN LEEUWEN, A. WEYLAND, Physica

&,

457, 42

1967 ;

39,

35

,

1968. 43

15 G.F. MAZENKO, Phys. Rev.

g,

222, 1973

16 G.F. MAZENKO, S.YIP, i n "Modern T h e o r e t i c a l 44 Chemistry", (ed. B.J. B e r n e ) , Plenum

P r e s s , 1979

17 K. KAWASAKI, J. OPPENHEIM, Phys. Rev.

a,

A 1519, 1964

18 J . R . DORFMAN, E.G.D. COHEN, Phys. Rev. L e t t . 25, 1257, 1970

-

19 P. R ~ S I B O I S , J.L. LEBOWITZ, J. s t a t . ~ h y s . 12, 483

,

1975.

-

20 P. R ~ S I B O I S , J . S t a t . Phys. l3, 393, 1975 21 P.M. FURTADO, G.F. MAZENKO, S. YIP

,

Phys.

Rev.

A,

869, 1976

22 B.J. ALD$R, T.E. WAINWRIGHT, Phys. Rev. L e t t . 18, 988, 1967 ; Phys. Rev.

&,

18, 1970 -

B.J. ALDER, D.M. GASS, T.E. WAINWRIGHT, J.

Chem. Phys.

53,

3813, 1970

23 J . R . MEHAFFEY, R . I . CUKIER, Phys. Rev.

m,

1181, 1978

R . I . CUKIER, J . R . MEHAFFEY, Phys. Rev.

a,

1202, 1978

L. S J ~ G R E N , Ann. Phys. (N.York)

113,

304, 1978 L. S J ~ G R E N , A.sYT'~LANDER, Ann. Phys. (N.York)

110, 122, 1978

110,

421, 1978

-

L. S J ~ G R E N , A.SJ~'LANDER, J. Phys. C. l2, 4369 1979.

L. S J ~ G R E N , . J . Phys. C.

a,

705, 1980 A. RAHMAN, Phys. Rev.

136,

A 405 (1964) j

1667, 1974

Phys. Rev. L e t t .

32,

52, 1974 B.R.A. NIJBOEF, A. RAHMAN, Physica

32,

415,

1966

P. LANGEVIN, C.R. Ac. Sc. ( P a r i s )

146,

530, i 908

P. NOZI$.RES, Cours de M6canique S t a t i s t i q u e Grenoble 1980 (unpublished)

R . ZWANZIG, i n "Molecular F l u i d s " Les Houches 1973- B a l i a n & W e i l l ed.

,

Gordon and Breach Science P u b l i s h e r s , 1973 H. MORI, Prog. Theor.Phys.

2 ,

423, 1965

34 ,

399, 1965 A. S J ~ L A N D E R i n "Liquid and Amorphous Metals"

(E. Liischer, H. CouEal e d . ) , S i j t h o f f and Noordhoff, I n t . P u b l i s h e r s , 1980

- -.- . -

B.J. BERNE, J . P . BOON, S.A. RICE, J. Chem. Phys.

&,

1086, 1966

G.D. HARP, B.J. BERNE, Phys. Rev.

g,

975, 1970 K. SINGWI, S. TOSI, Phys. Rev.

157,

153

,

1967 P. MARTIN, S. YIP, Phys. Rev.

170,

151

,

1968 J. BOSSE, W. G ~ T Z E , A. ZIPPELIUS, Phys. Rev.

A,

8,214, 1978 ;

A,

1176, 1978

V.F. SEARS, Proc. Phys. Soc. ondo don)

86,

953, 1965

A.

RAHMAN,

K.S. SINGWI, A.

SJOLANDER,

~ h y s . Rev.

126,

997

,

1962

. -. . .-

R . ZWANZIG, M. BIXON, Phys. Rev.

g,

2005, 1970 M.H. ERNST, E.H. HAUGE, J . M . J . VAN LEEUWEN,

Phys. Rev. Lett.

25,

1254 ,1970

J . G . KIRKWOOD, J. Chem. Phys. lk, 180, 1946 Y. POMEAU, P. R ~ ~ I B O I S , Phys. Reports

B,

63

1975

D. LEVESQUE, W.T. ASHURST, Phys. Rev. L e t t e r s 33, 277, 1974

-

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to