• Aucun résultat trouvé

NON-LINEAR REGENERATION MECHANISMS IN WIND INSTRUMENTS

N/A
N/A
Protected

Academic year: 2021

Partager "NON-LINEAR REGENERATION MECHANISMS IN WIND INSTRUMENTS"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00219567

https://hal.archives-ouvertes.fr/jpa-00219567

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NON-LINEAR REGENERATION MECHANISMS IN WIND INSTRUMENTS

S. Elliott

To cite this version:

S. Elliott. NON-LINEAR REGENERATION MECHANISMS IN WIND INSTRUMENTS. Journal

de Physique Colloques, 1979, 40 (C8), pp.C8-341-C8-345. �10.1051/jphyscol:1979861�. �jpa-00219567�

(2)

NON-LINEAR REGENERATION MECHANISMS IN WIND INSTRUMENTS

S.J. E l l i o t t

Department o f Physics, University of Surrey, GuiZdford, Surrey, GUZ 5 X H .

Resume.- On s a i t depuis p l u s i e u r s annees que l a colonne d ' a i r d'un instrument I vent se comporte de facon l i n e a i r e I des niveaux de s o u f f l e nomaux ; on s a i t egalement que l e mecanisme n o n - l i n e a i r e q u i p r o d u i t l e s harmoniques de l a p r e s s i o n sonore a i n s i degagee se s i t u e dans l'anche, l a q u e l l e , r e g i e par l a pression, m a i n t i e n t l ' o s c i l l a t i o n .

Des progres importants o n t & t e accomplis recemment dans l a f o r m u l a t i o n mathematique de ce mecanisme regenerateur, mais l a r e s o l u t i o n exacte de ces f o r m u l a t i o n s e x i g e une connaissance q u a n t i t a t i v e de l a forme que revCt l a n o n - l i n e a r i t s . C e l l e - c i e s t encore ma1 comprise e t j u s q u l I present l e s travaux q u i o n t e t & f a i t s dans ce domaine se sont bornes l e p l u s souvent I l ' e t u d e de l a n o n - l i n e a r i t 6 du f l u x q u a s i - s t a t i q u e au t r a v e r s de l'anche.

Cependant il d e v i e n t de p l u s en p l u s e v i d e n t que l a dynamique de l ' a n c h e c o n t r i b u e e l l e aussi pour une grande p a r t au comportement n o n - l i n e a i r e ; aussi une d e s c r i p t i o n complete d o i t - e l l e pouvoir t e n i r compte

a

l a f o i s de l a dynamique de l ' a n c h e e t du f l u x , v a r i a b l e dans l e temps, q u i l a traverse.

L ' o b s e r v a t i o n d i r e c t e t a n t de l a pression que du f l u x de 1 ' a i r q u i passe par l'embouchure d'un i n s t r u ment 2 vent en c u i v r e l o r s de son emploi a permis de mesurer directement l a n o n - l i n e a r i t 6

a

diverses frequences e t 6 diverses puissances de s o u f f l e . L ' a u t e u r presente dans c e t a r t i c l e quelques r e s u l t a t s obtenus de ces etudes p r e l i m i n a i r e s ; ces r e s u l t a t s sont egalement compares avec l e s travaux a n t e r i e u r s s u r l ' a c o u s t i q u e musicafe e t l a synthese du discours.

Abstract.- I t has been known f o r some years t h a t t h e a i r column o f a wind instrument behaves l i n e a r l y a t normal p l a y i n g l e v e l s , the n o n - l i n e a r mechanism which g i v e s r i s e t o harmonics o f t h e r a d i a t e d sound pressure i s contained i n t h e pressure c o n t r o l l e d reed which maintains t h e o s c i l l a t i o n .

Considerable advances have been made r e c e n t l y i n the mathematical f o r m u l a t i o n o f t h e regenerative mechanism, b u t these depend f o r t h e i r accurate s o l u t i o n on a q u a n t i t a t i v e knowledge o f the form of the n o n - l i n e a r i t y . This i s n o t w e l l understood and previous work i n t h i s area has been l a r g e l y confined t o the n o n - l i n e a r i t y o f t h e q u a s i - s t a t i c f l o w through the reed.

I t has become i n c r e a s i n g l y c l e a r however t h a t t h e dynamics o f t h e reed a l s o c o n t r i b u t e s u b s t a n t i a l l y t o t h e n o n - l i n e a r behaviour, and any complete d e s c r i p t i o n must be a b l e t o take account o f both t h e dynamics o f t h e reed and t h e t i m e v a r y i n g f l o w through i t .

By d i r e c t observation o f b o t h t h e pressure and f l o w i n t h e mouthpiece o f a brass wind instrument d u r i n g p l a y i n g , i t has been p o s s i b l e d i r e c t l y t o measure t h e n o n - l i n e a r i t y a t various frequencies and p l a y i n g l e v e l s . Some r e s u l t s o f t h i s p r e l i m i n a r y i n v e s t i g a t i o n are presented and compared t o previous work i n musical acoustics and speech synthesis.

I n t r o d u c t i o n . - Musical acoustics i s an o l d and A t t h e moment t h i s problem i s more than acade- d i v e r s e f i e l d o f study, and h i s t o r i c a l l y t h e m o t i - mic since, w i t h t h e i n t r o d u c t i o n o f mass p r o d u c t i o l l v a t i o n behind i t has been mostly academic. The pro- techniques, t h e crafsmen's s k i 1 1 becomes a1 i e n a t e d blems a r e so complicated t h a t q u a n t i t a t i v e s c i e n t i - and a t e c h n o l o g i c a l e x p e r t i s e must be sought.

f i c t h e o r i e s have been of l i n i t e d use t o n u s i c a l instrument makers. I n many cases t h e b a s i c mecha- nism o f o s c i l l a t i o n i n an instrument may be w e l l understood, b u t musical l y important phenomena i n t h e o s c i l l a t i o n may be second o r t h i r d o r d e r e f f e c t s from a s c i e n t i f i c p o i n t o f view. So t h e design and manufacture o f instruments has been a m a t t e r f o r craftsmen w i t h a wealth o f e m p i r i c a l and a r t i s t i c knowledge, b u i l t up over generations.

Nevetheless t h e challenge has been such t h a t many eminent s c i e n t i s t s have spent time conside- r i n g t h e fundamenta4 problems. O s c i l l a t i o n s i n wind instruments f o r example were s t u d i e d by Helmholtz / I / , A.G. Webster /2/ who f i r s t drew t h e analogy between e l e c t r i c a l and a c o u s t i c impedance, and Bouasse /3/ whose c o n t r i b u t i o n i s o n l y now being r e a l ised.

Previous Theories.- Hemhol t z ' s theory o f a 1 in e a r reed ( a reed i n t h i s sense meaning any form o f dynamic valve, e.g. a cane reed, t h e l i p s o r even t h e g l o t t i s ) , i n t e r a c t i n g w i t h a s i n g l e resonance i n a p i p e was published i n 1877 / I / . He d e r i v e d t h e amplitude and phase o f t h e response o f t h e p i p e necessary t o cause o s c i l l a t i o n , assuming t h a t t h e reed was a simple, damped mass-spring system d r i v e n by t h e pressure i n t h e tube, and t h a t t h e flow through t h e reed was p r o p o r t i o n a l t o i t s opening.

Taken i n broader c o n t e x t t h i s i s e s s e n t i a l l y t h e c o n d i t i o n o f s t a b i l i t y i n a feedback l o o p now known as t h e Barkhausen o r N y q u i s t c r i t e r i o n . So t h e i n t e r p r e t a t i o n was s i q n i f i c a n t , b u t he d i d n o t t a k e i n t o account two important e f f e c t s i n reed instruments:

Article published online by EDP Sciences and available at

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979861

(3)

c8-342 JOURNAL DE PHYSIQUE

F i r s t l y , the f l o w through t h e reed i s a non-tinear expansions (two i n t h e double T a y l o r s e r i e s and one f u n c t i o n o f b o t h t h e opening and t h e pressure d i f - f o r the F o u r i e r c o e f f i c i e n t s ) make t h e f i n a l equa-

ference across it. t i o n very unwieldy.

Secondly, t h e f a c t t h a t as w e l l as being d r i v e n For t h e case o f a reed w i t h opening area pro- by t h e pressure i n t h e pipe, the reed a l s o has a p o r t i o n a l t o reed displacement, w i t h a t u r b u l e n t B e r n o u l l i f o r c e a c t i n g on i t because o f t h e f l o w . flow, t h e pressure d i f f e r e n c e i s r e l a t e d i n a

The more complete i n t e r a c t i o n i s i n d i c a t e d i n r e l a t i v e l y simple way t o t h e v e l o c i t y /6/. If t h i s F i g . 1 where i t can be seen t h a t Helmholtz's i n t e r - pressure i s compared t o t h e pressure response from a c t i o n i s a s i m p l i f i e d v e r s i o n o f t h i s , c o n s i s t i n g t h e instrument as a F o u r i e r s e r i e s then more t r a c -

s i n g l e loop. t a b l e s o l u t i o n s should be obtained, as here t h e r e

pressure in mouth- piece

FIGURE 1 : Diagram i l l u s t r a t i n g regeneration processes.

The theory o f a n o n - l i n e a r source e x c i t i n g i s e s s e n t i a l l y o n l y one expansion.

m u l t i p l e resonances i s f a r more complicated than Any such p e r i o d i c s o l u t i o n must assume an t h e l i n e a r case. The flow of energy i n t o harmonics initial oscillation frequency which prevents solu- of t h e m o u t h ~ i e c e Pressure means t h a t t h e resPO"se

tion of t h e m u s i c a l l y i m p o r t a n t t r a n s i e n t s . schu- o f an instrument a t harmonic frequencies must be

macher /7/ has suggested a f o r m u l a t i o n u s i n g non- considered.

l i n e a r i n t e g r a l equations and t h i s may be a b l e t o By assuming t h a t t h e o s c i l l a t i o n i s steady i . e .

give transient solutions and has the possibility p e r i o d i c , a F o u r i e r expansion of t h e pressure and

of takinq

-

the Bernoulli force into account.

v e l o c i t y i n time may be s u b s t i t u t e d i n t o t h e cou-

The aim o f t h e present work i s t o i n v e s t i g a t e p l e d equations f o r t h e reed and instrument. T h i s e x p e r i m e n t a l l y some o f t h e assumptions made i n was achieved i n a general way by Benade and Gans these t h e o r i e s f o r the p a r t i c u l a r case o f a brass /4/ who were a b l e t o e x p l a i n q u a l i t a t i v e l y many instrument ( a trombone).

o f t h e e f f e c t s found i n reed instuments. The work was extended by Worman /5/, who used a T a y l o r

Previous Experimental Work.- The apparatus used i n expansion f o r t h e f l o w as a f u n c t i o n o f reed ope-

t h i s i n v e s t i g a t i o n was o r i g i n a l l y used t o measure n i n g and pressure d i f f e r e n c e , which was equated

t h e i n ~ u t im~edance o f brass instruments w h i l e t o t h e flow as a f u n c t i o n o f t h e response of t h e

being d r i v e n from a loudspeaker /8/.

instrument. By u s i n g a simple c l a r i e n t - l i k e

The a c o u s t i c Dressure and v e l o c i t v a r e measu- i n s t r u m e n t W0rma.n was a b l e t o o b t a i n numerical r e d w i t h a horn-coupled probe microphone and a s o l u t i o n s f o r t h e o s c i l l a t i o n , however t h e t h r e e constant temperature, h o t w i r e anemometry system.

(4)

The v o l t a g e outputs o f these devices a r e d i g i t i s e d and processed by a mini-computer which ' l i n e a r i s e s ' t h e anemometer output, e x t r a c t s t h e fundamental components o f pressure and v e l o c i t y and then compa- r e s t h e magnitudes and phases t o o b t a i n t h e complex impedance ( d e f i n e d as Acoustic Pressure/vol ume

-4 -1 v e l o c i t y and measured i n S . I . 'ohms', Kg m s ) .

An example o f t h e i n p u t impedance o f a trombo- ne i s given i n Fig. 2. The computer may a l s o be used t o compute t h e e f f e c t o f a mouthpiece on t h i s impedance, modelling t h e mouthpiece as lumped e l e - ments. T h i s i s t h e impedance i n t h e plane o f the l i p s and i s i m p o r t a n t because i t i s t h e 'response' o f the instrument w h i l e being played. The same impedance as i n F i g . 2 'transformed back' t o i n c l u - de t h e e f f e c t o f a mouthpiece i s shown i n F i g . 3.

Ti/2

+

p/

RAO

-

FIGURE 2 : Measured, i n p u t impedance as the t h r o a t o f a trombone.

Ti /?

+

pl

RRD

-

ii /?

FIGURE 3 : C a l c u l a t e d i n p u t impedance i n t h e plane o f the l i p s f o r a trombone.

.Measurement o f t h e Pressures.- The f i r s t s e t of experiments conducted were t o determine t h e magni- tudes o f t h e s t a t i c and a c o u s t i c pressures d u r i n g a blown note i n t h e mouthpiece o f t h e i n s t r u m e n t and i n t h e mouth. Two probe microphones were used f o r t h i s , and t h e average pressure d i f f e r e n c e between t h e mouth and cup o f t h e i n s t r u m e n t measu- r e d w i t h a water manometer. The r e s u l t s f o r a s o f t n o t e a t 174 Hz (note F3 played p ) a r e presen- t e d i n Fig. 4 where t h e mouth pressure w i t h t h e steady pressure d i f f e r e n c e i s superimposed on t h e pressure i n t h e t h r o a t .

FIGURE 4 : Measured pressure i n t h e mouth (above) and pressure i n t h e t h r o a t (below) d u r i n g t h e note F3 (174 Hz) played s o f t l y . (The zero o f pressure i s appro- x i m a t e l y atmospheric).

The a l t e r n a t i n g pressure i n t h e mouth i s o f s m a l l e r magnitude than t h a t i n t h e mouthpiece.

Because t h e f l o w i n t o t h e i n s t r u m e n t i s t h e same as t h a t o u t o f t h e mouth, t h e impedance o f t h e mouth c a v i t y may be determined from t h e r a t i o of t h e two pressures and t h e impedance o f t h e i n s t r u - ment. The impedance l o o k i n g i n t o t h e mouth may be as much as 10% o f t h e i n s t r u m e n t impedance. A l t h - ough i t i s s t i l l a good f i r s t approximation t o consider t h e mouth pressure as constant (as has been done i n a l l previous t h e o r i e s ) , m u s i c a l l y i m p o r t a n t e f f e c t s may w e l l be achieved by changing t h e shape o f t h e mouth c a v i t i e s .

The general form o f t h e pressure i n t h e i n s t r u m e n t has been e x p l a i n e d by comparing t h e r e l a t i v e r e i s t a n c e s o f t h e reed opening and t h e i n s t r u m e n t / 9 / .

(5)

c8-344 JOURNAL DE PHYSIQUE

The reed opening i s assumed approximately s i n u s o i d a l (as measured f o r a p a r t i c u l a r case by M a r t i n

/lo/).

Over t h e p a r t o f t h e c y c l e where t h e reed opening i s s u f f i c i e n t f o r i t s r e s i s t a n c e t o be small compared t o t h a t o f the instrument, t h e pressure i n t h e mouthpiece i s about t h e same as t h a t 4n t h e mouth. T h i s c o n d i t i o n may a p p l y o v e r a l a r g e p a r t o f t h e cycle, e s p e c i a l l y 'when t h e n o t e i s o f low p i t c h , so t h e amplitude of reed v i b r a t i o n i s l a r g e

/lo/.

When t h e reed i s n e a r l y closed i t s r e s i s t a n c e r i s e s considerably and c u t s off t h e f l o w t o t h e instrument where t h e pressure f a 1 1s t o atmospheric..

The i n t e r e s t i n g t h i n g about t h e observed i n s t r u m e n t pressure i s t h a t f o r some p a r t s of t h e c y c l e i t r i s e s above t h a t i n t h e mouth and f o r o t h e r s i t f a l l s considerably below atmospheric.

This i n d i c a t e s an energy storage mechanism, presu- mably i n t h e reactances o f t h e impedances i n v o l v e d .

Measurement o f Pressure and V e l o c i t y . - A second s e t o f measurements i n v e s t i g a t e d t h i s by measuring t h e pressure and v e l o c i t y i n t h e t h r o a t , t o g e t h e r w i t h t h e average pressure d i f f e r e n c e as before.

Figures 5, 6 and 7 show t h e r e s u l t s a t s o f t p l a y i n g l e v e l s and frequencies o f 174 Hz (F3), 233 HzX(B3b) and 350 Hz (F4) r e s p e c t i v e l y . Again t h e mouthpiece pressure i s g r e a t e r than t h a t * i n t h e mouth f o r c e r t a i n p a r t s o f t h e c y c l e . The h o t w i r e anemometer can o n l y measure t h e magnitude o f t h e v e l o c i t y , n o t i t s d i r e c t i o n , a l s o i t i s r a t h e r i n a c c u r a t e a t low v e l o c i t i e s under t h e c o n d i t i o n s used here. Despite t h i s , evidence o f r e c t i f i c a t i o n i n t h e v e l o c i t y waveform i s observed i n a l l t h e notes studied, i n d i c a t i n g t h a t t h e v e l o c i t y passes through zero and a c t u a l l y reverses a t some p o i n t s i n t h e cycle, r o u g h l y corresponding t o when t h e pressure i n t h e i n s t r u m e n t i s g r e a t e r than t h a t i n t h e mouth.

For comparison t h e same n o t e as i n Fig. 5, played l o u d l y ( f f ) i s shown i n f i g u r e 8, t h e gene- r a l form o f ' the waveforms i s s i m i l a r , b u t t h e magnitudes are a p p r e c i a b l y hjgher. The o t h e r impor- t a n t 'piece o f i n f o r m a t i o n from t h e v e l o c i t y wave- forms i s t h a t t h e f l o w i s t u r b u l e n t , which i s t o be expected from s t u d i e s o f the a c o u s t i c n o n - l i n e a r i t y of, o r i f i c e s /6/. The i m p l i c a t i o n i s t h a t t h e turbu- l e n t equations should b e used t o d e s c r i b e t h e f l o w c o n d i t i o n s o f t h e reed opening i n F i g . 1.

I

TIME l m S l

FIGURE 5 : Measured pressure i n t h e t h r o a t , w i t h s t a t i c pressure d i f f e r e n c e superimposed, and v e l o c i t y i n t h e t h r o a t d u r i n g t h e note F3 played s o f t l y .

PRESSURE . 2 - A n n n A

I K P o 1

I

TIME 1 m S l

FIGURE 6 : As F i g . 5 f o r n o t e B3b (233 Hz) played s o f t l y .

PRESSURE

TIME l m S l

FIGURE 7 : As F i g . 5 f o r note F4 (350 Hz) played s o f t l y .

Conclusions.- The study has been u s e f u l i n esta- b l i s h i n g some new methods o f observing t h e i n t e r - a c t i o n between t h e p l a y e r and an instrument. The p r e l i m i n a r y r e s u l t s have shown t h a t ( w i t h r e f e r e n - ce t o Fig. 1) :

(6)

VELOCITY i ~ s " 1 20 -

0 PRESSURE *to-

lK Po l

S I0 IS 2 0

T I M E 1mSI

/9/ Backu- J . and Hundley

T.C.,

J. Acoust. Soc.

FIGURE 8

:

As Fig. 5 f o r note F3 (174 Hz) played 1 oudl y .

n n A A Am.,

1971, 49, p. 509.

0 -

/lo/ Martin D.W., J . Acoust. SOC.

Am.,

1942, - 13,

-10-

p. 309.

1) the pressure source, from the lungs, can be considered constant a t the mouth.

2 ) t h a t the flow through the reed i s turbulent, indicating the b e s t equations t o use f o r the f 1 ow conditions .

3) t h a t the flow through the reed actually changes direction a t some parts of the cycle, indicating t h a t the reactive parts of t h e impedances a r e important.

4) t h a t t h i s part of the cycle seems t o be where the reed i s nearly closed suggesting t h a t the 1 inear velocity i s large through the reed, which would give r i s e t o an appreciable Bernoul- l i force a t t h a t i n s t a n t .

References

/1/ Helmo7tz H , 'Sensations of tone' 3rd e d i t i o n of English t r a n s l a t i o n , 1695, Appendix VI I .

/2/

Webster

A.G.,

Physical Rev. 1919,g,

p.164 /3/

Bouasse H., 'Instruments v e n t ' ,

2

vofs.,

L i b r a i r i e Delagrave, P a r i s , 1929.

/4/

Benade A.H. and Gans D.J., Ann. N.Y. Acad.

S c i . , 1968, 155, p. 247.

/5/ Woman W.E., Ph. D. Thesis, 1971, Case Western Reserve University.

/6/ Ingard

U.

and Ising

M.,

J . Acoust. Soc. Am., 1967, 42, p. 6.

171 Schumacher R.T., Acustica, 1978, 2, p. 225.

/8/ P r a t t R.L., E l l i o t t S.J. and Bowher J.M.,

Acustica, 1977, 38, p. 236.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to