• Aucun résultat trouvé

PREDICTION AND MEASUREMENT OF THE NATURAL FREQUENCIES AND DAMPING CAPACITY OF CARBON FIBRE-REINFORCED PLASTICS PLATES

N/A
N/A
Protected

Academic year: 2021

Partager "PREDICTION AND MEASUREMENT OF THE NATURAL FREQUENCIES AND DAMPING CAPACITY OF CARBON FIBRE-REINFORCED PLASTICS PLATES"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00223427

https://hal.archives-ouvertes.fr/jpa-00223427

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PREDICTION AND MEASUREMENT OF THE NATURAL FREQUENCIES AND DAMPING CAPACITY OF CARBON FIBRE-REINFORCED

PLASTICS PLATES

R. Adams, D. Lin, R. Ni

To cite this version:

R. Adams, D. Lin, R. Ni. PREDICTION AND MEASUREMENT OF THE NATURAL FREQUEN- CIES AND DAMPING CAPACITY OF CARBON FIBRE-REINFORCED PLASTICS PLATES.

Journal de Physique Colloques, 1983, 44 (C9), pp.C9-525-C9-530. �10.1051/jphyscol:1983977�. �jpa-

00223427�

(2)

J O U R N A L D E PHYSIQUE

Colloque C9, suppl6ment a u n012, Tome 44, dgcembre 1983 page C9-525

P R E D I C T I O N AND MEASUREMENT OF THE NATURAL FREQUENCIES AND DAMPING C A P A C I T Y OF CARBON F I B R E - R E I N F O R C E D P L A S T I C S P L A T E S

R.D. Adams, D.X.

in*

and R . G . ~ i * *

Reader i n Mechanicat Engineering, University

of

BristoZ, BristoZ,

U . K .

haan an xi MechanicaZ Engineering I n s t i t u t e , Xian, Shaanzi, China

* * ~ n s t i t u t e

o f

AeronauticaZ Materiazs, Peking, China

Rdsumd - L ' o b j e t de c e t t e i n v e s t i g a t i o n e s t de p r & d i r e l a frdquence n a t u r e l l e e t l e c o e f f i c i e n t d'amortissement de plaques s t r a t i f i E e s pour d i f f d r e n t s modes de v i b r a t i o n p a r l a technique des 6lEments f i n i s . La d s f i n i t i o n du c o e f f i c i e n t d'amortissement e s t

Y' = A

U / U , oii U e s t l t & n e r g i e maximale de ddformation mise en j e u p a r c y c l e , e t A U , l t E n e r g i e d i s s i p d e pendant l e c y c l e . I c i , U e s t c a l c u l d p a r l a technique des dldments f i n i s p r e n a n t en compte l a dgforma- t i o n en c i s a i l l e m e n t t r a n s v e r s a l e (LT);AU e s t ddtermind

B

p a r t i r d ' u n modsle d'dl6ments a m o r t i s . Les amortissements, l e s modes, e t l e s frdquences n a t u r e l - l e s de quelques plaques r e n f o r c d e s avec des f i b r e s de carbones ou d e v e r r e s o n t p r 6 d i s e t mesurgs.

A b s t r a c t

-

The o b j e c t i v e of t h i s i n v e s t i g a t i o n is t o p r e d i c t t h e n a t u r a l frequency and s p e c i f i c damping c a p a c i t y of laminated composite p l a t e s i n v a r i o u s modes of v i b r a t i o n by u s i n g t h e f i n i t e element method. The simple d e f i n i t i o n o f s p e c i f i c damping c a p a c i t y i s J,

=

AU/U, where U i s t h e maximum s t r a i n energy s t o r e d p e r c y c l e and U i s t h e energy d i s s i p a t e d p e r c y c l e . I n t h i s work, U i s c a l c u l a t e d by a f i n i t e element method which i n c l u d e s t r a n s v e r s e s h e a r deformation; AU i s determined from a damped element model. The s p e c i f i c damping c a p a c i t i e s , mode s h a p e s , and n a t u r a l f r e q u e n c i e s of v a r i o u s f r e e - f r e e carbon and g l a s s f i b r e - r e i n f o r c e d p l a s t i c s p l a t e s have been p r e d i c t e d and measured.

I. INTRODUCTION

F l a t p a n e l s a r e used i n many s t r u c t u r a l a p p l i c a t i o n s i n l a n d and o c e a n - g o i n g v e h i c l e s , a i r c r a f t and s p a c e c r a f t . Both sandwich c o n s t r u c t i o n and f i l a m e n t a r y composite m a t e r i a l s a r e used i n p l a t e t y p e s t r u c t u r e s because t h e s t r u c t u r a l s t i f f n e s s can be i n c r e a s e d w i t h o u t adding e x c e s s weight. For t h e o p t i m a l d e s i g n of p a n e l s made from composite m a t e r i a l s , s t r u c t u r a l d e s i g n e r s r e q u i r e more u s e f u l and p r a c t i c a l methods f o r o b t a i n i n g t h e c o r r e c t numerical r e s u l t s of t h e s t i f f n e s s and damping of lamina- t e d composites. During t h e l a s t decade, s e v e r a l a u t h o r s have t r i e d t o p r e d i c t t h e s t i f f n e s s and damping of p l a t e s , b u t most of them have been r e s t r i c t e d t o t h e n a t u r a l f r e q u e n c i e s of a n i s o t r o p i c laminated composite p l a t e s , and t h e r e have been few on damping.

I n t h i s work we have i n v e s t i g a t e d t h e p r e d i c t i o n of t h e n a t u r a l modes and s p e c i f i c damping c a p a c i t y o f a n i s o t r o p i c laminated p l a t e s u s i n g , and e x t e n d i n g , t h e f i n i t e element method d e s c r i b e d by Cawley and Adams /1/ and t h e damped element model proposed by Adams and Bacon / 2 / .

To i n v e s t i g a t e t h e accuracy o f t h e t h e o r e t i c a l p r e d i c t i o n , a comparison w i l l b e made w i t h t h e e x p e r i m e n t a l r e s u l t s from v a r i o u s laminated CFRP and GFRP r e c t a n g u l a r p l a t e s i n t h e f r e e - f r e e c o n d i t i o n f o r t h e f i r s t s i x modes of v i b r a t i o n . Some g r a p h i c a l methods f o r s i m p l i f y i n g t h e p r e d i c t i o n a r e p r e s e n t e d .

A l l t h e p l a t e s used i n t h i s i n v e s t i g a t i o n were mid-plane symmetric s o a s t o e l i m i n a t e b e n d i n g - s t r e t c h i n g coupling. It i s , however, p o s s i b l e t o i n c l u d e t h i s e f f e c t i n t h e a n a l y s i s if asymmetrical l a m i n a t e s were t o be used.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983977

(3)

JOURNAL DE PHYSIQUE

11. THEORY

The s p e c i f i c damping c a p o c i t y i s d e f i n e d a s

where AU i s t h e energy d i s s i p a t e d d u r i n g a s t r e s s c y c l e and U i s t h e maximum s t r a i n energy.

U i s o b t a i n e d a s f o r an undamped system a s f o l l o w s :

where s i j and o a r e t h e s t r a i n s and s t r e s s e s r e l a t e d t o t h e f i b r e d i r e c t i o n . i j

Equation (2) may b e reduced t o a s t a n d a r d form a s

U

= 3

{61T

[K]

I61 (3)

where I6 i s t h e n o d a l p o i n t displacement m a t r i x . Here, f i v e degrees of freedom f o r each n o d a l p o i n t and 8 n o d a l p o i n t s f o r each element a r e used, and

[K]

i s t h e s t i f f - n e s s m a t r i x . I n t h e e v a l u a t i o n o f t h e maximum s t r a i n energy U, t h e Young's modulus of

oO,

90° u n i d i r e c t i o n a l f i b r e r e i n f o r c e d beams, EL, ET, and t h e s h e a r modulus of a

o0

u n i d i r e c t i o n a l rod GLT a r e used.

A s g i v e n i n Ref. 2

where 6(AU) i s t h e energy d i s s i p a t e d i n each element, and i s d e f i n e d a s 6(AU)

=

&(Lull

+

6(AU2)

+

6(AU23) f 6(AU13)

+

6(AU12)

and 6(AU1)

= 2 JIL

€11 011, 6(AU2)

=

$

JIT

922 022

S u f f i x 1 denotes t h e f i b r e d i r e c t i o n , while 2 and 3 a r e t h e two d i r e c t i o n s t r a n s - v e r s e t o t h e d i r e c t i o n of t h e , f i b r e s . JIL, $ T , e t c . a r e t h e a s s o c i a t e d damping c a p a c i t i e s i n each d i r e c t i o n , and t h e y a r e o b t a i n e d from t e s t s on u n i d i r e c t i o n a l beams.

Equation (4) may be reduced t o m a t r i x form a s :

where

[$I =

- -

$ , O 0 0 0

0 J I T 0 0 0

0 0

JI,,

0 0

0 0 0

JILT

0

0 0 0 0 JILT

- -

Using t h e same method a s with Eqn. ( 2 ) , Eqn. ( 5 ) may be reduced t o

(4)

where C6) i s t h e same m a t r i x a s i n Eqn. ( 2 ) and was o b t a i n e d from t h e f i n i t e element r e s u l t s . [ K ~ ] is t h e s t i f f n e s s m a t r i x o f t h e damped system, and i t may be e v a l u a t e d s e p a r a t e l y .

111. RESULTS AND DISCUSSION

The composite p l a t e s used i n t h i s i n v e s t i g a t i o n c o n s i s t e d of e i t h e r g l a s s o r HM-S carbon f i b r e i n DX-210 epoxy r e s i n . The p l a t e s were made of 8 o r 12 l a y e r s of pre- impregnated f i b r e i n a h o t p r e s s , such t h a t d i f f e r e n t l a m i n a t e o r i e n t a t i o n s could be o b t a i n e d ; d e t a i l s of t h e p l a t e s used a r e given i n Table 1. The m a t e r i a l proper- t i e s used i n t h e t h e o r e t i c a l p r e d i c t i o n a r e given i n Table 2. A l l t h e v a l u e s i n

Table 1 P l a t e Data

P l a t e Density

No. of

---

number M a t e r i a l l a y e r s kg m-3 vf P l y o r i e n t a t i o n

1 CFRP 8 1446.2 0.342 (oO, go0,

oO,

9 0 ' ) ~

2 CFRP 12 1636.4 0.618 ( 0 ° , - 6 0 0 , 6 0 0 , 0 0 , - 6 0 0 , 6 0 0 ) s

3 GFRP 8 1813.9 0.451 ( 0 ° , 9 0 0 , 0 0 , 9 0 0 ) s

4 GFRP 1 2 2003.5 0.592 ( o O , -60°, 60°,

oO,

-60°, 6 0 ' ) ~

N.B. S u f f i x s means mid-plane symmetric

-

Table 2 Moduli and damping v a l u e s f o r m a t e r i a l s used i n t h e p l a t e s

E 1

- -

E 2 - G12

- UJ

1

- -

2 $12

M a t e r i a l GPa GPa GPa 6 % % Vl ,v2 vf

HMS/DX-210 1 7 2 . 1 7.20 3.76 0.45 4.22 7.05 0.3 0.50

Glass/DX-210 37.87 10.90 4 . 9 1 0.87 5.05 6.91 0.3 0.50

DX-210/BF3400 3.21 3.21 1.20 6.54 6.54 6.68 0.34 0

-

t h i s t a b l e were e s t a b l i s h e d e i t h e r by u s i n g beam specimens c u t from a u n i d i r e c t i o n a l p l a t e ( l o n g i t u d i n a l and t r a n s v e r s e damping and Young's moduli) o r c y l i n d r i c a l s p e c i - mens ( f o r measuring t h e s h e a r modulus and damping i n t o r s i o n ) . I t should be noted t h a t t h e v a l u e of t h e t o r s i o n a l damping of a 90° f i b r e o r i e n t a t i o n r o d , Q 2 3 , i s n o t important i n t h e p r e d i c t i o n , s i n c e changing it from 6% t o 15% gave no d i f f e r e n c e t o t h e t h e o r e t i c a l r e s u l t s . I n t h e p r e d i c t i o n , Q23 i s t a k e n as t h e same v a l u e a s $12 which i s t h e v a l u e of t o r s i o n a l damping of a O0 f i b r e o r i e n t a t i o n rod ( i n l o n g i - t u d i n a l s h e a r ) . Because of v a r i a t i o n s i n t h e f i b r e volume f r a c t i o n of t h e p l a t e s , t h e m a t e r i a l p r o p e r t i e s used i n t h e t h e o r e t i c a l p r e d i c t i o n were c o r r e c t e d from a s t a n d a r d s e t g i v e n f o r a 50% f i b r e volume f r a c t i o n

.

3.2 Comparison of t h e o r e t i c a l and e x p e r i m e n t a l r e s u l t s

Tables 3 and 4 show f o r t h e first s i x modes t h e t h e o r e t i c a l p r e d i c t i o n and t h e experimental r e s u l t s of CFRP p l a t e s f o r v a r i o u s f i b r e o r i e n t a t i o n s . On t h e whole, t h e r e i s good agreement between t h e p r e d i c t e d and measured v a l u e s . The d i s c r e p a n - c i e s i n n a t u r a l f r e q u e n c i e s a r e l e s s t h a n

l o % ,

and t h e v a l u e s of s p e c i f i c damping c a p a c i t y are very c l o s e . Mode 6 i n p l a t e 3 could n o t be o b t a i n e d e x p e r i m e n t a l l y because t h e i n p u t energy from t h e t r a n s i e n t t e c h n i q u e was i n s u f f i c i e n t . Tables 5

(5)

C9-528 J O U R N A L

DE

PHYSIQUE

Outer l a y e r

----+

F i b r e d i r e c t i o n

SDC

(%)

(6.65 1

(1.051 0 * 9 1

(2.6)

(0.92) 0 6 0

1 :51 (1.7) No.

L

Outer l a y e r

-

F i b r e d i r e c t i o n

Table 3 N a t u r a l f r e q u e n c i e s and damping Table 4 N a t u r a l frequency and damping o f v a r i o u s modes of an 8 - l a y e r of v a r i o u s modes o f a 12- ( o O , go0,

oO,

go0, go0,

oO,

l a y e r (oO -60°, 60°,

oO,

go0, oO) carbon FRP p l a t e -60°, 60°: 60°, -60°,

oO,

( P l a t e no. 1 ) . Experimental 60°, -60°, 0') carbon FRP v a l u e s i n b r a c k e t s . p l a t e ( P l a t e no. 2 ) . Experi-

mental v a l u e s i n b r a c k e t s .

1

441.62 (452.5) Frtq. (Hz)

58 . l o

(68.88)

213.31 (218.9)

243.47 (251 2 )

302.51 (305.4)

324.16 (323.5)

and 6 g i v e t h e r e s u l t s f o r GFRP p l a t e s . A l l show good agreement between p r e d i c t i o n and measurement.

( 3 . 0 ) Mode shape

H El

r l

H un

SDC(%)

(1.40)

( 0 88) O-

~-

(0.65) 0 . 6 3 .

(1 261

(0.99) 0.98 .

0 92

-

No

5

The e f f e c t o f a i r damping and t h e a d d i t i o n a l energy d i s s i p a t i o n a s s o c i a t e d with t h e s u p p o r t s and t h e s m a l l p i e c e o f m e t a l r e q u i r e d (which i s connected t o e a r t h ) f o r t h e t r a n s d u c e r a f f e c t t h e r e s u l t s o f t h e very low damping modes such a s t h e 4 t h mode of p l a t e 1, t h e 4 t h mode of p l a t e 3 and s o on. These a r e e s s e n t i a l l y beam modes i n which t h e l a r g e m a j o r i t y of t h e s t r a i n energy i s s t o r e d i n tension/compression i n t h e

6

Freq. [Hz)

165 17 (156.6)

279.14 (272.0)

387.8 (372.3)

432.57 (407.81

51 1-43 (486.1)

Mode shape

E3 m

Ell

EZl

(6)

Outer l a y e r

---*

F i b r e d i r e c t i o n

Outer l a y e r F i b r e d i r e c t i o n

-

SDC(%)

(6.7) 7*'6 -

(2.8)

"'

(1.9)

"'

4.87

L .9

(3.2 No.

1

*

Table 5 N a t u r a l frequency and damping Table 6 N a t u r a l frequency and damping

gf

o f v a r i o u s modes o f an 8 - l a y e r v a r i o u s modes of a 1 2 - l a g e r ( 0

,

( o O , go0,

oO,

90°, 90°,

oO,

-60°, +60°,

oO,

-60°, 60 ), g l a s s go0, oO) g l a s s FRP p l a t e FRP p l a t e ( P l a t e no.4). Experi- ( P l a t e no. 3 ) . Experimental mental v a l u e s i n b r a c k e t s . v a l u e s i n b r a c k e t s .

f i b r e s and n o t i n m a t r i x t e n s i o n o r s h e a r . However, t h e r e s u l t s f o r a l l t h e p l a t e s used a r e s a t i s f a c t o r y , even when t h e specimens have i m p e r f e c t i o n s such

ag

s l i g h t v a r i a t i o n s i n t h i c k n e s s and t h e nominal a n g l e o f t h e f i b r e s ( 2 2' t o 5 3 e r r o r ) .

(159.2)

rn

189.79

ul

(180.5)

208.87 (200.051 Freq. (Hz)

66.42 (62.2)

131.62 (131.G 1

I t can be s a i d t h a t t h e morg t h g t w i s t i n g , t h e h i g h e r t h e damping. For i n s t a n c e , f o r an 8 l a y e r cross-ply (0 /90 ) GFRP p l a t e ( s e e Table 5 ) t h e two beam-type modes, numbers 2 and 3, appear s i m i l a r , b u t t h e r e l a t i o n s h i p of t h e n o d a l l i n e s t o t h e o u t e r f i b r e d i r e c t i o n means t h a t t h e h i g h e r mode has much l e s s damping t h a n t h e lower one. The o t h e r modes o f v i b r a t i o n of t h i s p l a t e a l l i n v o l v e much more p l a t e

H

Mode shape

El3

6

3.73

~

164.46

3L7.16

(326.71 (5.8 1

(7)

C9-530 JOURNAL

DE

PHYSIQUE

t w i s t i n g and hence m a t r i x s h e a r t h a n do modes 2 and 3 , and s o t h e damping is higher.

It is important for designers to realise the significance of these results, which show that for at2 the plates the damping values are different for each mode.

V. CONCLUSIONS

In t h i s paper a method f o r p r e d i c t i n g t h e n a t u r a l f r e q u e n c i e s , mode shapes and v i b r a t i o n damping parameters of laminated composite p l a t e s has been d e s c r i b e d . The method i s based on t h e f i n i t e element technique u s i n g t h e damped element model i n which t h e e f f e c t s o f t r a n s v e r s e s h e a r deformation and r o t a r y i n e r t i a were c o n s i d e r e d . The s i g n i f i c a n c e of t h e d i f f e r e n c e o f damping v a l u e s from d i f f e r e n t mode shapes and f i b r e o r i e n t a t i o n s must b e emphasized. The damping v a l u e s f o r mode shapes i n which t h e r e is a l o t of t w i s t i n g a r e g r e a t e r t h a n f o r t h o s e i n which t h e l a r g e m a j o r i t y of t h e s t r a i n energy i s s t o r e d i n tension/compression i n t h e f i b r e and n o t i n matrix t e n s i o n or s h e a r .

REFERENCES

1. Cawley, P. and Adams, R. D., J. Composite M a t e r i a l s ,

12

(1978), 336.

2. Adams, R. D. and Bacon, D. G . C . , J. Composite M a t e r i a l s ,

2

(1973), 402.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to