• Aucun résultat trouvé

ELECTROWEAK RADIATIVE CORRECTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTROWEAK RADIATIVE CORRECTIONS"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00221915

https://hal.archives-ouvertes.fr/jpa-00221915

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTROWEAK RADIATIVE CORRECTIONS

J. Wheater

To cite this version:

J. Wheater. ELECTROWEAK RADIATIVE CORRECTIONS. Journal de Physique Colloques, 1982,

43 (C3), pp.C3-305-C3-309. �10.1051/jphyscol:1982360�. �jpa-00221915�

(2)

ELECTROWEAK R A D I A T I V E CORRECTIONS

J. F. Wheater

Department o f !7'heoreticaZ Physics, Oxford University, 2 Keble Road, Oxford OX1 3RH, U.K.

The advent of r e n o r m a l i z a b l e gauge t h e o r i e s of t h e electroweak i n t e r a c t i o n s h a s made p o s s i b l e t h e c a l c u l a t i o n of f i n i t e r a d i a t i v e c o r r e c t i o n s t o t r e e graph amplitudes.

We a r e a b l e t o probe t h e s t r u c t u r e of t h e s t a n d a r d SU2xU1 model of electroweak i n t e r - a c t i o n s a t t h e l e v e l of one loop quantum c o r r e c t i o n s ; i f t h e quantum f i e l d t h e o r y i s c o r r e c t then we should f i n d t h a t t h e r e s u l t s c a l c u l a t e d t o one loop f i t e x p e r i - mental d a t a b e t t e r than does t h e Born approximation. This i s t h e analogue of what happens i n QED where e f f e c t s such a s t h e Lamb s h i f t and anomalous magnetic moments a r e found e x p e r i m e n t a l l y although they a r e n o t p r e d i c t e d by t h e Dirac e q u a t i o n ; we a r e compelled t o i n c l u d e t h e e f f e c t s of second q u a n t i z a t i o n i n o r d e r t o g a i n agree- ment between theory and experiment. I n t h e c a s e of electroweak t h e o r i e s , i t i s t h e r e l a t i o n s between the p h y s i c a l masses of t h e @,Z gauge bosons and o t h e r measurable q u a n t i t i e s which should d i f f e r e n t i a t e between t r e e graph and one loop r e s u l t s [I].

R a d i a t i v e c o r r e c t i o n s a r e a l s o important i n t e s t i n g grand u n i f i e d t h e o r i e s i n which t h e v a l u e s of low energy parameters a r e p r e d i c t e d . I n the r e s t of t h i s a r t i c l e I d i s c u s s b r i e f l y t h e e x p e c t a t i o n s from GUTS and t h e n t h e experiments which measure s i n 2 8 , t h e electroweak mixing parameter, t h e p r e d i c t i o n s we make a t p r e s e n t f o r

%,Mz and f i n a l l y t h e p r o s p e c t s f o r a convincing t e s t of t h e f i e l d t h e o r e t i c a s p e c t of t h e SU2xU1 model.

The u s u a l p o i n t of comparison between grand u n i f i e d t h e o r i e s and low energy d a t a i s the v a l u e of s i n 2 8 . Beyond t h e t r e e graph l e v e l , t h e v a l u e of t h i s parameter deduced from e i t h e r GUT o r experiment depends upon t h e d e f i n i t i o n and r e n o r m a l i z a t i o n scheme adopted. There a r e an i n f i n i t e number of t h e s e , d i f f e r i n g from one another by f i n i t e c a l c u l a b l e amounts. I w i l l use MS r e n o r m a l i z a t i o n w i t h a s c a l e y =

% -

h e r e a f t e r t h a t i s t h e d e f i n i t i o n of s i n 2 8 . The scheme h a s t h e v i r t u e s of b e i n g gauge independent, a u t o m a t i c a l l y s a t i s f y i n g a l l Ward i d e n t i t i e s and being e a s y t o c a l c u l a t e with. I n electroweak t h e o r i e s where a l l coupling c o n s t a n t s a r e s m a l l t n e r e i s no advantage t o be gained by choosing a n y t h i n g more complicated i n o r d e r t o minimise t h e s i z e of c o r r e c t i o n s which a r e i n any c a s e small ( t h i s i s i n c o n t r a s t t o t h e c a s e of QCD which has l a r g e couplings and p o t e n t i a l l y l a r g e c o r r e c t i o n s ) . Ultimately, of c c x r s e , a l l our r e s u l t s may be w r i t t e n a s r e l a t i o n s i n v o l v i n g o n l y p h y s i c a l measurable q u a n t i t i e s

(u

l i f e t i m e , v c r o s s - s e c t i o n s , %,lulZ e t c . ) ; such r e l a t i o n s a r e independent of t h e r e n o r m a l i z a t i o n schemes. The p r e d i c t i o n of minimal SU5 i s C21

The v a r i a t i o n i n s i n 2 0 p r e d i c t e d from non-minimal GUTS i s q u i t e l a r g e , % 2.02 [ 3 1 , because of t h e l a r g e numbers of e x t r a p a r t i c l e s i n such models.

A t p r e s e n t , t h e experiments which provide measurements of s i n 2 8 w i t h the b e s t s t a t i s t i c s a r e

i ) v-hadron s c a t t e r i n g C41.

i i ) e-d asymmetry experiment a t SLAC 151.

Both types of experiment a r e l i m i t e d by our l a c k of understanding of hadronic

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982360

(3)

C3-306 JOURNAL DE PHYSIQUE

systems. Unfortunately, p u r e l y l e p t o n i c p r o c e s s e s which a r e p r e f e r a b l e f o r study- i n g t h e f i e l d t h e o r y of electroweak i n t e r a c t i o n s a r e a t p r e s e n t e i t h e r i n s e n s i t i v e t o s i n 2 e (e+e- a n n i h i l a t i o n ) o r have very low e v e n t r a t e s and l a r g e backgrounds (ve s c a t t e r i n g ) . The lepton-hadron s c a t t e r i n g experiments a r e a n a l y s e d a t t r e e graph l e v e l i n t h e electroweak i n t e r a c t i o n s i n c l u d i n g QCD s c a l i n g v i o l a t i o n e f f e c t s , a n t i p a r t o n s e a e t c . C61; t h e electroweak r a d i a t i v e c o r r e c t i o n s have been c a l c u l a t e d i g n o r i n g s c a l i n g v i o l a t i o n i n t h e p a r t o n d i s t r i b u t i o n s . The e r r o r a s s o c i a t e d w i t h such a procedure may be e s t i m a t e d by the s e n s i t i v i t y of t h e r e s u l t s t o v a r i a t i o n of tne p a r t o n d i s t r i b u t i o n and t u r n s o u t t o be s m a l l . I n d i s c u s s i n g t h e r a d i a t i v e c o r r e c t i o n s I w i l l t a k e t h e n e u t r i n o experiments a s a n example b u t s i m i l a r consider- a t i o n s a p p l y t o the e-d experiment.

I n t h e Born approximation ( f i g . 1 ) t h e r a t i o of n e u t r a l t o charged c u r r e n t c r o s s s e c t i o n f o r s c a t t e r i n g o f f a n i s o s c a l a r t a r g e t i s given by

b u t r e a l l y t h e r e a r e many more graphs a t one loop o r d e r ( f i g . 2) and a l s o

bremss t r a h l u n g ( f i g . 3) t o be considered. These c o n t r i b u t e c o r r e c t i o n s a t 0 (orem) and O(aSU2) s o t h a t we o b t a i n

Fig. 1.

Fig. 2.

Fig. 3 .

(4)

by i n c l u d i n g F, we w i l l f i n d a d i f f e r e n t v a l u e f o r s i n 2 8 . I n g e n e r a l , F w i l l c o n t a i n terms

which could e a s i l y produce a s h i f t of f .02 i n s i n 2 @ . The l o g a r i t h m i c terms a r e n o t s u f f i c i e n t l y l a r g e r than t h e r e s t f o r a l e a d i n g l o g a r i t h m c a l c u l a t i o n t o be u e a n i n g f u l ; i t i s n e c e s s a r y t o do a f u l l c a l c u l a t i o n C71 a f t e r which i t is found i n some c a s e s t h a t the l o g a r i t h m i c terms alone C81 do give a reasonably a c c u r a t e r e s u l t . This i s presumably f o r t u i t o u s

-

however most l e a d i n g l o g c a l c u l a t i o n s do i n f a c t i n c l u d e t h e $..rr2 terms a s w e l l . The c a l c u l a t i o n of t h e bremsstrahlung i s s e n s i t i v e t o the e x p e r i n e n t a l c u t s i n x and y which have t o be taken i n t o account;

t h e low y c u t produces a p o t e n t i a l l y l a r g e e f f e c t because of t h e r e s u l t i n g incom- p l e t e c a n c e l l a t i o n of t h e l o g a r i t h m i c muon mass s i n g u l a r i t y .

The r e s u l t s f o r t h e v a r i o u s measurements of s i n 2 8 a r e shown i n Table 1. The l a r g e s t c o n t r i b u t i o n t o F i n the experiments comes from t h e p u r e l y e l e c t r o m a g n e t i c c o r r e c t i o n s t o charged c u r r e n t s c a t t e r i n g which accounts f o r about 90X of t h e s h i f t i n s i n 2 0 . I n e-d s c a t t e r i n g about h a l f t h e s h i f t comes from p u r e l y e l e c t r o m a g n e t i c e f f e c t s and most 3f t h e r e s t from y-z mixing through fermion loops. From t a b l e 1 i t can be s e e n t h a t

i ) The r a d i a t i v e c o r r e c t i o n s improve t h e agreement between experimental r e s u l t s and t n e minimal SU5 p r e d i c t i o n

-

t h e s i g n i f i c a n c e of t h i s i s ~t c l e a r .

i i ) T h e i n c l u s i o n of r a d i a t i v e c o r r e c t i o n s t o d i f f e r e n t e x p e r i u e n t s does n o t i n t r o - duce massive d i s c r e p a n c i e s n o t seen a t t h e t r e e y a p h l e v e l ; t h i s i n t e r n a l c o n s i s t e n c y encourages us i n t h e b e l i e f t h a t s i n 8 i s indeed a parameter of a renormalized Lagrangian.

Table 1.

v

c

.229*.018

s i n 2 8 .215+ .015 .221?.018

C l e a r l y , t h e p r i n c i p a l i n t e r e s t i n r a d i a t i v e c o r r e c t i o n c a l c u l a t i o n s i s t h e p r e d i c t i o n of t h e p h y s i c a l masses of t h e W,Z bosons. If t h e f u l l propagator i s

t h e n the p h y s i c a l mass M i s given by

de can always w r i t e C i n terms of o t h e r p h y s i c a l q u a n t i t i e s bqt t h e form of t h e f u n c t i o n depends on t h e o r d e r of p e r t u r b a t i o n theory t o which we c a l c u l a t e . I f t h e quantum f i e l d t h e o r y and i t s p e r t u r b a t i o n s e r i e s a r e v a l i d , then t h e one loop r e l a t i o n should f i t t h e d a t a b e t t e r t h a n t h e lowest o r d e r one. This i s t h e weak i n t e r a c t i o n e q u i v a l e n t of t h e Lamb s h i f t e t c . i n QED. Unfortunately t h e one loop r e s u l t s depend upon q u a n t i t i e s t h a t we do n o t know; t h e masses of t h e Higgs boson, Ohe t quark and any o t h e r a s y e t unknown fermion g e n e r a t i o n s . I f we assume MIi = MZ, mt = 20 GeV and no f u r t h e r g e n e r a t i o n s then, using R,, t o determine s i n 2 0 we f i n d t h e r e s u l t s shown i n t a b l e 2 C71. It i s f o r t u n a t e t h a t t h e mass s h i f t s a r e

(5)

C3-308 JOURNAL DE PHYSIQUE

r e a s o n a b l y l a r g e s i n c e t h e phenomenal a c c u r a c y o f t h e low e n e r g y p u r e QED e x p e r i m e n t s i s n o t a t t a i n a b l e a t h i g h e n e r g i e s . The r e s u l t s a r e i n s e n s i t i v e t o

%

which i s a n example of t h e " s c r e e n i n g theorem" of Veltman; changing Mx from 1 0 t o 500 GeV s h i f t s t h e W mass by +.23 GeV and t h e Z mass by +.34 GeV. Large mass s p l i t t i n g s i n fermion d o u b l e t s [ 9 1 c a n produce much l a r g e r changes; t h e e f f e c t of a d o u b l e t

(i:)

.mul>>md1 ,M w i s 2 m.. 1

Table 2.

I f t h e Z mass were t o t u r n o u t s m a l l e r t h a n t h a t p r e d i c t e d from t h e Born approxima- t i o n i t might i n d i c a t e t h e e x i s t e n c e of s u c h a d o u b l e t

-

b u t i t might i n d i c a t e t h a t t h e t h e o r y i s wrong. A change i n Rv of -.0016 (about 0.5%) produces a +.4 G e V s h i f t i n Mz which means t h a t t h e r e s u l t s a r e v u l n e r a b l e t o h i g h e r t w i s t e f f e c t s i n s c a t t e r i n g o f f h a d r o n i c t a r g e t s .

The u n c e r t a i n t i e s u s i n g R, a r e p r o b a b l y i r r e d u c i b l e and i t c a n be s e e n t h a t t h e y a r e a l i t t l e t o o l a r g e t o d i f f e r e n t i a t e d e f i n i t i v e l y between z e r o and one l o o p s even i f God t o l d u s t h e e x a c t v a l u e s o f M,, MH and mt. I n o r d e r t o r e d u c e t h e e r r o r s a d e t e r m i n a t i o n of s i n 2 0 u s i n g a p u r e l y l e p t o n i c p r o c e s s i s r e q u i r e d . A r e a s o n a b l e e v e n t r a t e d i c t a t e s t h e use of t h e Z resonance where, f o r example, t h e p o l a r i z a t i o n o f t a u p a i r s o r t h e forward-backward asymmetry of muon p a i r s may b e measured

[lo].

The e x p e c t e d v a l u e of N, can b e c a l c u l a t e d and compared w i t h t h e measured v a l u e . I n t h i s way t h e SU2xUI t h e o r y s h o u l d be t e s t e d t o h i g h p r e c i s i o n . An a l t e r n a t i v e method i s t o d e t e r m i n e t h e v a l u e s of Mz and

%

a c c u r a t e l y ( t h e measurement of EI, i s d i f f i c u l t bucmay u l t i m a t e l y b e a c h i e v e d ) . The r e l a t i o n between t h e two i s d i f f e r e n t depending upon whether z e r o o r one l o o p s a r e i n c l u d e d t h u s p r o v i d i n g a n o t h e r t e s t of t h e f i e l d theory.

One l o o p .215 s i n 2 8

I n c o n c l u s i o n we s e e t h a t r a d i a t i v e e f f e c t s produce s i g n i f i c a n t c o r r e c t i o n s t o p r e s e n t day e x p e r i m e n t s and t h a t t h e i r i n c l u s i o n does n o t d e s t r o y t h e agreement between t h e d i f f e r e n t e x p e r i m e n t s . However, t h e e r r o r s and u n c e r t a i n t i e s i n e x p e r i m n t s i n v o l v i n g h a d r o n s a r e t o o l a r g e f o r a c o n v i n c i n g check of t h e quantum f i e l d t h e o r y . We need LEP t o p r o v i d e s u f f i c i e n t l y a c c u r a t e measurements of Mz and s i n 2 0 f o r a r e a l t e s t o f t h e c o n s i s t e n c y o f t h e t h e o r y .

No l o o p s .227

1. F. A n t o n e l l i , M. C o n s o l i and G. Corbo, Phys. L e t t . (1980) 90.

M. Veltman, Phys. L e t t (1980) 95.

2. C.H. L l e w e l l y n Smith, G.G. Ross and J.F. Wheater, Nucl. Phys.

B177

(1981) 263.

L. H a l l , Nucl. W y s . =8(1981) 75.

3. See, f o r example, "Supersymmetry and i t s E x p e r i m e n t a l Consequences",

C.H. L l e w e l l y n S m i ~ h t a l k a t CERN supersymmetry workshop t o b e p u b l i s h e d i n P h y s i c s Reports.

4. M. J o n k e r e t a l . , Phys. L e t t . (1980) 265.

M. Deden e t a l . , Nucl. Phys. (1979) 1.

C. Geweniger, P r o c e e d i n g s N e u t r i n o ' 7 9 , Vo1.2, p.392.

F. M e r r i t t e t a l . , Phys. Rev.

D17

(1979) 2199.

P. Wanderer e t a l . , Phys. Rev.

D17

(1978) 1679.

(6)

5 . C.Y. P r e s c o t t e t a l . , Phys. L e t t . @J (1979) 524.

6. J.E. Kim e t a l . Rev. Mod. Phys.

53

(1981) 211.

7. Complete c a l c u l a t i o n s f o r charged and n e u t r a l c u r r e n t t o t a l c r o s s s e c t i o n s w i t h 1.h. h a d r o n i c c u r r e n t s have been done by

W . J . Marciano and A. S i r l i n , Nucl. Phys. (1981) 442 and

J.F. Wheater and C.H. L l e w e l l y n Smith, Oxford p r e p r i n t 5 / 8 2 ( t o be p u b l i s h e d i n Nucl. Phys. B) which a l s o c o n t a i n s r e s u l t s f o r r . h . h a d r o n i c c u r r e n t s ,

&

and e-d a s y m e t r y . The c o n c l u s i o n s of t h e s e two p a p e r s on t h e v a l u e dy of s i n 2 8 deduced from R,, a r e i n e x c e l l e n t agreement. S i m i l a r c a l c u l a t i o n s f o r c h a r g e c u r r e n t v - s c a t t e r i n g and e-d asymmetry a r e found i n :

D.Yu. Bardin and 0 . Fedorenko, Yad. F i z .

30

(1979) 811.

D.Yu. B a r d i n , 0 . Fedorenko and N.M. Shumieko, Yad. F i z . 32 (1980) 782 and D.Yu. Bardin and O.M. Fedorenko, Yad. F i z .

30

(1979) 8 1 1 7

The c o r r e s p o n d i n g work f o r ve s c a t t e r i n g i s t o b e found i n

I*. Green and M. Veltman, Nucl. Phys. (1980) 137 and e r r a t u m ; Nucl.

Phys.

B175

(1980) 547.

Z. H i o k i , Prog. Theor. Phys.

67

(1982) 4.

F. A n t o n e l l i e t a l . , Nucl. Phys.

B183

(1981) 195.

K. Aoki e t a l . P r o g r . Theor. Phys.

65

(1981) 1001.

and t h a t f o r e+e- a n n i h i l a t i o n i n :

G. P a s s a r i n o and M. Veltman, Nucl. Phys. (1979) 151.

M. C o n s o l i , Nucl. Phys. (1979) 208

F.A. Berends and R. K l e i s s , Nucl. Phys.

B177

(1981) 237.

8 . C a l c u l a t i o n s n o t i n c l u d i n g a l l non-logarithmic terms a r e t o b e found i n : S. Dawson, J. H a g e l l i n and L. H a l l , Phys. Rev.

D23

(1981) 2666

F. A n t o n e l l i and L. Maiani, Nucl. Phys. (1981) 269

S. B e l l u c c i , M. L u s i g n o l i and L. Maiani, Nucl. Phys. (1981) 329.

i3.A. Paschos and M. Wirbel, Nucl. Phys. (1982) 189 which c l a i m t o use t h e r e n o r m a l i z a t i o n scheme d i s c u s s e d i n

S. S a k a k i b a r a , Phys. Rev.

D24

(1981) 1149.

9. M. Veltman, Nucl. Phys.

B123

(1977) 8 9 .

M.B. E i n h o r n , D.R.T. J o n e s and M. Veltman, Nucl. Phys. (1981) 146.

10. M. Davier i n P r o c e e d i n g s of t h e LEP Summer Study, CERN y e l l o w r e p o r t 79-01 v 0 l . l .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to