• Aucun résultat trouvé

HIGH RESOLUTION SPECTROSCOPIC STUDIES OF SMALL MOLECULES

N/A
N/A
Protected

Academic year: 2021

Partager "HIGH RESOLUTION SPECTROSCOPIC STUDIES OF SMALL MOLECULES"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00226908

https://hal.archives-ouvertes.fr/jpa-00226908

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HIGH RESOLUTION SPECTROSCOPIC STUDIES OF SMALL MOLECULES

R. Field

To cite this version:

R. Field. HIGH RESOLUTION SPECTROSCOPIC STUDIES OF SMALL MOLECULES. Journal

de Physique Colloques, 1987, 48 (C7), pp.C7-17-C7-28. �10.1051/jphyscol:1987703�. �jpa-00226908�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplbment au n012, Tome 48, dbcembre 1987

HIGH RESOLUTION SPECTROSCOPIC STUDIES OF SMALL MOLECULES

R.W. FIELD

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, M A 02139, U.S.A.

A b s t r a c t

The s p e c t r a o f small molecules i n t h e gas phase a r e o f t e n e x t r e m e l y complicated. Much o f t h i s c o m p l e x i t y i s g r a t u i t o u s , and can be made t o d i s a p p e a r when a s u i t a b l e d o u b l e resonance scheme i s employed. Sometimes i t i s necessary t o d e v i s e devious schemes f o r c i rcumventing o b s t a c l e s ( s e l e c t i o n r u l e s , Franck-Condon f a c t o r s , p o t e n t i a l energy b a r r i e r s ) t o i m p o r t a n t t y p e s of m o l e c u l a r s t r u c t u r a l i n f o r m a t i o n

(3.

d i s s o c i a t i o n e n e r g i e s ) o r c l a s s e s of m o l e c u l a r energy l e v e l s (9. t r i p l e t s , l o c a l i z e d v i b r a t i o n a l e x c i t a t i o n s s u i t e d f o r bond s p e c i f i c photochemistry). The t r a d i t i o n a l s p e c t r o s c o p i c concepts and we1 1 - t r o d d e n p a t h f r o m spectrum t o p o t e n t i a l energy s u r f a c e m o l e c u l a r c o n s t a n t s i s ill s u i t e d f o r c h a r a c t e r i z i n g t h e l a r g e a m p l i t u d e d i s p l a c e m e n t s o f atoms from t h e i r e q u i l i b r i u m p o s i t i o n s which o c c u r i n s i m p l e unimol e c u l a r dynamical processes. C r o s s - c o r r e l a t i o n o f double resonance s p e c t r a may p r o v i d e a d i r e c t view o f s p e c i f i a b l e i n t r a m o l e c u l a r processes.

F o u r s p e c t r o s c o p i c examples w i l l b e discussed: ( i ) S t i m u l a t e d Emission Pumping ( s ~ P ) spectroscopy o f formaldehyde, an example o f a we1 1 -behaved m o l e c u l e i n t h e small a m p l i t u d e l i m i t , f o r which a complete s e t o f harmonic v i b r a t i o n a l f r e q u e n c i e s (wi ) and a n h a r m o n i c i t i e s (xi j) i s determined; ( i i ) P e r t u r b a t i o n F a c i 1 i t a t e d O p t i c a l - O p t i c a l Double Resonance (PFOOOR)

s p e c t r o s c o p y of L i z , i l l u s t r a t i n g access t o t r i p l e t s t a t e s and t h e phenomenon o f " a c c i d e n t a l p r e d i s s o c i a t i o n ; ( i i i ) d e t e r m i n a t i o n o f an upper bound t o t h e HCC-H d i s s o c i a t i o n energy o f a c e t y l e n e by Zeeman A n t i - C r o s s i n g (ZAC)

spectroscopy, a c o o p e r a t i v e p r e d i s s o c i a t i o n scheme s i m i l a r t o t h e a c c i d e n t a l p r e d i s s o c i a t i o n i n L i p whereby, d e s p i t e p o t e n t i a l energy b a r r i e r s , one can e n s u r e t h a t t h e onset o f d i s s o c i a t i o n w i l l be d e t e c t e d n o t f a r above t h e thermochemical l i m i t ; ( i v ) d e t e c t i o n and c h a r a c t e r i z a t i o n o f a v i n y l i d e n e v i b r a t i o n a l l e v e l t h r o u g h t h e e f f e c t o f a c e t y l e n e - v i n y l i d e n e i s o m e r i z a t i o n on t h e c r o s s - c o r r e l a t i o n o f a c e t y l e n e SEP s p e c t r a , i l l u s t r a t i n g a new, d i r e c t way o f sampl i ng i n t r a m o l e c u l a r dynamics a t such h i g h i n t e r n a l e n e r g i e s t h a t v i b r a t i o n a l s p e c t r a a r e i n t r i n s i c a l l y unassignable.

I. I n t r o d u c t i o n

High r e s o l u t i o n s p e c t r a o f s m a l l , gas phase molecules can c o n t a i n an enormous q u a n t i t y o f i n f o r m a t i o n . F o r example, a s i n g l e v ' - v " v i b r a t i o n a l band o f a 7 ~ - 7 c + system c o n s i s t s o f 147 r o t a t i o n a l branches, each comprised o f t e n s o f r o t a t i o n a l l i n e s . F o r MnH where t h e n u c l e a r s p i n s a r e IMn = 512 and

IH = 112, each r o t a t i o n a l l i n e s p l i t s i n t o (21Mn+1)(?IH+1) = 12 s t r o n g

h y p e r f i n e components. Thus a s i n g l e v i b r a t i o n a l band m i g h t c o n s i s t o f as many as 104 f e a t u r e s , each measured t o -1 p a r t i n 108. Yet t h e i n f o r m a t i o n c o n t e n t o f such a band, when reduced t o t h e -20 m o l e c u l a r c o n s t a n t s capable o f

r e p r o d u c i n g a l l measurable f r e q u e n c i e s and i n t e n s i t i e s , i s q u i t e modest. T h i s i s g r a t u i t o u s c o m p l e x i t y i n i t s s i m p l e s t and l e a s t i n s i d i o u s form.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987703

(3)

C7-18 JOURNAL DE PHYSIQUE

I t can be v e r y easy t o r e c o r d an u n s p e c i f i e d spectrum, b u t o f t e n much more d i f f i c u l t t o r e c o r d

the

spectrum t h a t r e v e a l s t h e s o u g h t - f o r b i t o f i n f o r m a t i o n about a s p e c i f i c molecule. Some s p e c t r a a r e r e l a t i v e l y easy t o a s s i g n and f i t t o m o l e c u l a r constants. However, several innocent appearing, c h e m i c a l l y s i g n i f i c a n t , and f r e q u e n t l y asked q u e s t i o n s such as "what i s t h e A b A + B d i s s o c i a t i o n energy" o r "where i s t h e l o w e s t l y i n g e x c i t e d e l e c t r o n i c s t a t e " can be e x c e e d i n g l y d i f f i c u l t t o answer because o f s p e c t r o s c o p i c

o b s t a c l e s . Franck-Condon and e l e c t r o n i c s e l e c t i o n r u l e r e s t r i c t i o n s a r e o f t e n f o r m i d a b l e o b s t a c l e s t o t h e e x t r a c t i o n o f c r u c i a1 i n f o r m a t i o n from t h e s p e c t r a of even t h e s i m p l e s t o f molecules.

Polyatomic molecules a r e n o t r i g i d bodies i n which t h e c o n s t i t u e n t atoms undergo o n l y i n f i n i t e s i m a l displacements from t h e i r e q u i l i b r i u m p o s i t i o n s . Textbooks t e l l us about v i b r a t i o n a l normal modes and l e a d us t o b e l i e v e t h a t each v i b r a t i o n a l l e v e l may be assigned a s e t o f normal mode v i b r a t i o n a l quantum numbers, t h a t t h e v i b r a t i o n a l energy l e v e l s may be represented by a s e t o f fundamental v i b r a t i o n a l f r e q u e n c i e s (wi) and anharmonici t i e s (xi j), and t h a t t h e s e v i b r a t i o n a l constants determine t h e p o t e n t i a l energy surface, V(1).

U n f o r t u n a t e l y , t h e (wi,xij) determine o n l y a r e s t r i c t e d r e g i o n o f V(2) near e q u i l i b r i u m

(4,);

moreover, f o r four-atom and l a r g e r molecules, f a r more f o r c e c o n s t a n t s t h a n may be i n f e r r e d from s p e c t r a l d a t a a r e r e q u i r e d t o o b t a i n even t h e most p r i m i t i v e r e p r e s e n t a t i o n o f t h e i n t r a - and inter-mode

anharmonici t i e s .

The t r a d i t i o n a l approach t o t r a d i t i o n a l l y recorded v i b r a t i o n - r o t a t i o n s p e c t r a can p r o v i d e l i t t l e i n s i g h t i n t o l a r g e a m p l i t u d e processes. For example, a s i d e from l o w b a r r i e r ((10 kcal/mole) i n t e r n a l r o t a t i o n processes, h i g h r e s o l u t i o n spectroscopy has been a b l e t o t e l l us v e r y l i t t l e about t h e mechanism o r b a r r i e r shape f o r u n i m o l e c u l a r i s o m e r i z a t i o n processes o r t h e s t r u c t u r e o f u n s t a b l e isomers. D e s p i t e t h e t r u i s m t h a t m o l e c u l a r e i g e n s t a t e s a r e s t a t i o n a r y , p o l y a t o m i c rnolecwles are much Tore l i k e t h e dynamical o b j e c t s suggested by our experience w i t h b a l l -and-spring models t h a n t h e s t a t i c o b j e c t s suggested by quantum mechanical s t a t i o n a r y s t a t e s . The spectrum does c o n t a i n dynamical i n f o r m a t i o n , b u t we must d i s c o v e r new ways o f r e a d i n g t h i s i n f o r m a t i o n i n t h e spectrum.

T h i s paper i l l u s t r a t e s some h i g h r e s o l u t i o n s p e c t r o s c o p i c s o l u t i o n s t o t h e problems o f g r a t u i t o u s c o m p l e x i t y , s p e c t r o s c o p i c o b s t a c l e s , s y s t e m a t i c c h a r a c t e r i z a t i o n o f t h e small a m p l i t u d e r e g i o n o f V( ) , and l a r g e a m p l i t u d e i n t r a m o l e c u l a r dynamics. Double resonance schemes p

P

ay a c r u c i a l r o l e by r e d u c i n g t h e c o m p l e x i t y o f #a spectrum, by f o r c i n g a c r u c i a l b u t weak s p e c t r a l f e a t u r e t o emerge from concealment under more numerous and s t r o n g e r f e a t u r e s , by t a k i n g advantage o f a c c i d e n t s o f n a t u r e ( s p e c t r o s c o p i c p e r t u r b a t i o n s ) which a l l o w s e l e c t i o n r u l e s t o be bent, and when complemented by s t a t i s t i c a l methods f o r p r o c e s s i n g m a x i m a l l y s i m p l i f i e d s p e c t r a t o r e v e a l dynamics.

11. E f f e c t s and Techniques

It w i l l be u s e f u l t o d e f i n e o r d e s c r i b e s e v e r a l s p e c t r o s c o p i c e f f e c t s and techniques t h a t p l a y a c e n t r a l r o l e i n t h e f o u r examples t o be discussed i n t h e n e x t section.

A. S p e c t r o s c o p i c p e r t u r b a t i o n s a r e e x h a u s t i v e l y discussed i n Ref. [I].

F i g u r e s 1.1 and 1.2 of Ref. L l ] i l l u s t r a t e how a p e r t u r b a t i o n d i s r u p t s t h e r e g u l a r p a t t e r n o f r o t a t i o n a l 1 in e s i n a spectrum. P e r t u r b a t i o n s occur because c e r t a i n terms i n t h e exact m o l e c u l a r Hamiltonian, which we choose t o n e g l e c t i n o r d e r t o d e f i n e separate e l e c t r o n i c s t a t e s and t o f a c t o r t h e w a v e f u n c t i o n i n t o e l e c t r o n i c , v i b r a t i o n a l

,

and r o t a t i o n a l p a r t s , a r e n o t always n e g l i g i b l e . The usual Born-Oppenheimer way o f t h i n k i n g about m o l e c u l a r s t a t e s serves us v e r y w e l l f o r -99% o f t h e observable m o l e c u l a r e i g e n s t a t e s . However, u s u a l l y because of an a c c i d e n t a l near degeneracy, -1% o f t h e e i g e n s t a t e s a r e o f mixed e l e c t r o n i c c h a r a c t e r

(4)

where

l i

,J> i s t h e i - t h e i g e n s t a t e w i t h t h e r i g o r o u s l y good J r o t a t i o n a l quantum number, lelvlJ> and le2v2J> a r e Born-Oppenheimer r o t a t i o n - v i b r a t i o n - e l e c t r o n i c b a s i s f u n c t i o n s a s s o c i a t e d w i t h p o t e n t i a l energy curves 1 and 2 and z e r o - o r d e r e n e r g i e s EO

,

and a i J i s a m i x i n g c o e f f i c i e n t

P e r t u r b a t i o n s can be a nuisance because t h e y can make a spectrum d i f f i c u l t t o a s s i g n and d e s c r i b e i n terms o f s t a n d a r d m o l e c u l a r constants, b u t t h e y a r e a g r e a t boon t o w r i t e r s o f spectroscopy t e x t b o o k s ( o t h e r w i s e t h e r e m i g h t be l i t t l e t o d i s c u s s a f t e r t h e f i r s t c h a p t e r ) and t o s p e c t r o s c o p i s t s i n need o f a window onto o t h e r w i s e unobservable s t a t e s and a r e s t r i c t e d 1 ic e n s e t o v i o l a t e s e l e c t i o n r u l e s .

B. P r e d i s s o c i a t i o n i s a k i n d o f p e r t u r b a t i o n where t h e p e r t u r b e d l e v e l lelvlJ> i s bound and t h e p e r t u r b i n g s t a t e le2a2J> i s unbound and a s s o c i a t e d w i t h t h e v i b r a t i o n a l continuum o f t h e e2 e l e c t r o n i c s t a t e . See c h a p t e r 6 o f Ref. [l]. The e f f e c t o f a p r e d i s s o c i a t i o n i s t o cause t h e p r e d i s s o c i a t e d 1 eve1 t o be broadened ( s h o r t e r l i f e t i m e , l o w e r f l u o r e s c e n c e quantum y i e l d ) and s h i f t e d . P r e d i s s o c i a t i o n can o n l y o c c u r a t an energy above t h e l o w e s t energy A&A+B d i s s o c i a t i o n l i m i t and t h e r e f o r e t h e o b s e r v a t i o n o f a p r e d i s s o c i a t i o n p r o v i d e s a r i g o r o u s upper bound t o t h e m o l e c u l a r d i s s o c i a t i o n energy, DO0 (AB).

P o t e n t i a l energy b a r r i e r s , e l e c t r o n i c s e l e c t i o n r u l e s , and Franck-Condon 1 im i t a t i o n s on v i b r a t i o n a l o v e r l a p t y p i c a l l y cause p r e d i s s o c i a t i o n e f f e c t s t o b e unobservably small up t o an energy w e l l above t h r e s h o l d . To o b t a i n a u s e f u l l y t i g h t upper bound on DoO f r o m p r e d i s s o c i a t i o n e f f e c t s o f t e n r e q u i r e s s p e c t r o s c o p i c t r i c k e r y .

C. A c c i d e n t a l P r e d i s s o c i a t i o n i s a t h r e e s t a t e e f f e c t whereby s t a t e 1 i s p e r t u r b e d by s t a t e 2 which, i n t u r n , i s p r e d i s s o c i a t e d by s t a t e 3. I n t h e absence o f s t a t e 2, t h e e f f e c t o f t h e s t a t e 3 continuum on s t a t e 1 i s

u n d e t e c t a b l y small. A c c i d e n t a l p r e d i s s o c i a t i o n i s an example o f a molecule o u t s m a r t i n g i t s e l f ; a 1+3 d i s s o c i a t i o n channel which i s d e v i o u s l y concealed because o f e l e c t r o n i c s e l e c t i o n r u l e s o r n e g l i g i b l e v i b r a t i o n a l o v e r l a p i s i n a d v e r t e n t l y r e v e a l e d by an a c c i d e n t a l 1-2 degeneracy. Sometimes, when n a t u r e does n o t p r o v i d e a s u i t a b l e p r o m o t i n g l e v e l - 2 , a d d i t i o n o f a s u i t a b l e DC o r o s c i l l a t i n g e l e c t r i c o r magnetic f i e l d can t u n e a nearby l e v e l i n t o resonance w i t h l e v e l - 1 t h e r e b y v a s t l y enhancing t h e o b s e r v a b i l i t y o f t h e 1+3 p r e d i s s o c i a t i on.

D. An A n t i c r o s s i n g occurs when two z e r o - o r d e r b a s i s s t a t e s (Elo,

lel,v1,J> and E20, le2,v2,J>) b e l o n g i n g t o t h e same v a l u e s o f r i g o r o u s quantum numbers

(x.

J, p a r i t y , r o v i b r o n i c i r r e d u c i b l e r e p r e s e n t a t i o n l a b e l ) a r e t u n e d by a p p l i c a t i o n o f an e x t e r n a l magnetic o r e l e c t r i c f i e l d , t h r o u g h e x a c t degeneracy. Two s t a t e s o f t h e same symmetry cannot cross. An a n t i c r o s s i n g i s a p e r t u r b a t i o n induced by an e x t e r n a l f i e l d . The e x t e r n a l f i e l d can induce t h e a n t i c r o s s i n g by c a u s i n g Elo-E20 t o t u n e t h r o u g h z e r o and by causing t h e i n t e r a c t i o n m a t r i x element <e vlJ1 I t i ( e 2 v 2 J 2 > t o become nonzero by d e s t r o y i n g a r i g o r o u s z e r o - f i e l d symmetry

t3.

J l = J Z i 1,

+--

and g-u i n e l e c t r i c f i e l d ) . An a n t i c r o s s i n g i s d e t e c t e d by a resonant change i n t h e r a d i a t i v e p r o p e r t i e s ( l i f e t i m e , quantum y i e l d , p o l a r i z a t i o n , r o t a t i o n a l branch p a t t e r n , f l u o r e s c e n c e b r a n c h i n g r a t i o ) . See S e c t i o n s 5.5.2 and 5.5.3 o f Ref. [I].

E. O p t i c a l O p t i c a l Double Resonance (OODR) i s a two-step e x c i t a t i o n scheme whereby a PUMP l a s e r a t w21 e x c i t e s t h e e 2 v 2 J y e l v l J l t r a n s i t i o n and t h e n a PROBE l a s e r a t u 2 e x c i t e s t h e e3v3J3+ezv2J t r a n s i t i o n [2,3]. F i g u r e

1 i l l u s t r a t e s t h e OODR Qevel scheme f o r BaO C l n + + ~ f c + + x l z + [4] and t h a t t h e OODR e f f e c t may be d e t e c t e d a g a i n s t a d a r k background by t h e appearance of wf

(5)

C7-20 JOURNAL DE PHYSIQUE

f l u o r e s c e n c e f r o m l e v e l - 3 a t w32 + ~ 2 1 2 W? >> ~ 2 1 and LO32 o r as a decrease ( a 40% change i s shown) i n f l u o r e s c e n c e i n t e n s i t y f r o m l e v e l - 2 r Both d e t e c t i o n schemes g i v e sub-Doppler l i n e w i d t h s ( D o p p l e r w i d t h

-

1000 MHz FWHM),

r e g a r d l e s s o f whether PUMP and PROBE a r e co- o r counter-propagating.

Second Excita+ion R I O I /

Resolved P ( I ) First E x c i l a t ~ o n P ( 1 )

x 'z*

10 - - 10

' 4

-

OOOR excttotlon spectrum of B o F

-

Y) C

Loser wavelength

t

+200 +loo UO -100 -200 F i g u r e 2

Loser Frequency ( M H z )

F i g u r e 1

F i g u r e 1. OODR spectroscopy. A l t e r n a t i v e d e t e c t i o n schemes f o r sub-Doppler OODR. PUMP e x c i t e s BaO A-X 1-0 P ( 1 ) , PROBE e x c i t e s C-A 3-1 R(0). The upper t r a c e was d e t e c t e d t h r o u g h a UV passing, v i s i b l e a b s o r b i n g c o l o r e d - g l a s s f i l t e r . The upper t r a c e was o b t a i n e d by m o n i t o r i n g a decrease i n t h e r e s o l v e d f l u o r e s c e n c e i n t e n s i t y of t h e A-X 1-2 P ( l ) l i n e .

F i g u r e 2. OODR E x c i t a t i o n Spectrum o f BaF. PUMP i s a single-mode, cw dye l a s e r e x c i t i n g BaF B-X 0-0. PROBE i s a broadband, cw dye l a s e r .

F i g u r e 2 [5] i l l u s t r a t e s how OODR s i m p l i f i e s a spectrum t o t h e minimum i n f o r m a t i o n r e q u i r e d t o make d e f i n i t i v e e l e c t r o n i c assignments and t o d e t e r m i n e r o t a t i o n a l and v i b r a t i o n a l constants. The PUMP s e l e c t s one o f -100 t h e r m a l l y p o p u l a t e d r o t a t i o n a l l e v e l s i n t h e BaF X2z+ s t a t e and p o p u l a t e s a s i n g l e l e v e l o f known e l e c t r o n i c , v i b r a t i o n a l

,

r o t a t i o n a l , and p a r i t y quantum numbers i n t h e B2z+ s t a t e ( t h e BaF B-X t r a n s i t i o n had been analyzed p r e v i o u s l y [ 6 ] ) . The PROBE t h e n e x c i t e s from t h e

only

a p p r e c i a b l y p o p u l a t e d l e v e l o f t h e B2z+ s t a t e i n t o e i t h e r E2z+ o r F2n. The e n t i r e EtB OODR e x c i t a t i o n spectrum c o n s i s t s of two l i n e s , R(N) and P(N), and t h e E - s t a t e r o t a t i o n a l c o n s t a n t (BE3) i s g i v e n by

The FcB ODOR e x c i t a t i o n spectrum c o n s i s t s o f two groups o f t h r e e l i n e s , from which t h e r o t a t i o n a l , s p i n - o r b i t , and A - d o u b l i n g c o n s t a n t s o f t h e F*n s t a t e , may be d e r i v e d . The t w o - l i n e

s.

6 - l i n e p a t t e r n f o r 2 z + t 2 ~ + VS. 2 n t 2 z + t r a n s i t i o n s t y p i f i e s t h e e l e c t r o n i c s t a t e symmetry d i a g n o s t i c p o w e r of OODR.

(6)

The wide expanses o f f l a t b a s e l i n e suggest t h a t OODR e x c i t a t i o n spectroscopy w i l l be e x t r a o r d i n a r i l y s e n s i t i v e t o weak, n o m i n a l l y f o r b i d d e n t r a n s i t i o n s t h a t would n o r m a l l y be obscured under s t r o n g e r f e a t u r e s i n t h e t y p i c a l , r o t a t i o n a l l y congested, s i n g l e resonance spectrum.

F. S t i m u l a t e d Emission Pumping (SEP) i s a f o l d e d OODR scheme [7-91 i l l u s t r a t e d by F i g u r e 3. The second l a s e r , c a l l e d t h e DUMP, s t i m u l a t e s e m i s s i o n f r o m t h e i n t e r m e d i a t e l e v e l - 2 i n t o t h e t a r g e t l e v e l - 3 which i s a h i g h l y e x c i t e d v i b r a t i o n a l l e v e l o f t h e e l e c t r o n i c ground s t a t e . The SEP e f f e c t i s d e t e c t e d by t h e decrease i n s i d e f l u o r e s c e n c e ( " f l u o r e s c e n c e d i p " ) scheme f i r s t i l l u s t r a t e d f o r OODR i n F i g u r e 1. Many o t h e r schemes f o r d e t e c t i n g SEP have been demonstrated [8, 9 and r e f e r e n c e s t h e r e i n ] .

J u s t as OODR e x c i t a t i o n s p e c t r a a r e so s i m p l e t h a t e l e c t r o n i c s t a t e assignments may be deduced t r i v i a l l y , so t o o do SEP s p e c t r a c o n t a i n t h e minimum i n f o r m a t i o n needed t o deduce v i b r a t i o n a l l e v e l symmetry and B and C r o t a t i o n a l c o n s t a n t s f o r asymmetric t o p p o l y a t o m i c molecules

[lo].

T h i s i s i l l u s t r a t e d f o r H2CO by F i g u r e s 4 and 5. F i g u r e 4 shows p r e d i c t e d r o t a t i o n a l branch frequency and i n t e n s i t y p a t t e r n s f o r t h r e e ( o f f o u r p o s s i b l e ) symmetry c l a s s e s o f v i b r a t i o n a l l e v e l s reached by DUMP t r a n s i t i o n s p o l a r i z e d a l o n g t h e a-, b-, o r c-axes o f t h e b o d y - f i x e d i n e r t i a l a x i s system. F i g u r e 5 shows how, a t 8530 cm-1 o f v i b r a t i o n a l e x c i t a t i o n . i n t e r l e a v e d r o t a t i o n a l t r a n s i t i o n s o f

0 1 0 0 . 1 0 1 0 0 1 0

f o u r v i b r a t i o n a l bands

( k i

2540, 11224~. 31446~, and 224251) may be assigned

[lo].

Two o f t h e v i r t u e s o f SEP are: a s p e c t r a l r e g i o n which would be so congested i n a s i n g l e resonance as t o p r o h i b i t r o t a t i o n - v i b r a t i o n assignment becomes t r i v i a1 l y assignable; v i b r a t i o n a l l e v e l s t h a t c o u l d n o t n o r m a l l y be accessed d i r e c t l y from t h e z e r o - p o i n t v i b r a t i o n a l l e v e l o f t h e

k

s t a t e because o f v a n i s h i n g l y small t r a n s i t i o n p r o b a b i l i t i e s a r e e a s i l y reached because o f t h e i r good Franck-Condon o v e r l a p w i t h a we1 1 c h a r a c t e r i z e d v i b r a t i o n a l l e v e l o f t h e

a

s t a t e .

a

-

t y p e

c - t y p e 'RI.~ (11

F i g u r e 3

Pa,.l (21 P~l.,c3~

F i g u r e 4

b - t y p e

F i u r e 3. SEP PUMPIDUMP Level Diagram.

h.

P r e d i c t e d SEP P a t t e r n s f o r 3 Types o f Y i b r o n i c Bands. C a l c u l a t e d r e l a t i v e i n t e n s i t i e s f o r r o t a t i o n a l t r a n s i t i o n s from J K ,K = Z0,2 of H~~~ A

a c

4 l . H2CO i s a near p r o l a t e t o p (K = -0.9614) b u t i s t r e a t e d as a symmetric t o p w i t h A:B:C = 9.4:l.Z:l.Z.

(7)

JOURNAL DE PHYSIQUE

F i g u r e 5

F i u r e 5 SEP Spectrum o f HzCO a t EVIB = 8530 cm-1. Three b-type bands

h i ,

bKC = il) and one a-type band (nKa = 0, &Kc = t l ) a r e i n t e r l e a v e d . The upper l e v e l i s

A

4 l JKa,,, = l 0 , l '

6 . P e r t u r b a t i o n F a c i l i t a t e d O p t i c a l O p t i c a l Double Resonance (PFOODR) [ll] i s a double resonance scheme t h a t t a k e s advantage o f a p e r t u r b a t i o n i n t h e i n t e r m e d i a t e s t a t e i n o r d e r t o g a i n access t o a c l a s s of l e v e l s t h a t would o t h e r w i s e be unobservable because o f r e s t r i c t i v e s e l e c t i o n r u l e s o r

Franck-Condon f a c t o r s [I?]. The ground s t a t e o f a l l a l k a l i dimers i s X1c+ and t h e s p i n s e l e c t i o n r u l e AS = 0 p r o h i b i t s e x c i t a t i o n o f t r a n s i t i o n s f r o m X ~ C + i n t o any t r i p l e t s t a t e . The s p i n - o r b i t t e r m i n ,tJ i s r e s p o n s i b l e f o r s e v e r a l Alz+-b3n p e r t u r b a t i o n s where t h e malecul a r e i g e n s t a t e s acqui r e a p p r e c i a b l e simultaneous A - s t a t e and b - s t a t e c h a r a c t e r [ c f . Eq. ( I ) ] , The f r a c t i o n a l A - s t a t e c h a r a c t e r ( 1

-

abJ2) makes i t p o s s i b l e f o r t h e PUMP t o e x c i t e i n t o t h e A-b mixed e i g e n s t a t e f r o m X ~ E + w h i l e t h e b - s t a t e c h a r a c t e r (abJ2) a l l o w s t h e PROBE t o e x c i t e f r o m t h e mixed l e v e l i n t o a p u r e t r i p l e t e i g e n s t a t e .

LASER -I

3=;

F i g u r e 6. PFOODR Level Diagram f o r L i z and Na2.

F i g u r e 6 i l l u s t r a t e s t h e two k i n d s o f i n f o r m a t i o n about t h e t r i p l e t s t a t e s of Na2 [13] and L i z E l 4 1 o b t a i n a b l e by PFOODR spectroscopy. PFOODR e x c i t a t i o n spectroscopy (PUMP frequency f i x e d , PROBE frequency scanned,

(8)

f i 1 te r e d f l u o r e s c e n c e d e t e c t e d ) samples t h e 3~ Rydberg s t a t e s [13a ,14a].

PFOODR r e s o l v e d f l u o r e s c e n c e spectroscopy (PUM? and PROBE f r e q u e n c i e s f i x e d , emission spectrum recorded by a scanning monochromator) samples t h e l o w - l y i n g 3 ~ u (b3nu and a3z +) v a l e n c e s t a t e s [13b,14b], i n c l u d i n g bound+bound,

bound-quasi bound

Y L ~

p A16U+-b3nU-a3zU+ a c c i d e n t a l p r e d i s s o c i a t i o n , L i p and Na2 a3zu+ l e v e l s quasi bound b e h i n d a c e n t r i f u g a l b a r r i e r ) , and bound+f r e e

(3hg+a3zu+ o s c i l l a t o r y continuum) t r a n s i t i o n s .

H. Zeeman A n t i c r o s s i n S e c t r o s c o (ZAC) was f i r s t a p p l i e d t o a m o l e c u l e (CN), i n a zero-1as;r Porm, by : i d f o r d and B r o i d a [15]. The example

r e l e v a n t t o t h e p r e s e n t d i s c u s s i o n i n v o l v e s t h e

1 l ~ ~ + X l ~ ~ +

t r a n s i t i o n o f acetylene. A s i n g l e v,J,K,,MJ l e v e l o f t h e HCCH A - s t a t e i s e x c i t e d by l i g h t from a p u l s e d frequency doubled dye l a s e r and t h e i n t e g r a t e d , undispersed f l u o r e s c e n c e i s recorded a t f i x e d l a s e r frequency w h i l e t h e magnetic f i e l d s t r e n g t h i s scanned. Numerous sharp d i p s i n t h e d e t e c t e d f l u o r e s c e n c e a r e observed as l e v e l s , which a r e n o t d e t e c t a b l e i n t h e f l u o r e s c e n c e e x c i t a t i o n spectrum ( " d a r k " l e v e l s ) , a r e Zeeman-tuned t h r o u g h a n t i c r o s s i n g s w i t h t h e r e l a t i v e l y Zeeman-inactive l e v e l o f t h e s p e c t r o s c o p i c a l l y a c c e s s i b l e

( " b r i g h t " l e v e l ) 1 - s t a t e . When a b r i g h t s t a t e i s a n t i c r o s s e d by a dark s t a t e , t h e r a d i a t i v e c h a r a c t e r o f t h e b r i g h t s t a t e i s d i v i d e d among two mixed e i g e n s t a t e s , b o t h o f which r a d i a t e more s l o w l y hence a r e more e f f i c i e n t l y quenched t h a n t h e o r i g i n a l , u n p e r t u r b e d b r i g h t s t a t e . T h i s quenching-induced decrease i n f l u o r e s c e n c e quantum y i e l d a t a n t i c r o s s i n g s between b r i g h t and dark s t a t e s i s u s u a l l y t h e most i m p o r t a n t cause o f t h e f l u o r e s c e n c e d i p a t an a n t i c r o s s i n g (see S e c t i o n 5.5.3 o f Ref. [ I ] ) . Other e f f e c t s , such as a decrease i n o p t i c a l e x c i t a t i o n e f f i c i e n c y o r a c c i d e n t a l p r e d i s s o c i a t i o n by a p r e d i s s o c i a t e d dark s t a t e , a r e o f t e n i m p o r t a n t as w e l l .

I n t h e case o f t h e a c e t y l e n e ZAC spectrum, i t i s p o s s i b l e t o e s t i m a t e t h e number of d a r k s t a t e v i b r a t i o n a l l e v e l s p e r cm-1 ( d e n s i t y o f dark s t a t e s ) from t h e number o f ZAC's p e r kGauss. F o r s e v e r a l v i b r a t i o n a l l e v e l s o f t h e HCCH 1 - s t a t e , t h e d e n s i t y o f ZAC's i m p l i e s an i m p o s s i b l y l a r g e d e n s i t y o f dark s t a t e s if o n l y t h e ab i n i t i o p r e d i c t e d [ I 6 1 t r i p l e t s t a t e s o f a c e t y l e n e a r e considered. Normally one would c o n s i d e r o n l y t r i p l e t s t a t e s because a 'cg+

s t a t e i s n o t expected t o be Zeeman-active. However, t h e a c e t y l e n e 1 - s t a t e i s embedded i n a dense m a n i f o l d o f h i g h l y e x c i t e d v i b r a t i o n a l l e v e l s o f t h e ~ 1 1 ~ ' ground s t a t e . The k - s t a t e v i b r a t i o n a l l e v e l d e n s i t y i s comparable t o t h e dark s t a t e d e n s i t y i n f e r r e d f r o m t h e ZAC spectrum. The Zeeman a c t i v i t y o f t h e s e 2 - l e v e l s i s borrowed f r o m t h e t r i p l e t s ; as a t r i p l e t s t a t e i s Zeeman t u n e d t h r o u g h a dense m a n i f o l d o f ? - l e v e l s , t h e t r i p l e t a c t s l i k e a snowplow pushing t h e ? - l e v e l s ahead o f i t t h r o u g h t h e m o n i t o r e d A-state. The p o i n t o f t h i s d i s c u s s i o n i s t o show t h a t ZAC can p r o v i d e a sample o f a l l d a r k l e v e l s i n a g i v e n energy r e g i o n , n o t m e r e l y t h e n o r m a l l y Zeeman-active ones.

I I I. Examples

The s t a g e i s now s e t f o r b r i e f d i s c u s s i o n s o f f o u r examples which i 11 u s t r a t e t h e power and e l e g a n t simp1 i c i t y o f h i g h r e s o l u t i o n spectroscopy.

A. A Complete Set o f ~i ,xi j f o r H2CO i 1

[lo].

~ ~Double resonance, i n i t s s i m p l e s t form, s i m p l y by r e d u c i n g t h e r o t a t i o n a l c o n g e s t i o n t y p i c a l o f a s i n g l e resonance spectrum, a l l o w s weak f e a t u r e s t o be r e s o l v e d and assigned and o v e r l a p p i n g bands t o be untangled. SEP spectroscopy has extended t h e energy r e g i o n o f d e f i n i t i v e r o t a t i o n - v i b r a t i o n assignments i n H2CO

X ~ A ~

t o E < 9300 cm-1

[lo].

It appears, a t l e a s t ' f o r n o n r o t a t i n g (J = 0 ) l e v e l s , t h a t t h e H2CO ground s t a t e remains v i b r a t i o n a l l y w e l l organized. I n o t h e r words, t h e v i b r a t i o n a l l e v e l s f o l l o w t h e t e x t b o o k f o r m u l a

(9)

C7-24 JOURNAL DE PHYSIQUE

T a b l e I shows t h e complete s e t o f s i x v i b r a t i o n a l f r e q u e n c i e s ( ~ ~ 0 ) and 21 anharmoni c i ti e s (xi j) determined by augmenting p r e v i o u s H2CO X - s t a t e s p e c t r a l d a t a w i t h r e s u l t s f r o m SEP spectroscopy. A s u r p r i s i n g l y l a r g e number o f c o n s t a n t s i s r e q u i r e d (27) t o p r o v i d e t h i s most p r i m i t i v e c h a r a c t e r i z a t i o n o f a four-atom molecule (54 c o n s t a n t s a r e r e q u i r e d f o r 5 atoms), y e t even t h i s 1 eve1 o f c h a r a c t e r i z a t i o n i s i n s u f f i c i e n t t o determine t h e t e n harmonic f o r c e constants, t o say n o t h i n g o f t h e 22 c u b i c and 48 q u a r t i c f o r c e c o n s t a n t s needed t o r e p r e s e n t t h e near e q u i l i b r i u m r e g i o n o f t h e p o t e n t i a l energy surface.

Moreover, H2CO i s one of t h e few f o u r atom o r l a r g e r .molecules f o r which such a complete f u l l y e m p i r i c a l { w i ,xi j} c h a r a c t e r i z a t i o n has been achieved.

Table I

Another advantage of SEP i s i t s J - s e l e c t i v i t y . At low-J t h e H ~ C O s ~ p s p e c t r a d i s p l a y t e x t b o o k s i m p l i c i t y . Yet by J-10, Ka-2 t h e s p e c t r a have become u n i n t e r p r e t a b l y complex [171. T h i s c o n t r o l over J a1 lows t h e e v o l u t i o n o f t h e spectrum t o be f o l l o w e d from t e x t b o o k - a s s i g n a b l e t o i n t r i n s i c a l l y unassignable. I n a s i n g l e resonance spectrum, a l l J ' s would be p r e s e n t and h o p e l e s s l y tangled; even a p a r t i a l assignment o f t h e low-J r e g i o n o f such a spectrum would be p r o h i b i t i v e l y d i f f i c u l t .

6 . PFOODR Spectroscopy o f L i 7 C141. I n a d d i t i o n t o s p e c t r a l s i m p l i f i c a t i o n , PFOODR i n L i 2 e x p l o i t s e i t h e r o f two r a r e , near p e r f e c t , a c c i d e n t a l degeneracies between a b r i g h t l e v e l , 6 L i 2 A'zu+ v = 2, J = 33 o r v = 9, J = 20 and a dark l e v e l b3nu v = 9, J = 33, N = 32 o r v = 15, J = 20, N = 19 [14,18,191, i n o r d e r t o bend t h e AS = 0 s p i n s e l e c t i o n r u l e p r o h i b i t i n g s p e c t r o s c o p i c t r a n s i t i o n s between s i n g l e t and t r i p l e t s t a t e s .

Two v e r y i n t e r e s t i n g phenomena a r e i l l u s t r a t e d w i t h t a n t a l i z i n g s i m p l i c i t y i n PFOODR r e s o l v e d f l u o r e s c e n c e s p e c t r a o f 6 L i 2 [14a]. F i g u r e 7 shows a p o r t i o n of t h e Z3n a3zu+ f l u o r e s c e n c e spectrum. The t o p and bottom t r a c e s r e s p e c t i v e l y show f c o r e s c e n c e o r i g i n a t i n g from N = 33, J = 34 and N = 31, J = 32 r o t a t i o n a l l e v e l s o f Z3n

.

Each v i b r a t i o n a l l e v e l o f t h e weakly bound a3cu+ s t a t e [D0O(a3cu+) = 136 cm-11 appears as a s i n g l e A N = A J = 0 r o t a t i o n a l l i n e . The N = 31 spectrum c o n t a i n s t r a n s i t i o n s i n t o v = 0, 1, and 2 of a3zu+ p l u s a weak, asymmetric f e a t u r e which i s t h e v = 3, N = 31 l e v e l quasibound behind a c e n t r i f u g a l b a r r i e r ,

It i s remarkable t h a t , o n l y two a n g u l a r momentum u n i t s above N = 31, a t N = 33, a l l t r a c e o f v = 3 has disappeared. T h i s i s q u i t e c o n s i s t e n t w i t h t h e a3zu+ s t a t e p o t e n t i a l energy curve, determined from t h e complete

N = 18,20,31,33 d a t a s e t , which i m p l i e s t h a t t h e h i g h e s t quasibound r o t a t i o n a l l e v e l of v = 3 i s N = 3 1 C14aI. The 6 L i 2 a3cu+ s t a t e i s p r e d i c t e d t o support a t o t a l of o n l y 193 bound p l u s 46 quasibound r o t a t i o n - v i b r a t i o n l e v e l s !

(10)

F i g u r e 8 shows a p o r t i o n o f t h e 13hg+b3nU v = 0 f l u o r e s c e n c e spectrum [14bI. Note t h a t t h e R(30) and P(32) l i n e s a r e sharp, b u t Q ( 3 1 ) i s broad [ t h e a r e a under Q(31) i s a p p r o x i m a t e l y equal t o t h e sum o f t h e R(30) and P(32) areas]. Note a l s o t h a t t h e c o l l i s i o n a l s a t e l l i t e l i n e s i n R, Q, and P branches a r e sharp f o r even J and broad f o r odd J. T h i s p a t t e r n i s p r e c i s e l y what i s expected f o r t h e p r e d i s s o c i a t i o n o f b3n, by t h e continuum o f a3cuf

[14a] and i n e x a c t analogy t o t h e p r e d i s s o c i a t i o n o f H2 c3nu by b3cu+ [20].

I n b o t h cases t h e s p i n - o r b i t i n t e r a c t i o n i s n e g l i g i b l e and t h e AN = 0 p e r t u r b a t i o n s e l e c t i o n r u l e [I] l e a v e s h a l f o f t h e 3ny l e v e l s (+ p a r i t y l e v e l s f o r odd N and

-

p a r i t y l e v e l s f o r even N) p r e d i s s o c i a t i o n f r e e , hence m e t a s t a b l e s i n c e t h e y a r e p r o h i b i t e d from r a d i a t i n g t o t h e o n l y l o w e r l y i n g

s t a t e s (3zUf and Xlzg+). T h i s d i r e c t view o f t h e p r e d i s s o c i a t i o n i n t h e b3nu s t a t e p r o v i d e s a complete p i c t u r e o f t h e A1cut-b3nu-a3cu+ a c c i d e n t a l

p r e d i s s o c i a t i o n o f t h e L i ~lz,,' s t a t e [14a]. I n a d d i t i o n , t h e s h a r p l b r o a d p a t t e r n o f t h e c o l l is i o n a ? s a t e l l i t e s i m p l i e s t h a t t h e f i n e s t r u c t u r e p r o p e n s i t y r u l e f o r c o l l i s i o n induced t r a n s i t i o n s w i t h i n t h e 6 L i 2 b3nu s t a t e i s AN = A J [14].

F i g u r e 7 F i g u r e 8

F i u r e 7. PFOODR Resolved Fluorescence Spectrum o f 6 L i 2 2% +a3cUt Bound+Bound T r z n s i t i o n s . Top t r a c e i s from v = 13, N = 33 a t T,J = 32788.963 cm-1. Bottom t r a c e i s f r o m v = 9, N = 3 1 a t Tv 32036.281 cm-1. Note t h e presence o f a weak, broad, and asymmetric peak i c i r r e s p o n d i n g t o a3xut v = 3) i n t h e l o w e r t r a c e and i t s absence i n t h e upper t r a c e .

F i g u r e 8. PFOODR Resolved Fluorescence Spectrum o f 6 L i 2 1 3 ~ ~ + b 3 I I , 0-4 Band.

The upper l e v e l i s N = 31e, J = 32 a t T,J = 31980.136 cm'l. The 3 s t r o n g e s t f e a t u r e s a r e a c o l l i s i o n a l l y u n r e l a x e d RQP t r i p l e t where o n l y t h e Q l i n e i s broadened by t h e J, p a r i t y - s e l e c t i v e b3nu-a3xut p r e d i s s o c i a t i o n .

C. An U e r Bound f o r D O(HCC-H) by Zeeman A n t i c r o s s i n S e c t r o s c o p y ( u n p u b l i s h e d wE:k o f P e t e r ~ r e E n l . Bond d i s s o c i a t i o n enersie: a!e amons t h e most p r i z e d p r o d u c t s o f m o l e c u l a r s p e c t r o s c o p i c s t u d i e s . i n p r i n c i p l e i t i s p o s s i b l e t o l o c a t e t h e onset' o f d i s s o c i a t i o n t o b e t t e r t h a n 1 cm-1 accuracy, which corresponds t o -103 t i m e s h i g h e r p r e c i s i o n t h a n i s t y p i c a l o f most thermochemi c a l measurements o f Ooo values. However, t h e r e a r e s e v e r a l o b s t a c l e s t o s p e c t r o s c o p i c d e t e c t i o n o f t h e t r u e t h r e s h o l d f o r d i s s o c i a t i o n [211: poor Franck-Condon access f r o m t h e X - s t a t e v i b r a t i o n l e s s l e v e l t o t h e

(11)

C7-26 JOURNAL DE PHYSIQUE

t h r e s h o l d r e g i o n o f t h e e x c i t e d s t a t e p o t e n t i a l s u r f a c e , a b a r r i e r t o d i s s o c i a t i o n on t h e e x c i t e d s t a t e s u r f a c e , t h e o p t i c a l l y a c c e s s i b l e e x c i t e d s t a t e d i s s o c i a t e s t o e x c i t e d s t a t e s o f one o r b o t h fragments.

The a c e t y l e n e HCC-H bond energy i s o f c o n s i d e r a b l e i m p o r t a n c e t o models o f hydrocarbon combustion because i t i s r e l a t e d t o t h e h e a t o f f o r m a t i o n o f t h e C2H r a d i c a l by

Measurements o f bond d i s s o c i a t i o n e n e r g i e s o f s t a b l e molecules a r e o f t e n t h e most d i r e c t p a t h t o AHfo f o r r a d i c a l s . R e c e n t l y , upper bounds t o DOo (HCC-H) have been o b t a i n e d f r o m rneasure~rlents o f t r a n s 1 a t i onal energy r e 1 ease

subsequent t o 193 nm ArF l a s e r p h o t o l y s i s of HCCH [22] and t h e extreme UV (-66 nm) t h r e s h o l d f o r HCCbHCC + ti+ t e- 1231. S i n c e HCC has a l o w l y i n g

(E < lOkcal/mole) e x c i t e d e l e c t r o n i c s t a t e and i t i s p l a u s i b l e b u t u n l i k e l y t h a t b o t h p h o t o l y s i s schemes produce p r e d o m i n a n t l y e l e c t r o n i c a l l y e x c i t e d HCC*, a t o o h i g h v a l u e

(g.

a

very

l o o s e upper bound) f o r DoO(HCC-H) m i g h t have been obtained.

ZAC s t u d i e s of t h e HCCH ~ I A , s t a t e suggested t h a t t h e - s t a t e experiences a n t i c r o s s i n g s by components o f t h e two l o w e r l y i n g t r i p l e t s u r f a c e s as w e l l as h i g h v i b r a t i o n a l l e v e l s o f t h e

X1z

+ s t a t e . S i n c e t h e l o w e s t HCCH

d i s s o c i a t i o n asymptote, H(2S) + HC?(XZZ+), c o r r e l a t e s w i t h t h e HCCH X l c + and one of t h e two l o w e s t t r i p l e t s u r f a c e s , i t i s l i k e l y t h a t ZAC w i l l samp?e t h e onset o f d i s s o c i a t i o n i n t o ground s t a t e fragments. It i s improbable t h a t b a r r i e r s t o d i s s o c i a t i o n e x i s t on b o t h t h e s i n g l e t and t r i p l e t surfaces, t h u s t h e ZAC p r e d i s s o c i a t i o n t h r e s h o l d i s l i k e l y t o be a v e r y t i g h t upper bound t o t h e t r u e thermochemical t h r e s h o l d . The o b s e r v a t i o n o f e s s e n t i a l l y complete mode m i x i n g ("quantum chaos") a t E-28000 cm-1 i n HCCH X l c g + by SEP [24]

i m p l i e s t h a t dynamical b a r r i e r s o r Franck-Condon r e s t r i c t i o n s a r e u n l i k e l y t o i n t e r f e r e w i t h d e t e c t i o n of t h e d i s s o c i a t i o n t h r e s h o l d i n t h e s i n g l e t channel.

I n o r d e r t o o p t i m i z e s e n s i t i v i t y t o a weakly p r e d i s s o c i a t e d d a r k l e v e l , t h e ZAC d e t e c t i o n scheme was m o d i f i e d . Two s i g n a l channels, e a r l y and l a t e f l u o r e s c e n c e , were recorded and r a t i o e d ( e a r l y l l a t e ) as t h e magnetic f i e l d was scanned. A n t i c r o s s i n g s by normal, long-1 i v e d , d a r k l e v e l s r e s u l t i n an

i ncrease i n 1 a t e f l u o r e s c e n c e h e n c e T e s o n a n t decrease i n t h e r a t i oed s i g n a l

,

whereas a n t i c r o s s i n g s by p r e d i s s o c i a t e d d a r k l e v e l s r e s u l t i n a resonant i n c r e a s e i n t h e e a r l y l l a t e r a t i o . T h i s procedure a l l o w s many ZAC1s t o be surveyed r a p i d l y i n search o f a s p e c i a l a n t i c r o s s i n g t h a t d i s p l a y s t h e sought i n c r e a s e i n e a r l y / l a t e f l u o r e s c e n c e r a t i o . The p o s s i b i l i t y o f e s p e c i a l l y e f f i c i e n t quenching of t h e d a r k l e v e l i s t h e n e l i m i n a t e d by a Stern-Volmer p l o t o f 1 / ~

z.

p r e s s u r e w i t h t h e magnetic f i e l d h e l d f i x e d a t t h e c e n t e r o f t h e s p e c i a l a n t i c r o s s i n g . The t y p i c a l A - s t a t e v3 = 4, Ka = 1 f l u o r e s c e n c e r a t e i s y = 2.60(7) x

l o 6

sec-1 and t h e p r e s e n t d e t e c t i o n t h r e s h o l d f o r p r e d i s s o c i a t i o n i s ~y = 2.5 x 105 sec-1. Of more t h a n 50 a n t i c r o s s i n g s observed i n t h e

1

v3 = 4, Ka = 1, J = 1, M = 0 l e v e l , o n l y one dark l e v e l i s d e t e c t a b l y p r e d i s s o c i a t e d w i t h ny = 7.1(10! x

l o 5

sec-1. Prom t h i s an upper bound o f DOO(HCC-H) < 132.3 k c a l / m o l e i s obtained, which agrees w e l l w i t h Refs. [22] and [23].

D. D e t e c t i o n o f Acetylene-Vi n y l i d e n e I s o m e r i z a t i o n by C r o s s - C o r r e l a t i o n o f SEP S p e c t r a ( u n p u b l i s h e d work o f Yongqin Chen). I s o m e r i z a t i o n , e s p e c i a l l y when bonds a r e broken and reformed. i s a l a r a e a m ~ l i t u d e Drocess f o r which t h e s m a l l amplitude, normal mode t r e a t m e n t o f v i g r a t i b n s i s

iil

- s u i t e d .

I n f o r m a t i o n about a dynamical process such as i s o m e r i z a t i o n , a l t h o u g h

u n d o u b t e d l y p r e s e n t i n t h e spectrum, i s u n d e c i p h e r a b l e by s t a n d a r d methods o f s p e c t r a l assignment, f i t t i n g , and i n v e r s i o n t o p o t e n t i a l energy s u r f a c e parameters. The i r r e d u c i b l e simp1 i c i t y o f an SEP spectrum, when combined w i t h a s t a t i s t i c a l ( r a t h e r t h a n d e t e r m i n i s t i c ) a n a l y s i s o f t h e spectrum, m i g h t r e v e a l t h e h i t h e r t o hidden dynamical processes.

(12)

When SEP s p e c t r a a r e recorded from two v i b r a t i o n a l l e v e l s (33 and 2142 o r 2162C121) of t h e HCCH a - s t a t e and SEP s p e c t r a o r i g i n a t i n g f r o m two l e v e l s w i t h i d e n t i c a l J,Ka quantum numbers a r e c r o s s - c o r r e l a t e d , t h e expected and u s u a l l y found r e s u l t i s no c o r r e l a t i o n . The l a c k o f c o r r e l a t i o n owes t o t h e enormous d i f f e r e n c e between t h e v 3 ( t r a n s - b e n d ) and v q o r v 6 ( t o r s i o n o r a n t i s y m m e t r i c i n - p l a n e bend) Vibrations i n t h e 1 - s t a t e . When e i t h e r v 4 o r V6 i s e x c i t e d i n t h e 1 - s t a t e , o n l y l e v e l s o f t h e 1 - s t a t e w i t h nonzero v 5 (=-bend) a r e Franck-Condon a c c e s s i b l e . Conversely f r o m t h e

1

33 l e v e l , o n l y X v5 = 0 l e v e l s a r e a c c e s s i b l e . Thus t h e two k - s t a t e v i b r a t i o n a l l e v e l s sample

d i s j o i n t s e t s o f X - s t a t e v i b r a t i o n a l l e v e l s . Our a b i l i t y t o e x c i t e i n t o t h e 8 2142 o r 2162 l e v e l owes t o a p e r t u r b a t i o n b y t h e 33 l e v e l [12], hence t h i s i s a n o t h e r example o f PFOODR ( o r PFSEP! )

.

A 25 cm-1 r e g i o n has been found, c e n t e r e d a t -15617 cm-1 above t h e HCCH 1 - s t a t e z e r o - p o i n t l e v e l , which e x h i b i t s s t r o n g c r o s s - c o r r e l a t i o n between t h e t w o SEP spectra. The group t h e o r e t i c a l and random m a t r i x arguments s u p p o r t i n g o u r i n t e r p r e t a t i o n o f t h i s c r o s s - c o r r e l a t i o n as due t o a v i n y l i d e n e

v i b r a t i o n a l b a s i s s t a t e which l i v e s f o r -200 f s w i l l be presented elsewhere.

T h i s o b s e r v a t i o n o f a r e l a t i v e l y l o n g - l i v e d v i n y l i d e n e l e v e l p l a c e s an upper bound on t h e energy o f t h e v i n y l i d e n e z e r o p o i n t l e v e l and suggests t h a t t h e v i n y l i d e n e isomer corresponds t o a t r u e . a l b e i t s h a l l o w minimum on t h e SO p o t e n t i a l energy surface.

T h i s SEP c r o s s - c o r r e l a t i o n d i a g n o s t i c r a i s e s t h e p o s s i b i l i t y o f o t h e r , perhaps more s e n s i t i v e and s p e c i f i c s t a t i s t i c a l measures o f dynamical processes.

Acknowl edgments

The SEP s t u d y o f H2C0 was supported by a g r a n t f r o m t h e AFOSR

(AFOSR-85-0381). The PFOODR experiments on L i 2 were supported by g r a n t s from t h e NSF ( 3 ~ g s t a t e s : PHY83-20098, b3xu and a3cu+ s t a t e s : CHE81-12966). The ZAC and SEP experiments on a c e t y l e n e were supported by t h e DOE

(DE-AC02-81ER10831). P e t e r Green i s an NSF P r e d o c t o r a l Fellow. The a c e t y l e n e experiments were c a r r i e d o u t i n t h e NSF-sponsored MIT Laser Research Center i n t h e George R. H a r r i s o n Spectroscopy Laboratory.

References

1. LEFEBVRE-BRION, H. and FIELD, R.W., P e r t u r b a t i o n s i n t h e S p e c t r a of D i a t o m i c Molecules, Academic Press, Or1 ando 1986

.

2. FIELD, R.W., REVELLI, M., and CAPELLE, G.A. ,(J. Clem. Phys.

g,

(1975)

3228.

KAMINSKY, M.E., HAWKINS, R.T., KOWALSKI, F.V., and SCHAWLOW, A.L., Phys.

Rev. L e t t . 36 (1976) 671.

FIELD, ~.~.,~araday Disc. Roy. Soc. Chem.

71

(1981) 111.

IP, P.C.F., BERNATH, P.F., and FIELD, R.W., J. Mol. Spectrosc.

89

(1981)

53.

6. BARROW, R.F., BASTIN, M.W., and LONGBOROUGH, B., Proc. Phys. Sac.

2

(1967) 518.

7. KITTRELL, C., ABRAMSON, E., KINSEY, J.L., MCDONALD, S., REISNER, D.E., KATAYAMA, D., and FIELD, R.W., J. Chem. Phys.

75

(1981) 2056.

8. LAWRANCE, W.D., and KNIGHT, A.E.W., J. Chem. Phys. 77 (1982) 570;

COOPER, D.E., KLIMCAK, C.M., and WESSEL, J.E., PhysTRev. L e t t .

46

(1981)

324.

9. HAMILTON, C.E., KINSEY, J.L., and FIELD, R.W., Ann. Rev. Phys. Chem.

37

(1986) 493.

10. REISNER, D.E., FIELD, R.W., KINSEY, J.L., and OAI, H.-L., J. Chem. Phys.

80 (1984) 5968.

11.

-

L I L I and FIELD, R.W., J. Phys. Chem.

87

(1983) 3020.

(13)

C7-28 JOURNAL DE PHYSIQUE

12. SCHERER, G.J., CHEN, Y., REDINGTON, R.L., KINSEY, J.L., and FIELD, R.W., J. Chem. Phys. 85 (1986) 6315.

13a. L I L I , RICE,

s.K,

and FIELD, R.W., J. Mol. Spectrosc. 105 (1984) 344; L I L I , RICE, S.F., and FIELD, R.W., J. Chem. Phys. 82 ( 1 9 8 r 1 1 7 8 .

13b. L I L I and FIELD, R.W., J. Mol. Spectrosc. 117 ( 1 m 6 ) 245.

14a. XIE, X. and FIELD, R.W., J. Chem. Phys. 83-85) 6193; RICE, S.F., XIE, X., and FIELD, R.W., Chem. Phys.

104

( 1 9 z ) 161.

14b. XIE, X. and FIELD, R.W., J. Mol. Spectrosc. 117 (1986) 228.

15. RADFORD, H.E. and BROIDA, H.P., Phys. Rev.

-

l r ( 1 9 6 2 ) 231 and J. Chem.

Phys. 38 (1963) 644.

16.

W E T M O R K R . ~ .

and SCHAEFER, H.F., 111, J. Chem. Phys. 69 (1978) 1648;

DAVIS, J.H., Goddard, W.A., 111, and HARDING, L.B., J . ~ . Chem. Soc.

2

(1977) 2919.

17. DAI, H.-L., KORPA, C.L., KINSEY, J.L., and FIELD, R.W., J. Chem. Phys. 82 (1985) 1688; DAI, H.-L., FIELD, R.W., and KINSEY, J.L., J. Chem. Phys.

(1985) 2161.

18. PREUSS, W. and BAUMGARTNER, G., Z. Phys. A 320 (1985) 125; BAUMGARTNER, G., KORNMEIER, H., and PREUSS, W., Chem. P h K L e t t .

-

107 (1984) 13.

19. XIE, X. and FIELD, R.W., Chem. Phys.

99

(1985) 337.

20. HUBER, K.P., and HERZBERG, G., Constants o f Diatomic Molecules, Van Nostrand Reinhold. New York (1979).

21. See e s p e c i a l . 1 ~ c h a p t e r V I I o f HERZBERG, G,, Spectra o f Diatomic Molecules, Van Nostrand, P r i n c e t o n (1950).

22. WODTKE, A.M. and LEE, Y.T., J. Phys. Chem. 89 (1985) 4744.

23. SHIROMARU, H., ACHIBA, Y., KIMURA, K., and LEE, Y.T., J. Phys. Chem.

2

(1987) 17.

24. ABRAMSON, E., FIELD, R.W., IMRE, D., INNES, K.K., and KINSEY, J.L., J.

Chem. Phys.

80

(1984) 2298; ABRAMSON, E., FIELD, R.W., IMRE, D., INNES, K.K., and KINSEY, J.L., J. Chem. Phys.

83

(1985) 453.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to