• Aucun résultat trouvé

EFFECTS OF SPATIAL DISTRIBUTION IN OPTICAL BISTABILITY AND AT PHASE TRANSITIONS OF THE FIRST KIND

N/A
N/A
Protected

Academic year: 2021

Partager "EFFECTS OF SPATIAL DISTRIBUTION IN OPTICAL BISTABILITY AND AT PHASE TRANSITIONS OF THE FIRST KIND"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00227612

https://hal.archives-ouvertes.fr/jpa-00227612

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EFFECTS OF SPATIAL DISTRIBUTION IN OPTICAL BISTABILITY AND AT PHASE

TRANSITIONS OF THE FIRST KIND

N. Rosanov

To cite this version:

N. Rosanov. EFFECTS OF SPATIAL DISTRIBUTION IN OPTICAL BISTABILITY AND AT PHASE TRANSITIONS OF THE FIRST KIND. Journal de Physique Colloques, 1988, 49 (C2), pp.C2-429-C2-434. �10.1051/jphyscol:19882102�. �jpa-00227612�

(2)

EFFECTS OF SPATIAL DISTRIBUTION IN OPTICAL BISTABILITY AND AT PHASE TRANSITIONS OF THE FIRST KIND

N.N. ROSANOV

S.I. Vavilov State Optical Institute, Leningrad 199034, USSR

RBsumd

-

L e s r t k u l t a t s d * a n a l y s e e t de comparaison s o n t donnes des ef'fets a m t r i b u t i o n s p a t i a l e (principalement t r a n s v e r s a l e l dans l e s systhmes

~ p t i q u e s b a s t a b l e s (auec une augmentation d ' a b s o r p t i o n des rayonnements, d e s r 6 s o n a t e u r s non-lin4aires e t une r e f l e x i o n n o n - l i n b a i r e ) e t dans l e s sys-tbmes a v e c une t r a n s i t i o n d e s phases ( l i q u i d e

-

vageur).

A b s t r a c t

-

R e s u l t s of anal s i s and comparison a r e g i v e n of t h e e f f e c t s of spatial (mainly t r a n s r e r s a l ) d i s t r i b u t i o n i n o p t i c a l b i s t a b l e systems

( i a c r e a s i a b s o r p t i o n b i a t a b i - l i t y , n o n l i n e a r r e s o n a t o r s and n o n l i n e a r r e n e e t i e 3 and i n a system w i t h phase t r a n s i t i o n ( l i q u i d

-

vapour).

L

-

IDITRQDUGTLW

Spatial dis-tsibutivity: i a an i m p o ~ t a n t f e a t u r e of a p t i c a l b i s t a b l e systems (OBS ).

TBu& f errtare ia og p r a c t i c a l importanae, f o r example, i n p a r a l l e l o p t i c a l pro- cessing an& it makes t h e n a t u r e o f h y s t e r e s i s (and s t o c h a s t i c ) phenomena m d i - c . a l y d i f f e r a t frm that i n t h e previously i a v e s t i g a t e d n o n l i n e a r mechanical, elcsctricaS and o t h e r pointwise (lumped) a x s t e m . It seems that i n t h e f i e l d of o p t i c a l b i s t a b i l i t y t h e q u e s t i o n a r o s e , f o r t h e first time, 10 y e a r s ago, of

rir2cipa4, p o s s i b i l i t g of b s t e r e s i s . i n the s p a t i a l l y distribute& systems /I , 2 / ,

k ~ t h o u g b -3 i d e a s c o n r e r n l n g this phenomenon were put forward a l r e a d y i n 1980 /3,4/, these n o n t r i v i a l and v a r i o u s q u e s t i o n s a t t r a c t t h e a t t e n t i o n o f theo- rists and e x p e r i m e n t a l i s t s u n t i l 1 now. I n t h e p r e s e n t a p e r t h e conceptions of h y s t e r e t i c phenomena i n t h e d i s t r i b u t e d (ride-apertureP OES formed by now a r e r e p r e s e n t e d and analysed. We s t a r t from t h e s i m p l e s t b a s i c model ( i n c r e a s i n g a b s o r p t i o n b i s t a b i l i t y and t h e n a d d i t i o n a l f a c t o r s and e f f e c t s

,

a r i s i n g under d i f f e r e n t c o n d i t i ~ n s and w i t h d i f f e r e n t types of t h e OBS ( n o n l i n e a r r e s o n a t o r s and n o n l i n e a r r e f l e c t i o n ) , a r e considered. S p e c i a l a t t e n t i o n is paid t o t h e comparison of t h e e f f e c t s of s p a t i a l d i s t r i b u t i o n i n tXe OBS and i n systems w i t h phase t r a n s i t i o n of t2Le filrst kind.

To make a =re complete p i c t u r e some d a t a of t h e reviews /5,6/ a r e sunnuarased.

l o r e a t t e n t i o n is p a i d t o t h e r e s u l t s which were ob-bied a f t e r the publica- t i o n o f /5-7/.

2

-

E4SXC W E L

R a d i a t i o n w i t h i n t t e w i t y I i s - i n c i d e n t on a l a t e r a l f a g e o f t h e rod of t h e t h i - c k n e s s d; t h e rod a x i s is x. he rod m a t e r i a l is c h a r a c t e r i z e d by light-absorp- ti- c a e f a c i e n t i n c r e a s i n g w i t h temperature. The b i s t a t i i l i t y o f a s i m i l a r kind was p r e d i c t e d by E p s t e i n /8/ and i t w a s demonstated experimentally i n / 9 / . The t r a n s v e r s e d i s t r i b u t i o n e f f e c t s and b i s t a b i l i t y f o r t h e r a d i a t i a n beams were considered f o r t h e first time in /4,10/. It should be noted t h a t n o n l i n e a r i t y is o f a thepmal c h a r a c t e r and a feedback (and t s a n c v e r s e coupling as w e l l ) r e - q u i r e d f o r b i s t a b i l i t y is due t o a thermal d i f f u s i o n . The t r a n s v e r s e d i s t r i b u - t i o n e f f e c t s m a n i f e s t themselves in this model most c l e a r l y ,

For s u f f i c i e n t l y s m a l l r o d s i z e s i n y-

,

z- d i r e c t i o n s , t h e temperature T , aue- raged over t h e rod s e c t i o n , obeys t h e equation

a T aRT

- I = ' , (I 1

where

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19882102

(3)

C2-430 JOURNAL DE PHYSIQUE

Here

$I ,

c and

h

a r e t h e d e n s i t y , h e a t c a p a c i t y and h e a t c o n d u c t i v i t y coef- f i c i e n t s , hvis t h e h e a t exchange c o e f f i c i e n t , T is t h e ambient temperature, R i s t h e l i g h t r e f l e c t i o n c o e f f i c i e n t a t t h e l a t e r a l rod face.

2.1

-

I n c i d e n t plane wave (I = c o n s t ) . Under c e r t a i n c o n d i t i o n s t h e equation F(T) = 0 f o r t h e i n t e n s i t y range

( 2 )

has 3 s t a t i o n a r y s p a t i a l l y uniform s o l u t i o n s T =

@

one o f them being an u n s t a b l e i n t e r m e d i a t e branch

@

(Fig.1). S i n c e t h & s % ~ ? & n s i t y of t r a n s m i t t e d r a d i a t i o n i s determined by t h e t%mperature, t h e thermal b i s t a b i l i t y comes along w i t h t h e o p t i e a l b i s t a b i l i t y . Under c o n d i t i o n s (2 besides s t a t e s

@

t h e r e a r e t h e f o l l o w i n g s p a t i a l l y non-uniform s o l u t i o n s o f equation (I) /5,8~?1/:

a) S t a b l e s w i t c h i n waves (S 1 , c ~ s r e s p o u d i n g t o t h e t r a n s i t i o n i n space between t h e s t a b l e s t a t e s

6

I and

h5.

The v e l o c i t y of t h e movement of t h e S W f r o n t c h a q e s t h e s i g n over t h e i n t e n s i t y range (2). The v e l o c i t y t u r n s t o z e r o f o r t h e Xaxwell value" of i n t e n s i t y T o defined by t h e c o n d i t i o n

63"

@&

The SW i s analogous t o t h e wave of phase t r a n s i t i o n c h a r a c t e r i z e d by a smooth i n t e r p h a s e l a y e r , and the c o n d i t i o n ( 3 ) i s analogous t o t h e Maxwell r u l e of c o e x i s t e n c e o f two phases.

bf F o r I jk I thexe a r e s t a t i o n a r y s o l u t i o n s w i t h incomplete s w i t c h i n g ( t h e c r i - t i c a l nuclei?. Fo them t h e Bitstribut ' on T ( x ) is symmetrical w i t h asymptotic v a l u e T ( L W ) =

6

f o r I 2 I and

&

f o r I

<

I

.

The extreme1 value T depends on i n t e n s f i t s a s is o h o h on ~ i g ? ~ . These d f s t r i b u t i o n s a r e s i m i l a @ t o t h e c r i t i c a l n u c l e i i n t h e theory o f phase t r a n s i t i o n s . Although u n s t a b l e , t h e former a r e important f o r s w i t c h i n g k i n e t i c determination.

c ) F o r t h e same r e a s o t h e e x ' s t e n c e of u n s t a b l e SW (between u n s t a b l e

@

and one of t h e s t a b l e

- 6

o r

6 -

branches) should be noted. The v e l o c i t $ of u n s t a b l e SW doesns t t u r h t o z e r a , i t s f r o n t always moves toward t h e r e g i o n of t h e u n s t a b l e s t a t e ( t h e r e g i o n occupied by i t i s reduced).

The e x i s t e n c e o f the s t a b l e S W r e s u l t s i n t h e d i v i s i o n of t h e s t a b l e ( f o r t h e s m a l l p e r t u r b a t i o n s ) s t a t i o n a r y s t a t e s o f d i s t r i b u t e d OBS i n t o s t a b l e ( g l o b a l l y ) and m e t a s t a b l e ones /12/. Due t o an expansion ( i n t h e form of SW running i n o p p o s i t e d i r e c t i o n s ) of f l u c t u a t i o n a l thermal outshoots t h e r e g i o n s of t h e lower branch. ( f o r I > I o ) and o f t h e upper one ( f o r I ( I o ) correspond t o t h e m e t a s t a b l e s t a t e s (Fig.1).

The t ernperature o u t s h o o t s ( a g a i n s t a metas t a b l e s t a t e background) a r e d i v i d e d i n t o t h o s e s w i t c h i n g t h e 0% i n t o s t a b l e s t a t e ( " o v e r c r i t i c a l outshoots") and d i s s i p a t i n g ones /II/. The k i n e t i c s of outshoots c h a r a c t e r i z e d by a w i d t h . R and a n amplitude ( a n extremal value) T is i l l u s t r a t e d i n Fig.2. Besides t h e above-mentioned elements, some feaVffiHes of t h e SB formation should be noted aa . w e l l as nomonotonic k i n e t i c s R ( t ) and T ( t ) . The p o s s i b i l i t y of an experimen- t a l determination of u n s t a b l e s t a t e s c h a y 8 8 t e r i s t i c s ( i n t e r m e d i a t e branch )

by means of t h e k i n e t i c s of a r t i f i c i a l l y formed l a r g e o u t s h o o t s i n v e s t i g a t i o n g i s a l s o t o be pointed out.

S w i t c h i n initiat*. Generally speaking even when I t 1 t h e f l u c t u a t i o n s c a n r e s u l t 1:: t h e m e t a s t a b l e s t a t e switching. But t a k i n g i n t o account t h e s m a l l p r o b a b i l i t y of t h e l a r g e f l u c t u a t i o n s and t h e s t a b i l i t y of m e t a s t a b l e s t a t e s w i t h r e s p e c t t o s m a l l p e r t u r b a t i o n s t h e s e s t a t e s have a very l o n g l i f e - t i m e

( e x c e p t i n t h e c l o s e v i c i n i t y of t h e brahch edge), Thus, t h e wide-aperture 0 s s w i t c h i n g occurs r a t h e r by a n o t h e r mechanism, corresponding t o a heterogeneous

( n o t a homogeneous) n u c l e a t i o n i n t h e f i e l d of h a s e t r a n s i t i o n s . I n o u r c a s e a l o c a l i n c r e a s e of t h e a b s o r p t i o n c o e f f i c i e n t i n t h e a r e a s w i t h a h i g h e r c o n c e n t r a t i o n of a b s o r b i n i n t r u s i o n s i s i m l i e d . One dangerous non-uniformity is enough t o s w i t c h t h e O& i n t h e m e t a s t a b f e s t a t e s t i l l when I = Ic<

.

For I < I

.

a s i n g l e non-uniformity does n o t p r a c t i c a l l y d i s t u r b t h e i n t e g r a l c h a r a c t e s i s t i c s o f t h e wide-aperture 0 s .

(4)

t h e i n i t i a t h g switching non-uniformity wldth. 2 1 is shown

i q

Fig. J &der

conditions c h a r a c t e r u s t i c of Ge f o r 1=d=0,2 cm, LC= 20 w/om

.

For I < 1, t h e non-uniformity deforms t h e temperature p r a f i l e in t h e region sf it8 l ~ c a t i o n only, But f o r I) I a s t a t i o n a r y temperature d i s t r i b u t i o n with m e "me- t m t a b l e N a s y q t o t i c s no longer e x i s t s . Therefore, t h e i a t e n s i t sfowly r i s i n g up t o t h e level+= th% Switching t o t h e hi&-temperature branch

f~

not

l i m i t e d by t h e non-unifo&tY location. A s they a r e formed and spread, t h e Sw w i l l gradualLy sw&tch ax1 t h e system t o t h e high-temperature s t a t e ,

2.2

-

kWsteresis of p r o f i l e s ( S p a t i a l h y s t e ~ e a i s ) , , Above-mentioned elements of t h e plane-waves theory allow us t o d i s c r i b e t h e b i s t a b i l i t y and h y s t e r e s i s ghe- nomena f o r t h e c-e of r a d i a t i o n wide (with r e s p e c t t o t h e SW f r o n t width) beam inckdent on t h e d i s t r i b u t e d OBS /4 ,lo/. The diagram of t h e temperature p r o f i l e s determination is given by Fig.4. Note t h a t f o r t h e beams w i t h unimodal i n t e n s i t y p r o f i l e and t h e maximum i n t e n s i t y &=I/,0 t h e b i s t a b i l i t y is possible only when

I , : I,< I + .

(4 1

For t h e beams w i t h t h e l e s s e r i n t e n s i t y (I

<

I ) only the smooth p r o f i l e s of t h e I-st type (Fig.41, a r e r e a l i z e d , and f o r I

3

l,rOonly p r a f i l e s of t h e 2-nd type ex- ist with spatial s n i t c h i n g between t h e brffnches i n the v i c i n i t y of I=lo. Inten- s i t y Imslmly ~ i s i n g from t h e small values up t o I

,

t h e temperature p r o f i l e is a m o t k , of type I. Then, f o r I g I

,

i n the c e n t r a l p a r t of t h e beam a sharp tem- p e r a t u r e outshoot appears wich l a t e r , even i f t h e i n t e n s i t y I is s t a b i l i z e d , broadens in t h e form of oppositely d i r e c t e d SW, The SW v e l o ~ i ? ~ decreases and t u r n s t o zero when SW f r o n t approaches t h e region with t h e r a d i a t i o n l o c a l inten- sit3 I

.

S o , t h e switching on occurs n o t simultaneously over t h e whole beam sec- tion, But only i n i t s narrow zone

-

t h e moving SMr front. The switching time of t h e wide-aperture OBS i s determined by t h e SK velocity.

The witehaing off w i t h a subsequent i n t e n s i t y I decrease occurs i n a d i f f e r e n t ray. W l t b 5, 9pproacheing E the s i z e of t h e sw9tched on O E S reqion gradually decreases w t z l i t disappe&e enterely. F o r I,> I due t o m e t a s t a b i l i t y o f the above-mentioned lower branch p a r t , t h e I-st type $0 f i l e is metastable.

3

-

P D D I T I Q U L FrtCTQRS

The Lsportant f e a t u r e s of t h e examined simple d i s t r i b u t e d BBS a r e t h e following:

-

a smoothness and s u f f i c i e n t width of r a d i a t i o n i n t e n s i t y p r o f i l e (5.1) ;

-

ssstem u n l i a t n e s s ( i n the d i r e c t i o n x , 3 - 2 1 ;

- -

one-d&mensicun geometry the existence of only aae ( J -3 ; component ( 3 . 4 ) .

The violsttion of these r e s t r i c t i o n s leach t o i n t e r e s t i n g physics whose appropri- a t e discussion is beyond the scope of this report. W e s h a l l c e n t e r our a t t e n t i o n on t b conditions under which t h e main r e s u l t s of t h e basic model theory a r e maintained.

3.1. An asymptotical c h a r a c t e r of t h e s p a t i a l h y s t e r e s i s d e s c r i p t i o n f o r t h e be- ams w k s e width w))l i s i n the f i r s t place manifested i n t h e switching k i n e t i c s . The i d e a s of non-int8racting SW a r e v a l i d i f t h e i r f r o n t s a r e removed from one an o t b e r (with r e s p e c t t o t h e f r o n t width 1 1. Therefore f o r r a t h e r narrow beams t h e switching k i n e t i c s d e s c r i p t i o n by means0of t h e SW w i l l not be accurate. The b i s t a b i l i t y condition ( 4 ) is l e s s s e n s i t i v e t o a beam width decrease. The width m u s t however be g r e a t e r than some i n t e n s i t y dependent c r i t i c a l value ~1~~ other- wise bf s t a b i l i t y disappears /6/.

'3.2. The boundary conditions manifest themselves n o t only i n t h e rod edges v i c i - ni tar. Like t h e above discussed case of non-unif ormi t y

,

t h e boundary conditions can i n i t i a t e a progressive switching of t h e whole wide-aperture OBS i n t h e form of th SW. L e t , f o r example, a semi-infinite rod ( x 0 ) be heated by t h e radia- t i o n with i n t e n s i t y I=const within t h e r a n e a f tfre lower branch m e t a s t a b i l i t y condition ( 4 ) . The edge temperature (T

1 - f

r i s i n g up t o t h e value g r e a t e r than T ( t h e c r i t i c a l nucleus extremal ternpekeure), t h e SW ( @ -t @ 2 become exci-

$gd. The S W w i l l prapagate along x , w i t h v e l o c i t y e s t a b l i s h i n g a3 its f r o n t nio- ves awas from t h e rQd edge.

The b i a t a b i l i t y of t h e bounded rod with the l e t h 21 i s o s s i b l e . 0 ~ 1 ~ i f 17%

For an i d e a l boundary thermoineulatlon we have? 4, b x s t a b l l ~ t g - LS

t a i n e & f o r an3 small rod s i z e . The c r i t i c a l s i z e m g p a n d s on t h e l n t e n s i t g and On

(5)

C2-432 JOURNAL DE PHYSIQUE

t h e degree Q9 OBS t b e m a l connection with its environment, decreasing as t h e connection weakens /6/.

3.3, The l o n g i t u d i n a l d i s t r i b u t i o n becomes important f o r t h e l a r g e rod thickness d. I n this c a s e t h e i n s t a b i l i t i e s of t h e s t a t i o n a r y d i s t r i b u t i o n s and autamoda- l a t i o n a l regimes may a r i s e /14/, Basic model is s t i l l Valid f o r s u f f i c i e n t l y s W l rod thickness, when the temperature changes s l i g h t l y .

The two-dimensional geametry ( t h e s a p l e i s a p l a t e ) would become pronounced for t h e narrow beams w.hose width a r e comparable with 1

.

Otherwise t h e d i f f e r e n c e from the l o c a l l y one-dimensional d e s c r i p t i o n i s n o t l a r g e both f o r two- and three-dimensional geometry /II/.

3.4. The medium s t a t e may be characterized n o t only by one macroscopic parameter

-

temperature, but a l s o by Concentration of p a r t i c l e s , c o n s t i t u i n g t h e medium, and by the d i f f e r e n t temperatures of d i f f e r e n t p a r t i c l e s kinds, f o r example, ele- c t r o n s and ions f o r t h e plasma high-frequency heating. Under c e r t a i n conditions t h e s e a d d i t i o n a l parameters a r e expressed i n terms of t h e e l e c t r o n i c temperature onlx, and we come -to s l i g t l y modified one-component d e s c r i p t i o n /I5/.

The s i t u a t i o n is dkfferent if t h e i n t r o d u c t i o n of t h e new components r e s u t s i n t h e i n s t a b i l i t i e s growth I n a sense t h e nonlinear r e s o n a t o r s and o t h e r purely o p t i c a l schemes art:, a s a minimum, two-componental ( t h e f i e l d is determined bg its amplitude and phase),

4

-

OTHEfi OBS

4-1. g o n l i n e a r r e s o n a t o r s (NR)

,

excited by an e x t e r n a l r a d i a t i o n , a r e r a d i c a l l r d i f f e r e n t depending upon nonlinear medium and resonator c h a r a c t e r i s t i c s . The ca- s e of Low-quality ~ ~ e s o n a t o r and of s t r o n g d i f f u s i o n ( i n the medium i t s e l f /lo/ a r of h e a t i n t h e NR with thermooptical n o n l i n e a r i t y /16,I7/) is t h e simplest t o anaXyze. I n this case the d i f f r a c t i o n c o n t r i b u t i o n t o t r a n s v e r s a l coupling of l i g h t p i x e l l s is n o t l a r g e , and we come again t o t h e equation of tgge ( I ) . An a d d i t i o n a l NR f e a t u r e is t h e existence of m u l t i s t a b i l i t y t h a t r e s u l t s i n t h e gre- a t e r v a r i e t y of SW types i n this case. The p r o f i l e h y s t e r e s i s was experimentally demonstrated i n /18/, and experiments on t h e SW were described i n /IT-19/, The i n t e r e s t i n g autowave e f f e c t s a r i s e wheg t h e i n s t a b i l i t i e s grow i n d i s t r i b u t e d

"

two-componental" system with two competing n o n l i n e a r i t y mechanisms /20/.

If t h e r a d i a t i o n d i f f r a c t i o n is a dominant mechanism of t r a n s v e r s a l coupling, m e n t h e t ~ a n s v e r s a l d i s t r i b u t i ~ n leads t o t h e growth of t h e i n s t a b i l i t i e s i n a number of t h e wide-aperture DIR /? ,21,22/. To suppress them t h e s p a t i a l filtrati- a n of the r a d i a t i o n w i t k i n the NR should be made u s e of, I n t h i s way the s p a t i a l frrysteresis, Sk a d switching k i n e t i c s analogous t o above-mentioned ones were ob-

t a i n e d f o r NR w i t h a d i f f r a o t i o n a l t r a n s v e r s a l coupling / ~ , I I , 21-2~/, One more WR f e a t u r e i s t o be noted. The SW v e l o c i t y depends on t h e angle between t h e axes of t h e beam and ~ R & , ~ h u s , t h e v e l o c i t i e s and "Kaq$ 1 va?u_~s"(py i n @ p s i t d i f f e r f o r the SW ~ n n i n g i n t h e d i r e c t i o n s x and -x (

IP b b I,=

# 1 1. h e de-

pendence v ( ) is e s p e c i a l l y sharp f o r t h e i n e r t i o n e s s nonligear mgdia, f o r wuch the b i s t a b i P i t y is maintained f o r a r b i t r a r y wide beams only f o r s u f f i c i e n t - l y small

8

/3,22/. If nontfjre

r i t x

i s i n e r t i a l , then the influence of

0

i s n o t s o great. The dependence I,

(8

) is @o n on F ~ g . 5 f o r t h e NR w i t h thermooptical no-inearity /13/. The knowledge of Ia

(3

) allows US t o define t h e b i s t a b i l i t g conditions m d the s p a t i a l h y s t e r e s i s c h a r a c t e r f o r the oblique incidebce of t h e r a d i a t i o n an t h e N l i /22/.

4-2. Nonlinear beams r e f l e c t i o n , The normal incidence was studied of a c y l i n d r i - c a l s-polar zed beam with amplitude p r o f i l e E . ( x ) on t h e boundary of t h e medium w i t h e1eetr:cl permettivity = E p

+ EL ( E l *

= / 2 4 / . T O avoid t h e beam break-up t b e case was chosen when E < 0. Flg.6 shows t h e existence of two d i f f e r e n t s t a - t i o n = ~ p r o f i l e s of r e f l e c t g d beam i n t e n s i t y f o r t h e same p r o f i l e o f i n c i d e n t beam i n t e n s i t y .

5

-

PHASE TWSITION "LIQUID

-

VAPOUR"

A simple c o n t i n u a l model f o r a homogeneous system i s considered where two phases ( " l i q u i d n and wvatp~ur") d i f f e r only i n t h e d e n s i t 3 value

,

temperature T being p o t e n t i a l constant* The U, c0nsta:acy: phase equilibrium is achieved f o r the btaxwe

P

1 condition of chemical

a.

For V f i U. t h e mass and impulse c u r r e n t s ap- pear whose d e s c r i p t i o n i n terms of '*quasithermodynamical method" /25/ i s

(6)

/LC = / l l o ( T )

f

T . F(9) + 6 ~ 9 -

(6)

X t s n o n l m a l i t y (b#U) r e f l e c t s t h e presence o f s u r f a c e tension. Nonlinear f u n c t i - o;n F( ) corresponcfs t o Van-der-Waals s t a t e equation. F o r T c T t h e r e a r e 3 spa- tia- uniform. s o l n t i a n s of (5 ) corresponding t o van-der-Waalsc branches ( i n t e r - mediate branch being unstable),. One can a l s o c o n s t r u c t t h e c r i t i c a l nucleus and tke waves of phase t r a n s i t i o n s (SW) betueen d i f f e r e n t phases w i t h smooth d e n s i t y p r o f i l e s ,

The s g a t i a f h x s t e r e s i s c o n s i s t s i n t h e occurence of two s t a t i o n a r y d e n s i t y d i s t - r i b u t i o n s ( x ) in t h e system w i t h a f i x e d smooth s p a t i a l d i s t r i b u t i o n of t e - mperature !J?(IY? The p r o f i l e s (XI a r e o b t a i n e d by t h e c o n s t r u c t i o n analogous t o that i n Fig.4. The r e w o n $ T d t h e following. The Maxwell c o n d i t i o n d i s t i n g - u i s h e s t h e r e g i o n s i n t h e system w i t h a smooth temperature non-uniformity where t h e S W f r o n t s rnay stop. The I-st (smooth) d e n s i t y p r o f i l e does n o t i n c l u d e any i n t e r p h a s e t r a n s i t i o n , i t is f u l l y d e f i n e d by one Van-der-Waals branch, Its cen- tral p a r t c ~ x r e s p o n d s , under c e r t a i n c o n d i t i o n s , t o m e t a s t a b l e s t a t e s . The 2-nd d e n s i t y p r o f i l e e x i s t i n g under t h e same c o n d i t i o n s c o n s i s t s of l i q u i d and vapour s t a b l e s t a t e s . I t has a s h a r p jump i n t h e r e g i o n of i n t e r f a s e l a y e r , where t h e Maxwell r u l e is obeyed, The s p a t i a l h y s t e r e s i s k i n e t i c s is analogous t o t h a t

mentione& f a r t h e OBS.

TPLe d e n s i t y o u t s h o o t s may be c r e a t e d a r t i f i c i a l l y , f o r example, by an introduc- t i o n of a c a p s u l e c o n t a i n i n g a medium i n an i n t e r m e d i a t e ( with r e s p e c t t o envi- ronment) s t a t e i n t o t h e volune w i t h a medium i n t h e m e t a s t a b l e s t a t e . A f t e r t h e f a s t opening of t h e c a p s u l e t h e r e i s a p o s s i b i l i t y t o observe t h e development of S u b c r i t i c a l and o v e r c r i t i c a l l a r g e outshoots. S o , t h e i n t e r m e d i a t e ( u n s t a b l e ) Van-der-Waals branch d e t e r m i n a t i o n becomes p o s s i b l e by k i n e t i c s i n v e s t i g a t i o n s . Such experiments could r a d i c a l l y e n l a r g e t h e i n f o r m a t i o n on t h e phase t r a n s i -

t i o n s i n d i f f e r e n t media.

I 0

R

0

Fig. I

-

The s t a t i o n a r y s t a t e s c h a r a c t e r i s t i c s . The curve 1

-ol,

2

- 0 2 ,

3 - g 3 , 4

-

Tm.

1,

Fig. 2

-

The outshoots a g a i n s t t h e metastable s t a t e @ ( a ) and t h e i r k i n e t i c s ( b ) . The arrows i n & i c a t e time d i r e c t i o n .

Pig. 5

0

20 0 40

0 ,

-

"Maxwell i n t e n s i t y v a l u e a M f J v s

(7)

JOURNAL DE PHYSIQUE

Fig. 4

-

Temperatu:re p r o f i l e s T ( x ) ( q u a d r a n t 1 1 ) . Q u a d r a n t I X

-

;-shaped depen-

d e n c e @ ( I ) . C;uad:rant I Y

-

i n t e n s i t y p r o f i l e s I ( x ) : a ) I,>i*, b) I o < I m < I ~ .

F i g . 6

-

The i n t e n s i t y p r o f i l e s of Fig. 7

-

The f l u i d d e n s i t y o u t e h o o t s i n c i d e n t ( 0 ) and r e f l e c t e d (I , 2 ) beams. k i n e t i c s , T/Tc= 0.5, ~ O O / ~ , , , a ~ 9.C:.

Ro i s m o l e c u l a r s i z e .

n u s w c s

/ X / X o l o k o l o ~ , &.A. and S U ~ O V , A.I.

,

1zv.Vys~h.Uch.Zav. Radiof.

5f

(1978) U 5 9 .

/ 2 / Hosanov, N.K., Q p t - S p e k t r . 4 7 (1979) 606 /Opt.Spectr. (UaSR) 4 (1979) 3'35.l-

/ 3 / &osanov, N.N. and Semenov, V.E.

,

0 p t . S p e c t r o s c . (U~;E) 4 8 (1980

3

59.

/4/ itosanov, N.N., P i s ' m a v ZhTF 6_ (1980) 7 7 8 / S o v . ~ e c h . ~ h x . i e t t . 6 (1980) '5'35/.

/5/ aosanov, N.N.

,

Izv. Akbd. Hauh S S B , ser.phys. 46 (19823 1886.

/6/ liosanov, N,N., Trudy Gos. Opt, I n s t .

22

NI93 (1985) 3,

/7/ G i b b s , H.it~. O p t i c a l B i s t a b i l i t y : C o n t r o l L i n L i g h t w i t h L i g h t , Orlando,l9E5.

/ 8 / E p s t e i n , E ; . i . , Zh.lekh.Fiz. s ( 1 9 7 8 ) 1799%ov.Tech.Phys. & ( I 9 7 8 1 981:.

/9/ G o l i k , L.Z. e t a l , P i s ' m a v Zh. Tekh. F i z . (1981) 118.

/IO/ Rosanov, N.N.

,

Zh.Eksp. Teor.Fiz. 80 (1981) 96 /Sov,Phys.JETP /II/ Rosanov, N.N. and Khodova, G.V.

,

Kvantovaya E l e k t r o n .

/X2/ liosanov, N.N.

,

Opt. S p e k t r o s k .

a

(1987,) 211.

/IT/ Bobxlkov, D.B. e t a l , A b s t r a c t s , 5 t h All-Union Conf. on L a s e r O p t i c s (1986).

/I4/ S t a d r i i k , V.A., P i s ' m a v Zh. Eksp. Teor. F i z .

fi

(1987) 142.

/ I 5 / Hosanov, N.N., Zh. Tekh. F i e . (1984) 1634.

/16/ Karpushko, F.V. and S i n i t s y n , G.V., Zh. P r i k l . S p e k t r . (1978) 870.

/17/ G r i g o r i a n t s , A.V. e t a l , Kvant. L l e k t r o n . (1983) 17x4.

/I8/ k p a n a s e v i c h , *S.P. e t a l , Kvant. h l e k t r o n . I2 (1985) 387.

/ I 9 / G r i g o r i a n t s , B.V. e t a l , Kvant. E l e k t r o n . 11 (1984) 1060.

/20/ B a l k a r e i , Xu. I. e t a l , Kvant. E l e k t r o n . 1 4 7 1 9 8 7 ) 127.

/21/ I i o s m o v , N.N. and Zemenov, V.L., Opt. C o a u n . 38 (1981) 475.

/22/ Rosanov, N.N.

,

S emenov, V. 6. and Khodova, G.V.

,

Kvant.Elektron. 2(1982)35-?.

/23/ Eosanov, N.N.

,

Semenov, V.L. and Khodova, G.V.

,

Kvant. L l e k t r o n . Y(1982)36t, /24/ Rosanov, N.N. and Khodova, G.V., Q p t . S p e k t r o s k . 6 1 (1986) 198.

/%5/ Ono, 3. and Kondo, S. i v ~ o l e c u l a r Theory of S u r f a c e T e n s i o n , Iloscow, 1967.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to