• Aucun résultat trouvé

Binumerability in a sequence of theories

N/A
N/A
Protected

Academic year: 2022

Partager "Binumerability in a sequence of theories"

Copied!
5
0
0

Texte intégral

(1)

R ENDICONTI

del

S EMINARIO M ATEMATICO

della

U NIVERSITÀ DI P ADOVA

F RANCO P ARLAMENTO

Binumerability in a sequence of theories

Rendiconti del Seminario Matematico della Università di Padova, tome 65 (1981), p. 9-12

<http://www.numdam.org/item?id=RSMUP_1981__65__9_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

Binumerability Sequence

FRANCO PARLAMENTO

(*)

SUMMARY - In this note we answer a

question

raised

by

A. Ursini in [2].

In that work he defines a denumerable sequence of arithmetic theories

Qn ,

whose union is

complete,

and asks a

question concerning

the binumer-

ability

of the

relations

in

Qn .

We show that a relation is in if and

only

if it is binumerable in

Qn.

We are

going

to follow the notations and

terminology

of

[1]

and

[2].

In

particular Ko

is the

language

of first order

arithmetic,

and a

K-system

is a set of sentences in the

language

.K.

y)

is the

relation y is a

proof

of x from axioms in T ». Let’s recall

that, given

a

K-system,

where

Ko

c

_K,

a numerical relation con is called nu-

merable in T is there is a formula ... , in .g such that

In that case we say

that q

numerates R in T.

A relation R is binumerable in T if there exists a

formula p

in K

such

that p

numerates numerates con - .R.

The result

expressed

in the

following proposition

is obtained as a

straigtforward application

of the « Rosser trick )}.

PROPOSITION 1. Let T be a consistent

K-system,

where

KoÇ .K,

such that =

0vs =

== 9 and

Let the relation

y)

be binumerable in T and wn.

(*) Indirizzo dell’A.:

University

of California,

Berkeley,

Cal. and Uni- versith di Torino.

(3)

10

If both R and are numerable in T then R is binumerable in T.

PROOF. For notational convenience let’s suppose R C (o. Let

q(s) numerate R and y(x)

numerate w -

R,

and let

Pr f (x, y )

binumerate

y )

in T.

Consider then the

following

formula

We claim that

z(z)

binumerates R in T.

Since T is consistent it is

clearly enough

to show that

and

(i)

E ..K then T I-

since 99

numerates P in

T,

therefore

for some

h)

holds and therefore

On the other

hand, since

numerates o) -

R,

we have

and thus

From

(1)

and

(2)

we have

(ii)

Let’s assume

that k 0

R.

Since y

numerates m - R in

T,

we have T -

y(k)

and

therefore,

as

above,

y for some r E o

On the other hand for

i)

doesn’t

hold, hence,

as

(4)

above

Therefore

From

(3)

and

(4)

we have

namely

In

[2]

two sequences and with the

following properties

are defined.

1) Q n

==

2) Rn

is a valid

Ko-system containing

Robinson’s Arith- metic

Q .

3)

if and

only

if it is numerable in

Rn .

4) .Rn

is binumerable in

Q n

via a formula ocn

(Proposition

8 in

[2]).

Applying Proposition

1 we have the

following result,

PROPOSITION if and

only

if R is binumerable in

Qn .

PROOF. Let’s first notice that

by 1) numerability (and

binumer-

ability)

of a relation in

Rn

or in

Qn

are

equivalent. Hence, by 4)

we

have that

Z~n

is binumerable in

Rn

via ocn . Thus the relation

y)

is binumerable in

Rn, via,

say

y),

since it is

just

a

primitive

recursive combination of

..Rn

and P.R

relations,

which are binumerable in

I~n by 2).

Also from

2)

we have that

Rn

is consistent

and,

If we have that both Rand c~ -1~ are numerable in We can thus

apply Proposition

1 to

get

that R is binumerable in

Rn . Conversely

if .R is binumerable in it follows

immediately

from

3)

that both R and its

complement

are in

namely

R

(5)

12

REFERENCES

[1] S. FEFERMAN, Arithmetization

of

metamathematics in a

general setting,

Fundamenta Matematicae, 49 (1960), pp. 35-92.

[2] A. URSINI, A sequences

of

theories whose union is

complete,

Rend. Sem.

Mat. Univ. Padova, 57 (1977), pp. 75-92.

Manoscritto

pervenuto

in redazione il 28

gennaio

1980.

Références

Documents relatifs

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention