• Aucun résultat trouvé

RECENT DEVELOPMENTS IN FIELD AND FORCE COMPUTATION

N/A
N/A
Protected

Academic year: 2021

Partager "RECENT DEVELOPMENTS IN FIELD AND FORCE COMPUTATION"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00223649

https://hal.archives-ouvertes.fr/jpa-00223649

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RECENT DEVELOPMENTS IN FIELD AND FORCE COMPUTATION

J. Simkin

To cite this version:

J. Simkin. RECENT DEVELOPMENTS IN FIELD AND FORCE COMPUTATION. Journal de

Physique Colloques, 1984, 45 (C1), pp.C1-851-C1-860. �10.1051/jphyscol:19841174�. �jpa-00223649�

(2)

JOURNAL DE PHYSIQUE

Colloque Cl, suppl6ment a u n o I, Tome 45, janvier 1984 page C1-851

RECENT DEVELOPMENTS I N F I E L D AND FORCE COMPUTATION

J. Simkin

Rutherford Appleton Laboratory, Ghilton Didcot, Oxon OX11 OQX, U . K .

RQsum6 - Les progrBs r s c e n t s e n m a t i s r e d e m6thodes d e c a l c u l d e s champs Blectromagn6tiques s o n t p a s s d s e n revue, en s e r d f 6 r a n t e n p a r t i c u l i e r aux t r a v a u x p r d s e n t d s B l a Conf6rence COMPUMAG q u i s ' e s t t e n u e 1 GGnes en j u i n 1983. Les p r 6 c i s i o n s o b t e n u e s 1 l ' a i d e d ' d q u a t i o n s i n t d g r a l e s e t aux

dB-

r i v 6 e s p a r t i e l l e s s o n t compardes. Le c a l c u l d e s f o r c e s e s t examin6.

A b s t r a c t - Recent developments i n methods f o r e l e c t r o m a g n e t i c f i e l d compu- t a t i o n a r e reviewed, i n p a r t i c u l a r work r e p o r t e d a t the COMPUMAG Conference h e l d i n Genoa i n June 1983. The accuracy of p a r t i a l d i f f e r e n t i a l and i n t e g r a l e q u a t i o n s o l u t i o n s i s compared and t h e e v a l u a t i o n of f o r c e s i s examined.

1 - INTRODUCTION

The computation of e l e c t r o m a g n e t i c f i e l d s i s important f o r many s c i e n t i f i c and i n d u s t r i a l a p p l i c a t i o n s . Most of t h e s e a p p l i c a t i o n s r e s u l t i n computational problems t h a t a r e unique to t h i s d i s c i p l i n e . One of t h e major problems i s t h a t r e s u l t s must be extremely a c c u r a t e i f they a r e t o be of any p r a c t i c a l u s e . T h i s requirement would be i m p o s s i b l e t o s a t i s f y i f t h e m a t e r i a l s used i n the construc- t i o n of e l e c t r o m a g n e t i c d e v i c e s were l e s s easy t o model. Commonly used m a t e r i a l s a r e e a s i l y measured and c h a r a c t e r i s e d , and t h e i r p r o p e r t i e s a r e r e a s o n a b l y c o n s t a n t . However, t h e r e a r e e x c e p t i o n s , f o r example permanent magnet m a t e r i a l s s u c h a s Alnico. There a r e many o t h e r s p e c i f i c problems, f o r example t h e unbounded n a t u r e of t h e f i e l d , t h e g e o m e t r i c a l complexity of t h e d e v i c e s and s k i n e f f e c t s i n eddy c u r r e n t s o l u t i o n s .

T h i s paper reviews t h e p r o g r e s s i n e l e c t r o m a g n e t i c f i e l d computation, paying p a r t i c u l a r a t t e n t i o n t o work r e p o r t e d a t t h e June 1983 COMPUMAG conference.

C u r r e n t r e s e a r c h i s dominated by t h e a p p l i c a t i o n of f i n i t e elements to t h e s o l u t i o n of p a r t i a l d i f f e r e n t i a l e q u a t i o n s , t h e reasons f o r f a v o u r i n g t h i s approach a r e examined. The c a l c u l a t i o n of f o r c e s produced by e l e c t r o m a g n e t i c f i e l d s i s o f t e n s u b j e c t t o l a r g e e r r o r s , t h e t e c h n i q u e s used f o r f o r c e c a l c u l a t i o n s a r e compared and the cause of the e r r o r s i s i d e n t i f i e d .

2

- ACCURACY

I n many a p p l i c a t i o n s of e l e c t r o m a g n e t i c d e v i c e s t h e f i e l d s must be computed t o an a c c u r a c y of t h e o r d e r of 1 p a r t i n 1000 o r b e t t e r . T h i s can only be achieved when t h e m a t e r i a l s involved a r e s t a b l e and t h e i r p r o p e r t i e s can be e a s i l y measured.

Even t h e n , g u a r a n t e e i n g t h e r e s u l t s t o t h i s accuracy i s extremely expensive and f o r t r u l y t h r e e dimensional f i e l d s may be i m p o s s i b l e . Problems t h a t i n v o l v e l i n e a r magnetic m a t e r i a l s can be s o l v e d t o v e r y high p r e c i s i o n i n two dimensions u s i n g boundary i n t e g r a l m e t h o d s / l / . A s i m p l e problem has been solved w i t h c o n s t a n t p e r m e a b i l i t y i n o r d e r t o show r a t e s of convergence of t h e s o l u t i o n f o r d i f f e r e n t methods. Although r e l a t i v e l y simple the problem shown i n F i g u r e 1 does provide a n o n - t r i v i a l t e s t . One q u a r t e r of a 'H' frame magnet with a s l o p i n g p o l e was s o l v e d

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19841174

(3)

Cl-852 JOURNAL DE PHYSIQUE

using a s c a l a r p o t e n t i a l boundary i n t e g r a l method and a v e c t o r p o t e n t i a l , p a r t i a l d i f f e r e n t i a l e q u a t i o n , f i n i t e element method. The problem was assumed i n f i n i t e l y long out of the p l a n e , with an i r o n r e l a t i v e p e r m e a b i l i t y of 1000. A v e r y l a r g e (500 degrees of freedom) boundary i n t e g r a l s o l u t i o n was used t o o b t a i n t h e ' c o r r e c t ' r e s u l t . F i g u r e 2 shows the f l u x d i s t r i b u t i o n i n the problem and from t h i s f i g u r e t h e boundary c o n d i t i o n s should be obvious. F i g u r e s 3a and 3b show t h e convergence of the i n t e g r a t e d f l u x a c r o s s the a i r gap f o r the two s o l u t i o n methods and a l s o show t h e time required f o r the s o l u t i o n s . This problem was s e l e c t e d because the r a p i d l y varying f i e l d gives a more r e a l i s t i c t e s t of t h e f i n i t e element method, accuracy i s much e a s i e r t o o b t a i n i f t h e f i e l d i s c o n s t a n t . I n both methods q u a d r a t i c v a r i a t i o n of t h e p o t e n t i a l was used i n each d i s c r e t e element.

The p a r t i a l d i f f e r e n t i a l equation s o l u t i o n employed smoothing on t h e f i e l d s o l u t i o n , d i r e c t d i f f e r e n t i a t i o n of the element shape f u n c t i o n s g i v e s much l a r g e r e r r o r s .

F i g u r e 1. Cross s e c t i o n of an H frame magnet with a s l o p i n g pole. Only one q u a r t e r of t h e magnet is d i s p l a y e d .

F i g u r e 2. Flux d i s t r i b u t i o n i n t h e H frame magnet.

The r e s u l t s c l e a r l y show t h a t f o r t h i s problem t h e boundary i n t e g r a l method is by f a r t h e b e s t . However, t h i s cannot be used f o r non-linear problems except by i n t r o d u c i n g a r e a d i s c r e t i s a t i o n , whereas rhe p a r t i a l d i f f e r e n t i a l e q u a t i o n method can be used f o r non-linear s o l u t i o n s and w i l l g i v e s i m i l a r p r e c i s i o n . The f i g u r e s do not t e l l t h e whole s t o r y , the i n c r e a s e i n accuracy from 0.08% t o 0.02% with p a r t i a l d i f f e r e n t i a l equatioh s o l u t i o n was obtained by only i n c r e a s i n g t h e

d i s c r e t i s a t i o n w i t h i n t h e a p e r t u r e of the magnet. This s t r o n g c o r r e l a t i o n between

accuracy and $rely l o c a l s u b d i v i s i o n i s one of t h e s i r e n g t h s . o f t h e method, i t i s

not a property of the i n t e g r a l method except i n a r e a s c l o s e to the d i s c r e t i s e d

(4)

Error

O/O

0 100 200 300 0 2000 4000 6000 8000 Degrees of Freedom Degrees of Freed om

CPU seconds CPU seconds

Fig. 3 A Fig. 38

10

Error in / B dx as a function of Discretisation

0 Y

F i g u r e 3. R e s u l t s f o r t h e H frame magnet.

a ) from a boundary i n t e g r a l s o l u t i o n

b) f r a n a p a r t i a l d i f f e r e n t i a l e q u a t i o n s o l u t i o n 2.1 Cost Comparison

The r e s u l t s p l o t t e d i n F i g u r e 3 were o b t a i n e d by programs t h a t g i v e n e a r l y optimal performance f o r t h e t y p e s of method they use. Table 2 shows how t h e o p e r a t i o n count v a r i e s a s a f u n c t i o n of accuracy f o r boundary i n t e g r a l , volume i n t e g r a l and p a r t i a l d i f f e r e n t i a l e q u a t i o n methods i n 2D s o l u t i o n s . Accuracy i s assumed t o depend on t h e element s i d e l e n g t h r a i s e d t o a power t h a t i s independent of the method. Table 3 shows t h e same comparison f o r 3 D s o l u t i o n s .

Table

2

A comparison o f ' o p e r a t i o n counts f o r d i f f e r e n t s o l u t i o n methods i n 2D problems

Boundary Volume P a r t i a l

i n t e g r a l i n t e g r a l D i f f e r e n t i a l

a c c u r a c y

a

na

d i s c r e t i s a t i o n

Q

n

m a t r i x e v a l u a t i o n

a

n 2

e q u a t i o n s o l u t i o n a n 3

f i e l d r e c o v e r y n

(5)

JOURNAL DE PHYSIQUE

Table 3

A comparison of o p e r a t i o n counts f o r d i f f e r e n t s o l u t i o n methods i n 3D problems

Boundary Volume P a r t i a l

i n t e g r a l i n t e g r a l D i f f e r e n t i a l

a c c u r a c y

a

n

a

d i s c r e t i s a t i o n a n 2 m a t r i x e v a l u a t i o n a n 4 e q u a t i o n s o l u t i o n a n 6 f i e l d recovery a n2

The most obvious c o n c l u s i o n from t h e s e t a b l e s i s t h a t i n t h e l i m i t of v e r y l a r g e d i s c r e t i s a t i o n s all methods a r e dominated by e q u a t i o n s o l u t i o n . The next

c o n c l u s i o n is t h a t f o r s o l u t i o n s i n t h r e e dimensions p a r t i a l d i f f e r e n t i a l methods must become more e f f e c t i v e than t h e o t h e r approaches; a g a i n , i n t h e l i m i t of l a r g e d i s c r e t i s a t i o n s when t h e c o n s t a n t s i n t h e p r o p o r t i o n a l i t y r e l a t i o n s h i p s become i n s i g n i f i c a n t . It is only i n two dimensions t h a t boundary i n t e g r a l methods a r e p a r t i c u l a r l y a t t r a c t i v e , F i g u r e 3 d e m o n s t r a t e s t h i s q u i t e e f f e c t i v e l y . I n s o l v i n g p r a c t i c a l problems on e x i s t i n g computing hardware t h e c o n s t a n t s i n the propor- t i o n a l i t y r e l a t i o n s h i p s become i m p o r t a n t . Experience with e x i s t i n g programs i n t h r e e dimensions shows t h a t once t h e number of unknowns r i s e s above 1000 f o r i n t e g r a l methods, t h e p a r t i a l d i f f e r e n t i a l methods a r e b e t t e r . Accuracies of t h e o r d e r of .2% can be achieved w i t h t h i s l e v e l of d i s c r e t i s a t i o n .

2.2 L i n e a r Algebra

I n d e r i v i n g t h e o p e r a t i o n c o u n t s f o r T a b l e s 2 and 3 i t was assumed t h a t d i r e c t e q u a t i o n s o l u t i o n methods were used f o r i n t e g r a l methods (Gaussian e l i m i n a t i o n ) and t h a t the most e f f e c t i v e methods a v a i l a b l e were used f o r t h e p a r t i a l d i f f e r e n t i a l methods. I n t h e l a t t e r , t h e r e have been s i g n i f i c a n t developments i n t h e l a s t 5

y e a r s and i t is o n l y a s a r e s u l t of t h e s e t h a t the p a r t i a l d i f f e r e n t i a l methods have been s o s u c c e s s f u l . The m a j o r i t y of new, l a r g e , f i n i t e element programs now u s e p r e c o n d i t i o n e d con j u g a t e g r a d i e n t methods/2,3/. The computer s t o r a g e r e q u i r e d by t h e s e methods i n c r e a s e s l i n e a r l y w i t h t h e number of unknowns and i s independent of o r d e r i n g of t h e unknowns. S i m i l a r l y t h e s o l u t i o n times a r e almost independent of t h e o r d e r i n g of t h e unknowns, t h i s i s t o be c o n t r a s t e d with o t h e r s p a r s e m a t r i x methods where t h e bandwidth o r p r o f i l e of t h e m a t r i x was v e r y important e s p e c i a l l y f o r problems i n t h r e e dimensions. Table 4 g i v e s an i n d i c a t i o n of t h e s o l u t i o n t i m e s r e q u i r e d u s i n g an incomplete cholesky c o n j u g a t e g r a d i e n t method f o r a f i n i t e element s o l u t i o n o f L a p l a c e ' s e q u a t i o n i n t h r e e dimensions.

Table 4

S o l u t i o n times f o r incomplete cholesky c o n j u g a t e g r a d i e n t methods.

An I B M 3081D was used f o r t h e s e c a l c u l a t i o n s .

Number of S o l u t i o n

unknowns time ( s e c o n d s )

The R u t h e r f o r d Appleton Laboratory implementations of t h e s e methods do not use any d i s k backing s t o r e , t h e s o l u t i o n of a 25000 unknown s e t of e q u a t i o n s f o r t h e L a p l a c i a n problem r e q u i r e s 5MB of v i r t u a l s t o r a g e .

2.3 3D S o l u t i o n s

I n o r d e r t o show the convergence of s o l u t i o n s t o t h r e e dimensional problems an

(6)

axisymmetric model w i t h t h e c r o s s - s e c t i o n

as shown i n F i g u r e 1 was solved using a

2D a x i s y m e t r i c model and a f u l l 3 D model i n which one o c t a n t of t h e geometry was d i s c r e t i s e d . F i g u r e 4 shows a computer generated d i s p l a y of the model with hidden l i n e s removed. F i g u r e 5 shows t h e convergence of t h e i n t e g r a t e d f i e l d a s a f u n c t i o n of d i s c r e t i s a t i o n . Moving from F i g u r e 3 t o F i g u r e 5 using Tables 2 and 3 i t would seem reasonable t o expect t o r e q u i r e 600000 degrees of freedom t o g i v e 0.2% accuracy. Figure 5 shows t h a t only 24000 unknowns were r e q u i r e d , t h i s was achieved by using high o r d e r small elements i n t h e r e g i o n of i n t e r e s t and low o r d e r elements i n t h e o u t e r a r e a s . These r e s u l t s were obtained using the TOSCA

F i g u r e 4. A 3 D model of an axisymmetric H frame magnet.

E r r o r %

I I I

0 10,000 20.000

Number of Degrees of Freedom

F i g u r e 5. Convergence of t h e i n t e g r a t e d f l u x c r o s s i n g the gap of

t h e 3 D H frame magnet.

(7)

JOURNAL DE PHYSIQUE

3 - FAR FIELD BOUNDARY

I n t e g r a l methods can be formulated such t h a t t h e f i e l d decays c o r r e c t l y t o i n f i n i t y . I n s o l v i n g p a r t i a l d i f f e r e n t i a l e q u a t i o n s using f i n i t e element

procedures t h e f i e l d i s i n g e n e r a l a r t i f i c i a l l y terminated a t t h e boundary of t h e mesh w i t h e i t h e r a D i r i c h l e t o r Neumann boundary c o n d i t i o n . This can r e s u l t i n l a r g e e r r o r s i f t h e f a l s e t e r m i n a t i o n of t h e f i e l d i s s t r o n g l y coupled to t h e r e g i o n s of i n t e r e s t .

S e v e r a l methods of overcoming t h i s l i m i t a t i o n have been developed. A boundary i n t e g r a l method141 o r boundary G a l e r k i n method151 can be a p p l i e d t o t h e f a l s e boundary o r a b a l l o o n i n g technique161 could be used. The b a l l o o n i n g t e c h n i q u e uses r e c u r s i v e g e n e r a t i o n of s i m i l a r r i n g s of elements around t h e problem s p a c e and t h e d e g r e e s of freedom s o c r e a t e d a r e condensed out of t h e system of e q u a t i o n s . T h i s t e c h n i q u e and t h e boundary i n t e g r a l method, both produce c o u p l i n g between a l l d e g r e e s of freedom a s s o c i a t e d w i t h t h e boundary and hence c r e a t e a dense block i n t h e f i n a l system m a t r i x . Another a l t e r n a t i v e i s t o use an element i n t h e e x t e r i o r which e x t e n d s from t h e boundary of the mesh to i n f i n i t y l 7 1 , t h e s e a r e u s u a l l y c a l l e d ' i n f i n i t e e l e m e n t s ' . Various decay f u n c t i o n s may be s e l e c t e d i n o r d e r t o aproximate t h e v a r i a t i o n from the boundary to i n f i n i t y , t h e most commonly used f u n c t i o n s a r e e i t h e r r e c i p r o c a l , e x p o n e n t i a l o r orthogonal polynomial/7,8/. The advantage of t h i s approach over t h e o t h e r s i s t h a t t h e system m a t r i x does not c o n t a i n a d e n s e l y populated block connecting t h e nodes on t h e boundary. I t s d i s a d v a n t a g e is t h a t t h e decay f u n c t i o n must be c l o s e l y r e l a t e d t o t h e a c t u a l decay i f l a r g e e r r o r s a r e not t o be produced.

4 - EDDY CURRENTS

There have been e x c i t i n g developments i n the c a l c u l a t i o n of eddy c u r r e n t s . I n two s p a c e dimensions boundary i n t e g r a l methods have been extended t o i n c l u d e formu- l a t i o n s capable of modelling eddy c u r r e n t s / 9 / . I n t h r e e dimensions v e c t o r p o t e n t i a l o r e l e c t r i c f i e l d s o l u t i o n s have been d i r e c t l y coupled t o s c a l a r p o t e n t i a l s f o r t h e a r t e r i o r s p a c e l l O / . Uniqueness has been demonstrated f o r t h e v e c t o r p o t e n t i a l s / l l / , w i t h a d e f i n i t e i m p l i e d g a u g e / l 2 / , p r o v i d i n g t h i s

f o r m u l a t i o n i s o n l y used i n s i d e conducting r e g i o n s . Such methods minimise the number of unknowns r e q u i r e d a t each d i s c r e t i s a t i o n p o i n t and a l s o avoid t h e c a n c a l l a t i o n problems i n h e r e n t i n o t h e r t e c h n i q u e s / l 3 / . The e l e c t r i c f i e l d and v e c t o r p o t e n t i a l approaches a r e v e r y s i m i l a r / l 4 / , i t is n o t y e t c l e a r which of them w i l l be b e s t f o r t r a n s i e n t s o l u t i o n s .

The most s u c c e s s f u l methods t h a t a r e now a v a i l a b l e a r e based on coupled network f o r m u l a t i o n s / l 5 / . These methods have been g r e a t l y extended and now use networks based on t e t r a h e d r a , t h i s makes t h e modelling of r e a l d e v i c e s much more s t r a i g h t - forward. Two o t h e r developments a r e p a r t i c u l a r l y i n t e r e s t i n g ; eddy c u r r e n t s o l u t i o n s using coupled f i n i t e elements and boundary e l e m e n t s / l 6 / , where s p e c i a l f i n i t e elements f o r v e c t o r f i e l d s a r e used; f i n i t e d i f f e r e n c e s o l u t i o n s , which have been developed and r e f i n e d t o g i v e v e r y good r e s u l t s / l 7 / .

5 - FORCES

The f o r c e s a s s o c i a t e d w i t h e l e c t r o m a g n e t i c f i e l d s a r e i n many c a s e s t h e primary motive f o r t h e d e s i g n of t h e d e v i c e o r they a r e a c o n s t r a i n t on t h e d e s i g n . T h i s

i s u n f o r t u n a t e because

i t

is p a r t i c u l a r l y d i f f i c u l t t o r e l i a b l y compute t h e f o r c e s . I n a l l methods any e r r o r i n t h e f i e l d s is enhanced i n computing t h e f o r c e s . The methods of computing f o r c e s a r e ,

v i r t u a l w o r k / l 8 / ;

body f o r c e i n t e g r a t i o n / l 9 / ; Maxwell s t r e s s i n t e g r a t i o n l l 8 1 ; change i n s t o r e d energy.

I t has been shown t h a t v i r t u a l work c a l c u l a t i o n s become, i n t h e l i m i t of s m a l l

(8)

e l e m e n t s , e q u i v a l e n t t o Maxwell s t r e s s i n t e g r a t i o n .

Body f o r c e i n t e g r a t i o n i s s u b j e c t t o l a r g e e r r o r s because t h e e x t e r n a l f o r c e s on components may be many times s m a l l e r than t h e i n t e r n a l f o r c e s t h a t a r e balanced by s t r e s s e s i n t h e component. I n a s i m i l a r way a s u r f a c e i n t e g r a t i o n of t h e Maxwell s t r e s s t e n s o r of t e n r e s u l t s i n n e a r l y b a l a n c i n g p o s i t i v e and n e g a t i v e c o n t r i - b u t i o n s . V i r t u a l work h a s t h e same problem and c a l c u l a t i o n s based on a c t u a l d i s p l a c e m e n t s of o b j e c t s a r e v e r y i n c o n v e n i e n t .

F i g u r e 6: The f l u x d i s t r i b u t i o n f o r a p a i r of i n f i n i t e l y long p a r a l l e l conductors c a r r y i n g e q u a l and o p p o s i t e c u r r e n t s , with an i r o n b a r s l i g h t l y o f f s e t from t h e c e n t r e .

The e r r o r s t h a t w i l l occur a r e very dependent on t h e problem being s o l v e d , v e r y a c c u r a t e answers a r e e a s y t o o b t a i n i f t h e r e is no c a n c e l l a t i o n i n t h e i n t e g r a l s , f o r example, computing t h e f o r c e between a c u r r e n t c a r r y i n g c o i l and an i n f i n i t e h a l f plane. F i g u r e 6 shows a problem t h a t i s p a r t i c u l a r l y d i f f i c u l t to s o l v e . This i s a two dimensional s e c t i o n through a p a i r of conductors c a r r y i n g e q u a l and o p p o s i t e c u r r e n t s , s l i g h t l y d i s p l a c e d from the c e n t r e is an i r o n r a i l , t h e f i g u r e a l s o shows t h e f l u x d i s t r i b u t i o n . The problem i s t o compute t h e f o r c e on t h e i r o n r a i l . T h i s can be solved v e r y e a s i l y by computing t h e change i n s t o r e d energy o r by computing t h e r e a c t i o n on t h e c o i l s u s i n g t h e body f o r c e . It i s p a r t i c u l a r l y d i f f i c u l t to s o l v e by Maxwell s t r e s s i n t e g r a t i o n . The r e s u l t a n t f o r c e on the r a i l i s l e s s t h a n 10% of t h e i n t e g r a t e d modulus of t h e s t r e s s t e n s o r . For t h e r a i l t h e r e is a weak s i n g u l a r i t y i n t h e f i e l d near the c o r n e r s ; i f a p a r t i a l

d i f f e r e n t i a l f i n i t e element method is used t h i s s i n g u l a r i t y i s only approximated

c r u d e l y and t h e answers on t h e l e f t and r i g h t hand c o r n e r s a r e very dependent on

t h e l o c a l d i s c r e t i s a t i o n . F i g u r e 7 shows t h e v a r i a t i o n of t h e modulus of t h e f i e l d

around a h a l f c i r c l e c e n t r e d on t h e r a i l , with a r a d i u s such t h a t t h e c i r c l e passes

c l o s e t o , b u t does not t o u c h , t h e s u r f a c e of t h e r a i l . There is a s l i g h t l e f t t o

r i g h t asymmetry due to t h e displacement of the r a i l , b u t t h e d i s c o n t i n u i t y on the

l e f t i s p u r e l y due t o t h e l e f t t o r i g h t asymmetry of t h e d i s c r e t i s a t i o n . The

e f f e c t s of t h e c o r n e r damp out q u i c k l y a s the r a d i u s of t h e p a t h i s i n c r e a s e d such

t h a t p o i n t s on t h e path do not l i e w i t h i n the bard of elements touching t h e s u r f a c e

of t h e r a i l . T h i s e f f e c t has a tremendous i n f l u e n c e on t h e computed f o r c e s , F i g u r e

8 shows t h e f o r c e computed by Maxwell s t r e s s i n t e g r a t i o n a s a f u n c t i o n of t h e

r a d i u s of t h e c i r c l e used f o r t h e i n t e g r a t i o n . The expected r e s u l t was obtained

u s i n g a v e r y l a r g e number of unknowns, f r a n t h e body f o r c e on t h e conductors. The

f i g u r e shows r e s u l t s f o r two l e v e l s of d i s c r e t i s a t i o n , i f v e r y s m a l l elements a r e

used c l o s e t o t h e s u r f a c e of t h e b a r t h e poor modelling of t h e s i n g u l a r i t y does n o t

a f f e c t the computed f o r c e s .

(9)

JOURNAL DE PHYSIQUE

F i g u r e 8: F o r c e on t h e i r o n b a t a s a f u n c t i o n of r a d i u s of t h e p a t h of i n t e g r a t i o n .

F i g u r e 7: EIodulus of t h e m a g n e t i c f i e l d p l o t t e d on a s e m i c i r c l e c e n t r e d on t h e i r o n b a r .

6 - GENERAL 0.6-

0.4-

0.2 -

0

The major headache a s s o c i a t e d w i t h f i n i t e element a n a l y s i s is i n t h e p r e p a r a t i o n of d a t a . E l e c t r o m a g n e t i c f i e l d s a r e p a r t i c u l a r l y hard t o model because t h e e x t e r n a l s p a c e must a l s o be d i s c r e t i s e d . There a r e major developments. i n t h i s a r e a t h a t s h o u l d be a v a i l a b l e t o t h e d e s i g n e r i n t h e n e a r f u t u r e , t h e s e i n c l u d e a u t o m a t i c mesh g e n e r a t i o n on a g e o m e t r i c model, and a d a p t i v e mesh g e n e r a t i o n t o s a t i s f y some

X

Force from Maxwell Stress

X

rn

n

0

J x B result

I I

I

0 1 2 3

Radius of Integration P a t h

(10)

s p e c i f i e d a c c u r a c y c r i t e r i a . Both developments a r e i m p o r t a n t p a r t i c u l a r l y i f t h e y c a n be used i n o r d e r t o g i v e r e l i a b l e r e s u l t s w i t h o u t a h i g h l y e x p e r i e n c e d and a b l e f i n i t e element e x p e r t . Also l i n k e d w i t h t h e a d a p t i v e mesh g e n e r a t i o n is t h e i d e a of u s i n g d u a l i t y p r i n c i p l e s t o o b t a i n upper and lower bounds on s o l u t i o n

v a r i a b l e s / 2 0 / , t h i s must be i m p o r t a n t i n f u t u r e s o f t w a r e developments. There a r e a l r e a d y some programs t h a t u s e a d a p t i v e mesh g e n e r a t i o n i n t h e s o l u t i o n of e l e c t r o m a g n e t i c f i e l d s / 2 1 / .

7 - CONCLUSION

The review paper on f i e l d computation/22/ t h a t was p r e s e n t e d i n 1972 a t MT-4, i n c l u d e d t a b l e s showing programs f o r f i e l d c o m p u t a t i o n , a t t h e 1983 Compumag c o n f e r e n c e a review of eddy c u r r e n t programs/23/ produced a l i s t a t l e a s t t h r e e t i m e s l o n g e r . Methods f o r e l e c t r o m a g n e t i c f i e l d c o m p u t a t i o n a r e s t i l l b e i n g a c t i v e l y developed and t h e a c c u r a c y of t h e r e s u l t s i s o n l y l i m i t e d by t h e computer r e s o u r c e s a v a i l a b l e . I n p r a c t i c e t h i s means t h a t r e l i a b l e r e s u l t s c a n o n l y b e o b t a i n e d by e x p e r i e n c e d p e r s o n n e l . The t r e n d t o a d a p t i v e mesh g e n e r a t i o n s h o u l d improve p r o d u c t i v i t y and r e d u c e t h e d e g r e e of e x p e r t i s e t h a t i s r e q u i r e d , however, i n c r e a s e d computing power w i l l be needed f o r v e r y h i g h a c c u r a c y . Todays s e r i a l computers f a v o u r t h e use of p a r t i a l d i f f e r e n t i a l e q u a t i o n methods, p a r a l l e l computers on t h e o t h e r h a n d , would r e v i v e t h e i n t e r e s t i n i n t e g r a l e q u a t i o n s . It must b e s a i d t h o u g h , t h a t i n t e g r a l s o l u t i o n s a r e more prone t o d i s a s t r o u s e r r o r s .

REFERENCES

1. Armstrong, A G A M , C o l l i e , C J , Simkin ,

J

, Trowbridge, C

W

T , "The s o l u t i o n of 3-D m a g n e t o s t a t i c problems u s i n g s c a l a r p o t e n t i a l s " , R u t h e r f o r d Appleton L a b o r a t o r y Report RL-78-088, 1978.

2. Kershaw,

D

S , "The i n c o m p l e t e c h o l e s k y - c o n j u g a t e g r a d i e n t method f o r t h e i t e r a t i v e s o l u t i o n of systems of l i n e a r e q u a t i o n s " , J Comp Phys 6 43-65,

1978.

3 . Duff , I S , ( E d i t o r ) , " C o n j u g a t e g r a d i e n t methods and s i m i l a r t e c h n i q u e s " , AERE H a r w e l l R-9636, 1979.

4 . Friedman, M J , " A new f i n i t e element-boundary i n t e g r a l p r o c e d u r e f o r t h e s o l u t i o n of t h e m a g n e t o s t a t i c f i e l d problem", t o a p p e a r IEEE Trans Mag, November 1983 (COMPUMAG C o n f e r e n c e ) .

5. Mayergoyz, I D, C h a r i , M V K , Konrad, A, "Boundary G a l e r k i n ' s method f o r t h r e e d i m e n s i o n a l f i n i t e element e l e c t r o m a g n e t i c f i e l d computation", t o a p p e a r IEEE T r a n s Mag, November 1983 (COMPUMAG Conference).

6. S i l v e s t e r , P P , Lowther, D A , C a r p e n t e r , C 3, Wyatt, E A , " E x t e r i o r f i n i t e e l e m e n t s f o r 2-Dimensional f i e l d problems w i t h open b o u n d a r i e s " , P r o c IEE, 1 2 4 , 1267-1270, 1977.

-

7. Z i e n k i e w i c z , 0 C , Ernson, C , B e t t e s s , P , "A n o v e l boundary i n f i n i t e e l e m e n t " , IJNME , vo1.19 , 393-404, 1983.

8 . P i s s a n e t s k y , S , " S o l u t i o n of t h r e e d i m e n s i o n a l , a n i s o t r o p i c , n o n - l i n e a r problems of m a g n e t o s t a t i c s u s i n g two s c a l a r p o t e n t i a l s , f i n i t e and i n f i n i t e m u l t i p o l a r e l e m e n t s and a u t o m a t i c mesh g e n e r a t i o n " , IEEE T r a n s Mag, v o l . Mag-18, No.2, March 1982.

9 . Rucker, W , R i c h t e r , K R, " C a l c u l a t i o n of two d i m e n s i o n a l eddy c u r r e n t problems

by t h e boundary element method", t o a p p e a r IEEE Trans Mag, November 1983

(COMPUMAG Conference).

(11)

C1-860 JOURNAL DE PHYSIQUE

P i l l s b u r y ,

R

D J r , " A t h r e e dimensional eddy c u r r e n t formulation using two p o t e n t i a l s : The magnetic v e c t o r p o t e n t i a l and t o t a l magnetic s c a l a r p o t e n t i a l " , t o appear IEEE Trans Mag, November 1983 (COMPUMAG Conference).

P o l a k , S, Wachters, A , van W e l i j , J , "A note on p o t e n t i a l s f o r eddy c u r r e n t problems", t o appear IEEE Trans Mag, November 1983 (COMPUMAG Conference).

Emson, C R I , Simkin, J , "An optimal method f o r 3-D eddy c u r r e n t s " , t o appear -1EEE Trans Mag, November 1983 (COMPUMAG Conference).

Biddlecombe, C S, Heighway, E A, Simkin, J , Trowbridge, C W , "Methods f o r eddy c u r r e n t computation i n t h r e e dimensions" , IEEE Trans Mag, v o l . Mag-18 , No .2 ,

March 1982.

Rodger, D , Eastham, J F , "A f o r m u l a t i o n f o r low frequency eddy c u r r e n t s o l u t i o n s " , t o appear IEE5 Trans Mag, November 1983 (COMPUMAG Conference).

Davidson, J A M , B a l c h i n , M J , "Three dimensional f i e l d c a l c u l a t i o n by network methods using s c a l a r magnetic p o t e n t i a l s and loop e l e c t r i c c u r r e n t s " , t o appear IEEE Trans Mag, November 1983 (COMPUMAG Conference).

B o s s a v i t , A , V e r i t e , J C , "The TRIFOU code: s o l v i n g t h e 3-D eddy c u r r e n t problem by using H a s a s t a t e v a r i a b l e " , t o appear I E E E Trans Mag, November 1983 (COMPUMAG Conference).

Knoblauch, A, M u l l e r , W , " F i n i t e d i f f e r e n c e s o l u t i o n of 3-dimensional eddy c u r r e n t d i s t r i b u t i o n s " , t o appear IEEE Trans Mag, November 1983 (COMPUMAG Conference).

Coulomb, J C , "A methodology f o r the d e t e r m i n a t i o n of g l o b a l electromechanical p r o p e r t i e s from a f i n i t e element a n a l y s i s and i t s a p p l i c a t i o n t o t h e

e v a l u a t i o n of magnetic f o r c e s , torques and s t i f f n e s s " , t o appear IEEE Trans Mag, November 1983 (COMPUMAG Conference).

J a c o b s , A, M u l l e r , W , "Numerical s o l u t i o n of f o r c e s and t o r q u e s " , to appear IEEE Trans Mag November 1983 (COMPUMAG Conference).

Penman, J , L e e s , P , F r a s e r , J R, Smith, J R, "Complementary energy methods i n t h e computation of e l e c t r o s t a t i c f i e l d s " , t o appear IEEE Trans Mag, November 1983 (COMPUMAG Conference) .

G i r d i n i o , P , Molfino, P , M o l i n a r i , G , P u g l i s i , L , V i v i a n i , A, " F i n i t e

d i f f e r e n c e and f i n i t e element g r i d o p t i m i s a t i o n by t h e g r i d i t e r a t i o n method", t o appear IEEE Trans Mag, November 1983 (COMPUMAG Conference).

Trowbridge, C W , "Progress i n magnet d e s i g n by computer", P r o c 4 t h I n t e r n Conf on Magnet Technology, Brookhaven L a b o r a t o r y , 1972.

L a r i , R J , "Comparison of eddy c u r r e n t programs", t o appear IEEE Trans Mag,

November 1983 (COMPUMAG Conference).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to