• Aucun résultat trouvé

BOND LENGTH DETERMINATION FOR MULTICOMPONENT SYSTEMS - NEW OPPORTUNITIES IN EXAFS DATA ANALYSIS

N/A
N/A
Protected

Academic year: 2021

Partager "BOND LENGTH DETERMINATION FOR MULTICOMPONENT SYSTEMS - NEW OPPORTUNITIES IN EXAFS DATA ANALYSIS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00225989

https://hal.archives-ouvertes.fr/jpa-00225989

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BOND LENGTH DETERMINATION FOR MULTICOMPONENT SYSTEMS - NEW

OPPORTUNITIES IN EXAFS DATA ANALYSIS

Y. Babanov, V. Shvetsov

To cite this version:

Y. Babanov, V. Shvetsov. BOND LENGTH DETERMINATION FOR MULTICOMPONENT SYS- TEMS - NEW OPPORTUNITIES IN EXAFS DATA ANALYSIS. Journal de Physique Colloques, 1986, 47 (C8), pp.C8-37-C8-42. �10.1051/jphyscol:1986805�. �jpa-00225989�

(2)

BOND LENGTH DETERMINATION FOR MULTICOMPONENT SYSTEMS - NEW

OPPORTUNITIES IN EXAFS DATA ANALYSIS

Y.A. BABANOV and V.R. SHVETSOV

I n s t i t u t e o f Metal Physics, Academy o f Sciences o f the U S S R , U r a l S c i e n t i f i c Center, 620219 Sverdlovsk GSP-170, U . S . S . R .

Abstract

-

A new method of determining p a r t i d interatomic d i s t a n c e s i n multicomponent systems from extended X-ray ab- s o r p t i o n f i n e s t r u c t u r e data i s presented. The method i s ba- sed upon the r e g u l a r procedure of solving a Fredholm i n t e g r a l equation of t h e f i r s t kind. The e f f e c t i v e n e s s of the method has been t e s t e d on model examples of two c l o s e l y spaced coor- d i n a t i o n spheres and c r y s t a l l i n e CuZr2. The p a r t i a l i n t e r a t o - mic d i s t a n c e s of amorphous Cug Z r 7 have been i n v e s t i g a t e d by EXUS using t h e synckcotron r a a i a t l o n of a MPP-4 s t o r s g e rjng. The s t r u c t u r a l r e s u l t s a r e compared with previous expe- rlmental and t h e o r e t i c a l i n v e s t i g a t i o n s .

E X U S spectroscopy is used t o probe t h e l o c a l atomic arrangement around a s p e c i f i c atomic s p e c i e s i n amorphous a l l o y s , c a t a l y s t s , b i o l o g i c a l molecules, s o l u t i o n s , etc./?/. The conventional procedure of e x t r a c t i n g s t r u c t u r a l information i n r e a l space i s based on Fou- r i e r transforming t h e normalized o s c i l l a t o r y p a r t of t h e X-ray ab- s o r p t i o n c o e f f i c i e n t . It i s well known that the peaks i n t h e Fourier transform axe s h i f t e d t o lower r from t h e p o s i t i o n s of t h e corres- ponding peaks i n t h e p a r t i a l r a d i a l d i s t r i b u t i o n f u n c t i o n (RDF). Be- s i d e s , Hayes e t a l . have shown t h e r e a l space c o n t r i b u t i o n of each s h e l l about a n excited atom t o be long-range and s h a r p l y o s c i l l a t o - ry, The c o n t r i b u t i o n s made by two c l o s e l y spaced s h e l l s i n t e r f e r e s t r o n g l y /2/. As a r e s u l t , f a l s e and unresolved peaks a r i s e . The me- thod proposea /3/ eliminates t h e aforementioned drawbacks i n the processing of experimental data.

The method i s based upon t h e regulariza-tion procedure of solving a l?redholm i n t e g r a l equation of t h e f i r s t k h d . Features p e c u l i a r t o the method axe high r e s o l u t i o n f o r c l o s e l y spaced coordination spheres and high accuracy i n t h e determination of interatomic d i s - tances.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986805

(3)

C8-38 JOURNAL DE PHYSIQUE

According t o theory, the ESOS can be described a s a n e l e c t r o n d i f f r a c t i o n process where t h e e l e c t r o n source i s t h e absorbing atom. The outgoing photoelectron wave and a s m a l l p a r t of i t , which i s backscattered from t h e surrounding atom j , i n t e r f e r e with t h e e x c i t e d atom. This s c a t t e r i n g i s s p e c i f i e d by not only the atomic amplitude f a s is the case i n X-ray d i f f r a c t i o n , but a l s o the phase pj. j I n addition, the s c a t t e r i n g on t h e p o t e n t i a l of t h e cen- tral atom e x h i b i t s a phase s h i f t 2 S i . These s c a t t e r i n g characte- r i s t i c s a r e involved i n the i n t e g r a l operator Aij which, a s it a c t s on t h e p a r t i a l RDF gij, generates a c o n t r i b u t i o n of a s p e c i f i c ato- mic p a i r t o t h e normalized o s c i l l a t o s y p a s t x i . If n elements a r e present i n t h e system, t h e n

here k i s t h e wave number of a photoelectron, c t h e concentrati- on, 3\ t h e mean f r e e path of a photoelectron, p. j t h e mean atomic density, and v i j ( k ) = 2 Si(k)+ p j ( k ) t h e t o t a l phase s h i f t , which i s a pecular "mark" f o r a s p e c i f i c p a i r of atoms.

The present n o t e suggests using t h e dependence of t h e i n t e g r a l operator Aij on t h e atomic s c a t t e r i n g c h a r a c t e r i s t i c s tabulated i n /4/. To determine t h e p a r t i a l interatomic d i s t a n c e s , a r e g u l a r i z a t i - on method of solving ill-posed inverse problems /5/ i s applied. It allows t h e i n t e r f e r e n c e of t h e c o n t r i b u t i o n s by t h e c l o s e l y spaced s h e l l s t o be removed and t h e r e s o l v i n g a b i l i t y of t h e E g U S teem- que t o be improved d r a s t i c a l y .

'Phe Iikhonov f u n c t i o n a l f o r (1) has the form

min

( I I ~ = ~

A i j h i j -

uJI

t

f

j.1 (djllhijl12 + pj(l&hijl12$ 9 where hij (r)=gi. ( r ) - l ,

t a k y i ( k ) / f , ( d a n d a amplitude, & j and p j

t h e functions ui( k) include experimental da- .symptotes Aid, f o ( k ) i s t h e mean s c a t t e r i n g

are r e g u l a r i z a t i o n parameters, and 11 2112 i s the square of t h e norm of t h e f u n c t i o n 2. S e t t i n g t h e first v a r i a - t i o n s of t h e f u n c t i o n a l (2) with r e s p e c t t o hij ( j = l ,

.. .

, n ) equal t o zero, w e o b t a i n n r e g u l a r i z e d i n t e g r a l equations, each of which is equivalent t o ( 1 )

(4)

t e r s H . and

J + J y 6 i s t h e Kronecker d e l t a symbol. The i n t e g r a l o p e r a t o r ( A . . A . .+B.) i s p o s i t i v e and t h u s can be inverted. Its i n -

LJ ZJ 3

v e r s e i s denoted by Cij. Then (3) may be r e w r i t t e n a s

The essence of t h e procedure w i l l be c l e a r from a n example. Let a h y p o t h e t i c a l c r y s t a l l i n e Cu-Zr a l l o y have t h e Pollowing s h o r t - range order: Cu atoms a r e surrounded by Cu atoms spaced a d i s t a n c e of 2.50 apaxt and by Z r atoms (2.80 1 a p a r t ) , and Z r atoms a r e surrounded by Cu atoms (2.80 a p a r t ) and Z r a t o m (3.10 a p a s t ) . The p a r t i a l RDFs d e s c r i b i n g t h e atomic d i s t r i b u t i o n in t h e c a s e of thermal motion a r e presented i n Fig. l (curves 1 and 8). For t h e s e RDFs t h e s p e c t r a of Gu and Z r were calculated.

Eroblem Determine t h e f n t e r a t o m i c d i s - t a n c e s Cu-Cu and Cu-Zr from t h e x C u ( k ) da- ta, and t h e Zr-Cu and Zr-Zr d i s t a n c e s from -the 7 Zr(k) data.

Having p r o p e r l y prepared t h e d a t a f o r t h e spectrum of Cu, we a c t on them by t h e inver- s e o p e r a t o r The r e s u l t of t h e solu- t i o n of t h e i n v e r s e problem is d e p i c t e d i n t h e Fig. 1 (curve 3). The p o s i t i o n of t h e f i r s t peak c o i n c i d e s p r a c t i c a l l y with t h e most probable Cu-.Cu d i s t a n c e ( curve 1 ).

Since t h e phase s h i f t ?U (k) f o r a Cu-Zr p a i r does not coxrespond t o t h e phase information of t h e o p e r a t o r Cm-Cu, t h e second peak on curve 3 i s s h i f t e d by 0.1 1 1. Applying t h e o p e r a t o r CCu_Zr t o t h e s a m e x C u ( k ) spec-

Pig. 1.

trum , we determine t h e Cu-Zr d i s t a n c e (curve 4). The r e s u l t s ob- t a i n e d by processing t h e x z r ( k ) s p e c t m ( curves 5 and 6 1 permit t h e proper sequence of c o o r d i n a t i o n spheres t o be determined unam- biguously. For t h i s purpose t h e Cu-Zr d i s t a n c e i s taken t o be t h e r e f e r e n c e d i s t a n c e , For comparison, t h e f i g u r e 1 p r e s e n t s Fourier transformation modules of t h e same model s p e c t r a of Cu ( curve 2 ) and Zr (curve 7).

(5)

C8-40 JOURNAL DE PHYSIQUE

Another example

-

c r y s t a l l i n e and amorphous CuZr2.

The EXAPS experiments were performed a t Nuclear Physics I n s t i t u - t e (Novosibirsk) using the synchrotron r a d i a t i o n of t h e VEPP-4 sto- rage r i n g , K-spectra of Cu and Z r were recorded a t t h e room tempe- r a t u r e . The experimental conditions and t h e preliminary processing were described i n /6/r

The X-ray s c a t t e r i n g d a t a of Nevitt and Downey / 7 / f o r c r y s t a l - l i n e & Z r 2 ( a t e t r a g o n a l phase ) have been used t o generate the (k) s p e c t r a with the phase s h i f t s and backscattering f a c t o r s ta- bulated i n /4/ f o r pure copper and pure zirconium. Pig. 2 p r e s e n t s experimental ( d o t s ) and c a l c u l a t e d ( s o l i d l i n e ) 3( (k) f o r Cu K edge (curves 1 ) and f o r Z r K edge (curves 2). Be must n o t i c e some d i s - crepancy between t h e c a l c u l a t e d and experimental data. The r e s u l t s of t h e s o l u t i o n of t h e inverse problem f o r experimental s p e c t r a a r e depicted i n t h e Pig. 3 ( curves 1 and 2 f o r Cu spectrum, curves 3 and 4 f o r Z r spectrum). The interatomic d i s t a n c e s obtained from X- r a y d i f f r a c t i o n a r e shown by dash l i n e s . Our r e s u l t s a r e compared with t h e experimental data from l i t e r a t u r e (Table 1). The values of

interatomic d i s t a n c e s f o r c r y s t a l l i n e h Z r 2 agree with X-ray crys- t a l l o g r a p h i c data.

Pig. 2

(6)

l i a b l y . All r e s u l t s may be devided i n t o two groups: l ) t h e statis- t i c a l d i s t r i b u t i o n of both kinds of atoms; 2 ) t h e strong chemical i n t e r a c t i o n a Cu atom with a Z r atom. In t h e l a s t case the atomic distance between u n l i k e atoms i s smaller than t h e mean value of the d i s t a n c e s between l i k e atoms.

Fig. 4 p r e s e n t s experimental (h) of amorphous C U ~ f o r Cu ~ Z ~ ~ ~ K edge (curve 1) and f o r Z r K edge ( curve 2 ). P a r t i a l RDPs a r e

shown i n Fig. 5 ( curves l and 2 f o r Cu edge, curves 3 and 4 f o r Z r edge ). !Phe dash l i n e s correspond t o t h e most probable interatomic distances, whose numerical values a r e given in Table 2,

Swnmarizing the experimental r e s u l t s we can s t a t e :

1) The Cu-Cu d i s t a n c e is much s h o r t e r than the c r y s t a l d i s t a n c e and i s absent i n t h e corresponding & Z r 2 c r y s t a l l i n e s t r u c t u r e . 2) The Cu-Zr d i s t a n c e i s p r a c t i c a l l y t h e same a s i n c-CuZr2.

3 ) The interatomic d i s t a n c e s agree with t h e Goldschmidt r a d i i . Thus, the proposed method i s characterized by high r e s o l u t i o n f o r c l o s e l y spaced coordination spheres and by high accuracy i n de- termining interatomic distances. In t h i s context t h e method has v a s t prospects of a p p l i c a t i o a i n s t r u c t u r a l i n v e s t i g a t i o n s conven- t i o n a l f o r t h e EXAFSo

Fig. 4

, , C.. . . 4 . . ... ,.. , . . . . , , - . ... 6 . .., .J' . iK ...-- 8

6')

,

-

, ,

-

10

;

, 12

,l

(7)

CS-42 JOURNAL DE PHYSIQUE

The a u t h o r s wish t o thank S.V.Vonsovskii, V.V.Vwin, A.L.Ageev, N. V. Ekshov f o r h e l p f u l discussions and G.N.Ku1 ipanov, M.A. Sheromov, N. V. Bausck f o r supporting t h e EXXE'S experiments.

REFERENCES

/ l / P.A.Lee, P.H.Citrin, P.E.Eisenberger and B.M.Kincaid, Rev.Mod.

Phys. , 52 (1981 1 769.

/2/ T.N.Hayes, P.W.Sen and S.H.Hunter, J.Phys.C, 2 (1976) 4357.

/3/ Yu.A.Babanov and V.R. Shvetsov, phys.stat.so1. (B), lJl(1985) K1 /4/ B.-K. ICeo and P.A. Lee, J.Arner. Chem. Soc., 101 ( 1979) 2815.

/5/ A.N. Tikhonov and V. Ya. Arsenin, Solution of 111-Posed Problems, W,N.Winston and Sons, Washington (D. C. ) and John IYLlley and Sons, New York / Toronto / London 1977.

/6/ N.V.Ershov, Yu.A.Babanov and V.R. Galakhov, phys, stat. sol. (b) ,

117 (1983) 749.

/7/ M.V.Nevitt and J.W.Downey, AIME Trans., 224 (1962) 195.

/ 8 / A. Sadoo, Y. Calvayrac , A. Q u i t y , M. Harmelin and A.M.Planlr, J.Non-Cryst.So1. , (1984) 109.

/9/ R.Harris and L. J.Lewis, Phys.Rev., (1982) 4997.

/ l Q/ R.Haensel, P. Rabe , G. Tolkiehn and A.Werner, Proc.NAT0 Adv. Stu- dy I n s t i t u t e , Liquid and Amorphous Metals, ed. E,Lusher ( Rei- d e l , Dordrecht, 1981) 467.

/ l l/ P.Lamparter, S. Steeb and E. G r u l a t h , Z.NaturPorsch. ,S (1983) 121 0.

'Pable 1 - Interatomic d i s t a n c e s of t h e c r y s t a l l i n e CuZr2 (8).

---"---m---

&-Zr Cu-Cu Zr-Cu Z r - Z r Z r - Z r References

...

X-ray d i f f r a c t i o n 2.896 3.220 2.896 3.039 3.220 /7/

2.90 3.23 2.89 3.04 3.23 model*

MMS 2.89 3.22 **

2.89 3.04 3.23 exp.

2.87 3.16 2.85 3.09 3.20 /a/

...

e r r o r : * -TO.OI X , ** 70.02 X,

Table 2 - Interatomic d i s t a n c e s of t h e amorphous C U ~ (2). ~ Z ~ ~ ~

...

Cu-Cu Cu-Zr Zr-Cu Z r - Z r Alloy References

...

computer model 2.54 2.71 2.71 3.12 Cu33Zr67 / 9 /

MUS 2.54 2.71 2.71

:::;

&33zY67 /8/

lc&iPs 2.47 2.74 2.74 3.14 cu46zr54 /lo/

n e u t r o n d i f f r a c t i o n 2.59 2.77 2.77 3.28 &57Zr43 /l?/

MU'S 2.53 2.86 2.86 3.26 &33zr67 t h i s work

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to