• Aucun résultat trouvé

THE QUANTAL PERMEATION CURRENT AND THE DISCREPANT INITIAL STAGE N-AND Z-DRIFTS IN NUCLEAR HEAVY ION COLLISIONS

N/A
N/A
Protected

Academic year: 2021

Partager "THE QUANTAL PERMEATION CURRENT AND THE DISCREPANT INITIAL STAGE N-AND Z-DRIFTS IN NUCLEAR HEAVY ION COLLISIONS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00226506

https://hal.archives-ouvertes.fr/jpa-00226506

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE QUANTAL PERMEATION CURRENT AND THE DISCREPANT INITIAL STAGE N-AND Z-DRIFTS IN NUCLEAR HEAVY ION COLLISIONS

J. Griffin, M. Dworzecka, A. Lukasiak

To cite this version:

J. Griffin, M. Dworzecka, A. Lukasiak. THE QUANTAL PERMEATION CURRENT AND THE DISCREPANT INITIAL STAGE N-AND Z-DRIFTS IN NUCLEAR HEAVY ION COLLISIONS.

Journal de Physique Colloques, 1987, 48 (C2), pp.C2-259-C2-264. �10.1051/jphyscol:1987239�. �jpa- 00226506�

(2)

6 , 48,

THE QUANTAL PERMEATION CURRENT AND THE DISCREPANT INITIAL STAGE N-AND Z-DRIFTS IN NUCLEAR HEAVY ION COLLISIONS

J.J. G R I F F I N , M. DWORZECKA* and A. LUKASIAK*'

Department of P h y s i c s and pstronomy, U n i v e r s i t y o f Maryland, C o l l e g e Park, MLI 20742, U . S . A .

* p h y s i c s Department, George Mason U n i v e r s i t y , F a i r f a x , V A 22030, U . S . A .

'"BRC A s s o c i a t e s I n c . , Bethesda, MD 20814, U . S . A .

A b s t r a c t

A new quanta1 permeation c u r r e n t flowing between i n t e r a c t i n g heavy i o n s i s i d e n t i f i e d and v a l i d a t e d by e x a c t numerical s o l u t i o n s of a model SchrBdinger system. T h i s c u r r e n t i s d r i v e n by t h e d i f f e r e n c e between t h e d e p t h s of t h e p o t e n t i a l w e l l s on t h e two s i d e s of t h e d i n u c l e a r window. It i s not i n c l u d e d i n t h e c o n v e n t i o n a l d e s c r i p t i o n s of heavy i o n p r o c e s s e s , which assume a c u r r e n t dependent only upon t h e d i f f e r e n c e between t h e nucleonic chemical p o t e n t i a l e n e r g i e s .

Accumulating d a t a on t h e N- and Z - d r i f t s observed i n deep i n e l a s t i c c o l l i s i o n s a l s o c o n t r a d i c t t h e c o n v e n t i o n a l d e s c r i p t i o n . By c a r e f u l e x a c t c a l c u l a t i o n w i t h t h e one-dimensional Schrodinger model, t h e permeation c u r r e n t i s h e r e q u a n t i f i e d and t h e n extended t o t h r e e dimensions. The r e s u l t i n g c o r r e c t i o n s a r e q u a l i t a t i v e l y such a s t o a m e l i o r a t e t h e d i s c r e p a n c i e s between t h e o b s e r v a t i o n s and t h e c o n v e n t i o n a l d e s c r i p t i o n .

1. Observed D r i f t s V i o l a t e t h e P o t e n t i a l Energy S u r f a c e ' s P r e d i c t i o n

I n t h e c o n v e n t i o n a l Fokker-Planck d e s c r i p t i c n of _nucleon t r a n s f e r i n deep i n e l a s t i c c o l l i s i o n s [I], t h e time e v o l u t i o n of N and Z f o r t h e p r o j e c t i l e - l i k e fragment -is assumed t o be d r i v e n by t h e g r a d i e n t of t h e d i n u c l e a r energy on t h e N-Z p l a n e [2]. Such a n energy s u r f a c e i s e x h i b i t e d i n F i g . 1 f o r t h e r e a c t i o n [3]

5 6 F e + ' 6 5 ~ o , t o g e t h e r w i t h t h e d r i f t p r e d i c t e d by i t s g r a d i e n t , and t h e e x p e r i m e n t a l d r i f t i n f e r r e d from t h e d a t a a f t e r c o r r e c t i o n f o r n e u t r o n emission.

Although t h e p r e d i c t e d p r o t o n d r i f t i s q u a l i t a t i v e l y c o r r e c t , t h e neutron d r i f t is n e a r l y z e r o , d e s p i t e t h e energy s u r f a c e ' s c l e a r p r e f e r e n c e f o r a n i n c r e a s e i n N,,.

F i g u r e 2 e x h i b i t s a n o t h e r r e a c t i o n [ 4 ] , Fe*, i n which t h e d i r e c t i o n of t h e d r i f t i s even more d r a m a t i c a l l y opposed t o t h e g r a d i e n t of t h e p o t e n t i a l energy s u r f a c e (PES), h e r e a c t u a l l y running up h i l l . Here a l s o t h e c o r r e c t i o n f o r neutron emission ( c i r c l e s v s . c r o s s e s ) i s s o s m a l l a s t o be i r r e l e v a n t . S i m i l a r s i t u a t i o n s a l s o have been observed i n t h e r e a c t i o n s [ 3 , 4 , 5 ] C a w , Cl+Bi and Fe+Bi. On t h e o t h e r hand o b s e r v a t i o n s of d r i f t s i n experiments i n v o l v i n g t h e doubly c l o s e d s h e l l nucleus, 1 3 2 ~ e , have been i n t e r p r e t e d a s conforming b e t t e r [6], although not completely 171, t o t h e p o t e n t i a l energy s u r f a c e .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987239

(3)

C2-260 JOURNAL DE PHYSIQUE

LIQUID DROP 30

LOCUS OF KlNET

ZP 20

+ ST6.TISTICAL MODEL PREDICTION

10

20 30 40

NP Fig. 1

'"u + ' ' ~ e Potential Energy Surface

Including The Coulomb Energy

- -

40 44 48 52 56 60 64

MASS NUMBER Fig. 2

2. Exact One-Dimensional Model V a l i d a t e s PES C u r r e n t , But Also E x h i b i t s New Permeation Current

We have s t u d i e d t h e n u c l e o n i c c u r r e n t s by e x a c t c a l c u l a t i o n of t h e simple one-dimensional Schrodinger "Double-Well" model [ 8 ] shown i n Fig. 3 . T h i s model c a l c u l a t e s t h e flow of nucleons between two one-dimensional " n u c l e i " , each of which i s assumed i n i t i a l l y t o comprise N nucleons bound i n a n i n f i n i t e s q u a r e w e l l p o t e n t i a l of l e n g t h L. One imagines t h a t t h e two " n u c l e i " approach one a n o t h e r very slowly ( a non-zero v e l o c i t y of approach can a l s o be included 191, b u t w i l l n o t b e d i s c u s s e d h e r e ) , w i t h t h e i r edges j u s t touching a t t s 0 , when t h e p o t e n t i a l w a l l between them i s removed and t h e subsequent time-dependent flow of nucleons i n both d i r e c t i o n s i s c a l c u l a t e d by t h e e x a c t Schradinger e q u a t i o n .

The problem i s t h u s c h a r a c t e r i z e d by t h e i n i t i a l numbers of nucleons (NR and NL), by t h e volumes (LR and LL), and by t h e d i f f e r e n c e , Vo, between d e p t h s of t h e p o t e n t i a l s i n t h e r i g h t and l e f t n u c l e i , r e s p e c t i v e l y , a s i l l u s t r a t e d i n Fig. 3.

As t h e time i n c r e a s e s , t h e p r o b a b i l i t y amplitudes flow i n both d i r e c t i o n s , a l t e r i n g t h e average number of p a r t i c l e s on t h e r i g h t , s a y , a t a r a t e

I n t h e c o n v e n t i o n a l model [ I ] , t h e s e c u r r e n t s a r e y s t i m a t e d c l a s s i c a l l y using t h e Fermi g a s d i s t r i b u t i o n . Then t h e n e t c u r r e n t A j = N, depends only upon t h e d i f f e r e n c e between t h e chemical p o t e n t i a l s , A , i n t h e l e f t and r i g h t w e l l s :

.L+R - .R+L L R

N ~ ( t ) = A j c l a s s = ' c l a s s ' c l a s s = ( A -A ) / h = ( E ~ V ~ - E : ) / ~ , (2)

L L

where, e . g . , EF i s t h e Fermi k i n e t i c energy on t h e l e f t , EF = ( & n ) * ( ~ ~ + 1 / 2 ) * / 2 ~ ~ : . E a r l i e r , e x a c t q u a n t a l c a l c u l a t i o n s with Double Well [ 8 ] had produced a

c o n t r a d i c t i o n t o Eq. ( 2 ) , a s i l l u s t r a t e d i n Fig. 4. There a s e r i e s of c a l c u l a t i o n s i s d i s p l a y e Q i n which t h e d i f f e r e n c e , AL-AR, i s k e p t p r e c i s e l y c o n s t a n t .

Obviously, N, g i v e n by t h e s l o p e of each curve i n F i g . 4 , depends a l s o upon Vo, and n o t s o l e l y upon A=-AR.

We a r e now a b l e t o e x p l a i n t h i s discrepancy [10,11] i n terms of t h e

"permeation c u r r e n t " a s s o c i a t e d w i t h s t a t e s on t h e r i g h t whose energy Ei i s l e s s t h a n Vo. Although c l a s s i c a l l y such s t a t e s c o n t r i b u t e n o t h i n g t o t h e c u r r e n t a c r o s s t h e window, t h e r e i s a t e a r l y times a q u a n t a l c u r r e n t a s s o c i a t e d w i t h t h e

(4)

s i n g l e p a r t i c l e s t a t e s .

DOUBLE WELL PROBLEM and INITIAL CONDITIONS

ElGEN VALUES

N R VS. tlme for Simulated '"Protons"

Vo=O.O MeV V0=2.0 MeV Vo=4.0 MeV Vo = 8.0 MeV

I I I I I I I I I I

f-8 -4 0 4 1 8

-LL ( x ) +LR V,*16.0 MeV

TRANSLATIONAL

ENERGY is Time ( I O - ~ ~ S C C ) characterized by

E/A = C. of Moss F i g . 4

Translational

0 + LR

(XI

F i g . 3 SCHRODINGER CURRENT

n = 6 ; 8.7.2 CLASSICAL CURRENT

n = 5 ; 8.5.1 n = 4 ; 8.3.2 n = 3 ; 8.1.2

- [ t i m e ( t ) ]

-

0'20] SCHR~DINGER CURRENT

, 0.15 PERMEATION CURRENT VS.

-0.05 , , , , , , , , , a , ,

0 1 2 5 6 1

- [ t i m e ( t ) ]

-

F i g . 5

Fig. 6

(5)

C2-262 JOURNAL DE PHYSIQUE

F i g u r e 5 e x h i b i t s NL(t) a s c a l c u l a t e d f o r f o u r s t a t e s on t h e r i g h t f o r which 6, = E,,/Vo exceeds t h e v a l u e 1, s o t h a t passage a c r o s s t h e window i s c l a s s i c a l l y allowed. I n each c a s e a s t r a i g h t l i n e w i t h t h e s l o p e implied by t h e c l a s s i c a l assumption i s i n good agreement w i t h t h e e x a c t Schrodinger r e s u l t f o r times l e s s t h a n t h e time r e q u i r e d f o r t h e wave t o r e f l e c t from t h e o p p o s i t e w a l l . Indeed, t h e r a t i o P(n) between t h e b e s t f i t t i n g v a l u e of Nn over t h e range where Nn(t) i s approximately l i n e a r and t h e c l a s s i c a l c u r r e n t , j c l a s s ( n ) = 2En/hn, i s p l o t t e d i n F i g - 7 vs. 6, = En/Vo f o r many c a s e s i n c l u d i n g t h o s e of F i g s . 5 and 6. One s e e s t h a t f o r 6, > 1, Pn 1, i n a c c o r d w i t h t h e c l a s s i c a l assumption.

On t h e o t h e r hand, s t a t e s w i t h 6,<1, from which t h e c l a s s i c a l assumption a l l o w s no c o n t r i b u t i o n t o t h e c u r r e n t , do i n f a c t c o n t r i b u t e i n t h e e x a c t

Schrodinger s o l u t i o n . This i s i l l u s t r a t e d i n Fig. 6 where t h e Schradinger r e s u l t shows a dependence l i n e a r i n time a l s o f o r t h e s e c l a s s i c a l l y excluded s t a t e s . These s l o p e s d e f i n e a n approximately q u a n t a l "permeation c u r r e n t ' ' f o r each such s t a t e , whose v a l u e i s e q u a l t o t h e product of t h e c l a s s i c a l c u r r e n t and a numerical f a c t o r , P ( n ) , which depends only upon 6, = E,/v,, a s i l l u s t r a t e d i n Fig. 7.

Roughly, F i g . 7 can be summarized by t h e r e l a t i o n s h i p ,

P = 0.07 + 0.69 6 , f o r 0 < 6 < 1 . 3 ,

o r , more simply and more approximately ( f 3 0 % ) , by

P = E i / V o = 6 , f o r 6 c 1 .

PERMEATION and CLASSICAL CURRENTS

F i g . 7

Thus, one r e c o g n i z e s t h a t q u a n t a l p a r t i c l e s deeply bound i n t h e right-hand w e l l respond t o t h e r e d u c t i o n i n t h e i r binding p o t e n t i a l (from t o Vo) e f f e c t e d by

t h e approach of t h e d i n u c l e a r p a r t n e r by s p r e a d i n g o u t t h e i r p e n e t r a t i n g t a i l s through t h e window i n t o t h e volume of t h e left-hand n u c l e u s . The r e s u l t i s a n e t c u r r e n t flow a t e a r l y times which moves p a r t i c l e s from t h e s p a t i a l r e g i o n of t h e deeper w e l l i n t o t h a t of t h e shallower well. Most noteworthy i s t h e f a c t t h a t t h i s c u r r e n t does not d i m i n i s h e x p o n e n t i a l l y w i t h i n c r e a s i n g Vo/Ei, but e x h i b i t s i n s t e a d a l i n e a r dependence upon Ei/Vo, such t h a t a t Ei/Vo - 1, i t h a s a v a l u e 1

a p p r o p r i a t e f o r t h e c l a s s i c a l p i c t u r e .

The r e s u l t s imply t h a t t h e c o r r e c t n e t Schrodinger c u r r e n t flowing a c r o s s t h e window t o t h e r i g h t i s i n f a c t approximately e q u a l t o t h e following f u n c t i o n of lL, lR and Vo;

where t h e permeation c u r r e n t , jperm, d e s c r i b e s t h e p u r e l y q u a n t a l p e n e t r a t i o n flow of nucleons, of energy l e s s t h a n Vo, i n t o t h e l e f t - h a n d s i d e , and AjClass i s given i n Eq. (2). Expressions f o r t h e three-dimensional c a s e a r e g i v e n below.

(6)

These one-dimensional r e s u l t s can be extended t o t h r e e dimensions by c o n s i d e r i n g two a d j a c e n t volumes i n which t h e p o t e n t i a l d e p t h s d i f f e r by Vo, and which c o n t a i n Fermi g a s e s which f i l l t h e momentum s p h e r e o u t t o &kL, andMkR, on t h e l e f t and r i g h t r e s p e c t i v e l y . T h i s g e n e r a l i z a t i o n t h e n i n c l u d e s t h e a p p r o p r i a t e weighting f o r t h e t r a n s v e r s e s t a t e s a s s o c i a t e d w i t h a wave number k, i n t h e

d i r e c t i o n p e r p e n d i c u l a r t o t h e window, and a l l o w s a c a l c u l a t i o n of t h e permeation c u r r e n t p e r u n i t a r e a a s a f u n c t i o n of Vo.

Then t h e n e t c u r r e n t of p a r t i c l e s from r i g h t t o l e f t through a window of f i n i t e a r e a , ow, i s g i v e n by Eq. (4) w i t h t h e f o l l o w i n g e x p r e s s i o n s

f o r ' j c l a s s and jrm, based upon approximation ( 3 a ) , and a c c u r a t e t o l e a d i n g L R -.

o r d e r i n ( v O / I ) and (A -A )/A.

and

Here j-= P<v>/2 i s t h e average p a r t i c l e f l u x impinging on t h e window from each s i d e , A i s t h e average of t h e two chemical p o t e n t i a l s , 73 i s t h e average of t h e two d e n s i t i e s , and ow i s t h e a r g a of t h e window. Also, f o r a Fermi d i s t r i b u t i o n populated up t o k i n e t i c energy EF, one c a l c u l a t e s <v> = ( 3 / 8 ) ( 2 ~ ~ / ~ ) ~ / ~ .

Note t h a t e q u a t i o n s (5) show t h a t when t h e chemical p o t e n t i a l s k and lR d i f f e r by a n amount comparable t o Vo, t h e n t h e permeation c u r r e n t i s n e a r l y one-half a s l a r g e a s t h e c l a s s i c a l c u r r e n t . Also r e c a l l t h a t t h e conventional PES d e s c r i p t i o n omits e n t i r e l y t h i s Vo-dependent permeation c u r r e n t .

4 . C o r r e l a t i o n w i t h t h e Experimental Data

To make a n i n i t i a l assessement of t h e d i f f e r e n c e s , Vo, which might a r i s e i n a c t u a l heavy i o n r e a c t i o n s , we have u t i l i z e d t h e d r o p l e t model [ 1 2 , 1 3 ] , which p r e d i c t s a c l e a r dependence of t h e n u c l e a r w e l l d e p t h s on t h e n e u t r o n excess, (N-Z) .

( a ) Neutron D r i f t s : Since t h e neutron s h e l l model p o t e n t i a l depth diminishes w i t h i n c r e a s i n g n e u t r o n e x c e s s [12,13], one e x p e c t s Vo t o i n c r e a s e a s (N-Z)

i n c r e a s e s i n t h e nucleus on t h e l e f t i n Fig. 3, r e s u l t i n g i n a n i n c r e a s e d permeation c u r r e n t of n e u t r o n s from t h e nucleus w i t h t h e s m a l l e r neutron excess i n t o t h e n u c l e u s w i t h t h e l a r g e r . T h i s p r e d i c t i o n i s i n q u a l i t a t i v e agreement with

- t h e n e u t r o n d r i f t s observed i n t h e r e a c t i o n s p o r t r a y e d i n F i g s . 1 and 2, and a s w e l l w i t h t h e o t h e r c l a s s i c a l l y anomalous d r i f t s c i t e d above [3-51.

I n each c a s e t h e l i g h t (NnZ) nucleus d e l i v e r s n e u t r o n s t o t h e heavy (N)>Z) n u c l e u s d e s p i t e t h e tendency of t h e p o t e n t i a l energy s u r f a c e t o t h e c o n t r a r y .

( b ) P r o t o n D r i f t s : For p r o t o n s t h e d r o p l e t model p r e d i c t s a n (N-Z) dependence of t h e non-Coulombic p a r t of t h e s h e l l model p o t e n t i a l of t h e same magnitude a s but of o p p o s i t e s i g n from t h e neutron p o t e n t i a l . However, t h e Coulombic p o t e n t i a l s f o r t h e p r o t o n s h e r e become q u i t e important, e s p e c i a l l y t h a t due t o t h e Coulomb

i n t e r a c t i o n between t h e t a r g e t and p r o j e c t i l e - l i k e p a r t s of t h e dinucleus. Upon i n c l u d i n g them, one f i n d s t h a t t h e combined r e s u l t of t h e s e e f f e c t s f o r p r o t o n s i s a p o t e n t i a l d i f f e r e n c e between t h e two s i d e s which i s much s m a l l e r f o r p r o t o n s t h a n f o r n e u t r o n s . Thus a good p r e d i c t i o n of t h e magnitude, o r even of t h e s i g n of t h e p r o t o n permeation c u r r e n t , r e q u i r e s a more c a r e f u l a n a l y s i s t h a n we have done s o f a r .

5. Conclusions

We have d e s c r i b e d c a l c u l a t i o n s f o r a simple one-dimensional Schradinger model which i d e n t i f y a n o n c l a s s i c a l permeation c u r r e n t which flows i n a d i n u c l e u s from

t h e deeper p o t e n t i a l i n t o t h e shallower. This c u r r e n t i s q u a l i t a t i v e l y such a s t o a m e l i o r a t e t h e d i s c r e p a n c i e s between observed d r i f t s and t h e p r e d i c t i o n s of t h e c l a s s i c a l p o t e n t i a l energy s u r f a c e . F u r t h e r r e s e a r c h promises t o t e l l whether t h e improvement can a l s o be made q u a n t i t a t i v e , and u l t i m a t e l y , whether such e f f e c t s can become a t o o l f o r d i r e c t s t u d y of t h e d e t a i l e d n a t u r e of t h e n u c l e a r p o t e n t i a l s i n t h e i r d e e p e s t p a r t s .

(7)

JOURNAL DE PHYSIQUE

R e f e r e n c e s

RANDRUP, J . , Nucl. Phys. A383 (1982) 468; (1979) 490; (1978) 319.

T h i s i s a l s o t r u e of t h e a l t e r n a t i v e d e s c r i p t i o n v i a random walks, a s d i s c u s s e d e.g. i n GOKMEN, A., e t a l . , Nucl. Phys. A440 (1985) 586.

BREUER, H., e t a l . , Phys. Rev. 9 (1983) 1080.

MEROUANE, C . , U. of Maryland Ph.D. d i s s e r t a t i o n , r e p o r t #0RC-5172-0026.

MIGPREY, A., e t a l . , U. of Maryland r e p o r t #ORO-5172-0020, p. 3.

SCHULL, D., e t a l . , Phys. L e t t . (1981) 116.

MERCHANT, A. C . and DHAR, A. K., J. Phys. G: Nucl. Phys. 9 (1983) L21.

GRIFFIN, J. J. and BRONIOWSKI, W . , Nucl. Phys. A428 (1984)-145c.

GRIFFIN, J. J. and BRONIOWSKI, W . , Proc. Winter Workshop on Nuclear Dynamics 111, Copper Mountain, Colorado, March 1984 ( I n d i a n a Univ. R e p o r t

#INC-40007-24).

GRIFFIN, J. J . , DWORZECKA, M. and LUKASIAK, A., Proc. of t h e B e i j i n g I n t . Symp. o n P h y s i c s a t Tandem (May, 1 9 8 6 ) .

GRIFFIN, J. J . , DWORZECKA, M. and LUKASIAK, A., 2. f. Phys. A326 (1987) 51.

MYERS, W. D., Nucl. Phys. A145 (1970) 387.

MYERS, W. D. and SWIATECKI, W. J . , Ann. Phys. (N.Y.) 55 (1969) 395.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to