• Aucun résultat trouvé

Beyond MRI: on the scientific value of combining non-human primate neuroimaging with metadata

N/A
N/A
Protected

Academic year: 2021

Partager "Beyond MRI: on the scientific value of combining non-human primate neuroimaging with metadata"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-03172691

https://hal.archives-ouvertes.fr/hal-03172691

Submitted on 17 Mar 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Beyond MRI: on the scientific value of combining

non-human primate neuroimaging with metadata

Colline Poirier, Suliann Hamed, Pamela Garcia-Saldivar, Sze Chai Kwok,

Adrien Meguerditchian, Hugo Merchant, Jeffrey Rogers, Sara Wells, Andrew

Fox

To cite this version:

Colline Poirier, Suliann Hamed, Pamela Garcia-Saldivar, Sze Chai Kwok, Adrien Meguerditchian,

et al.. Beyond MRI: on the scientific value of combining non-human primate neuroimaging with

metadata. NeuroImage, Elsevier, 2021, 228, pp.117679. �10.1016/j.neuroimage.2020.117679�.

�hal-03172691�

(2)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Beyond

MRI:

on

the

scientific

value

of

combining

non-human

primate

neuroimaging

with

metadata

Colline

Poirier

a,∗

,

Suliann

Ben

Hamed

b

,

Pamela

Garcia-Saldivar

c

,

Sze

Chai

Kwok

d,e,f

,

Adrien

Meguerditchian

g

,

Hugo

Merchant

c

,

Jeffrey

Rogers

h

,

Sara

Wells

i

,

Andrew

S.

Fox

j

a Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle 6, UK b Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon – CNRS, France

c Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México

d Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic

Resonance, Affiliated Mental Health Center (ECNU), Shanghai Changning Mental Health Center, School of Psychology and Cognitive Science, East China Normal

University, Shanghai, China

e Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China f NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China

g Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France h Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA 77030

i Centre for Macaques, MRC Harwell Institute, Porton Down, Salisbury, United Kingdom

j California National Primate Research Center, Department of Psychology, University of California, Davis, Davis, CA, 95616, USA

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Magnetic resonance imaging Behaviour Genetics Physiology Phylogenetics BIDS

a

b

s

t

r

a

c

t

Sharingandpoolinglargeamountsofnon-humanprimateneuroimagingdataoffernewexcitingopportunitiesto understandtheprimatebrain.Thepotentialofbigdatainnon-humanprimateneuroimagingcouldhoweverbe tremendouslyenhancedbycombiningsuchneuroimagingdatawithothertypesofinformation.Herewedescribe metadatathathavebeenidentifiedasparticularlyvaluablebythenon-humanprimateneuroimagingcommunity, includingbehavioural,genetic,physiologicalandphylogeneticdata.

1. Introduction

Non-human primate (NHP) neuroimaging offers unique oppor-tunities to understand the primate brain (Phillips et al., 2014;

RoeselfsemaandTreue,2014).However,thisresearchfieldhasbeen traditionallycharacterizedbyasingle-laboratoryapproachwhere stud-iesinvolveasmallnumberofsubjects(classically2to3).Recently,the NHPneuroimagingcommunityhascometogethertodefineits ambi-tions,basedon acollaborativeculture,andhasembarkedon adata sharingmission(Milhametal.,2018,2020).International collabora-tionand datasharing opennew avenues of research that could not beinvestigatedatanindividuallabscale,suchasunderstanding inter-individualdifferencesinbrainstructureandfunction,andtheevolution oftheprimatebrain.However,totakefulladvantageofitspotential, bigNHPneuroimagingdataneedtobeenrichedbyaccompanying infor-mationonthesubjects(orspecies)whohaveundergonebrainimaging, i.e.metadata.Herewedescribemetadatathathavebeenidentifiedas particularlypromising.Thislistisnotexhaustiveandislikelytobe

ex-∗Correspondingauthor.

E-mailaddress:colline.poirier@ncl.ac.uk(C.Poirier).

pandedinthefuture.Wefinishbyproposinghowsuchmetadatacould besharedinastandardizedwayusingtheexistingBrainImagingData Structure(BIDS)format.

2. Behaviouralphenotypingdata

Formanyresearchers,theultimategoalofneuroscienceisto under-standhowthebraincontrolsandismodifiedbybehaviour.Taking ad-vantageofwithin-speciesinter-individualvariability,thecombination of large-scaleNHP behaviouralphenotyping withneuroimagingdata offersthepossibilitytoinvestigatetheneuralsubstratesofprimate be-haviour.DuetothedifficultyofscanningNHPsubjectswhiletheyare awake,andtherequirementthatsubjectsremainstillduringthe scan-ning session,task-relatedfMRIinNHPis rareandmost studieshave focusedonperceptualtasksintwoorthreesubjects(e.g.Poirieretal., 2017;Toarminoetal.,2017;Cleryetal.,2018).Tounderstand inter-subjectvariability,themostpromisingapproachis tocorrelate inter-individualdifferencesinbrainstructureandfunctionatrestwith

be-https://doi.org/10.1016/j.neuroimage.2020.117679

Received28July2020;Receivedinrevisedform7December2020;Accepted16December2020

(3)

haviourmeasuredoutsidethescanner.Twotypesofbehaviouraldata canbecollectedoff-line:stimulus-inducedbehaviourandspontaneous home-cage behaviour. The standardization of stimulus-induced tests (e.g.cognitivetasks,temperamenttests),combinedwithdatasharing, offertheopportunitytocollectbothbehaviouralandMRIdatainalarge numberofsubjects(e.g.Oleretal.,2010;Birnetal.,2014;Foxetal., 2015).Thegeneralizationofautomatictesting withinthehome-cage whereindividualsinteractwillinglywithaprotectedcomputing inter-face(Calapaietal.,2017;Fizetetal.,2017;ButlerandKennedy,2019) should facilitate the collection of such data. Task-related behaviour howeveronly givesusarestrictedview onNHP behaviourand cog-nition,thesubject’sbehaviourbeingconstrainedbythetaskdesigned byhumans.Anothercomplementaryapproachistolinkneural inter-individualvariabilitywithspontaneous,naturalbehaviour,displayedby individualsintheirhomecage.Thisapproachisparticularlypromising whenindividualsarehousedwithconspecifics,allowingthemtodisplay acomprehensiverangeofnaturalbehaviours,includingsocialones.This approachiscurrentlyhamperedbyalackoftechnologytoautomatically measurespontaneousbehaviourinlargenumbersofanimals.Several at-temptstoautomaticallyanalysevideorecordingsofNHPspontaneous behaviour(intheircageorinanaturalenvironment)usingartificial in-telligencearecurrentlyon-going.Individualsubjectscannowbe iden-tifiedin complexsocialsettings(Witham,2018;Shuklaetal.,2019). Poseestimatortools,whichallowtrackingseveralpartsofananimal’s bodyinrelationtoeachotherandtothephysicalenvironment,have re-centlybeendevelopedandappliedtomacaques(Labuguenetal.,2019;

Bala,2020).However,whatiscurrentlymissingisatoolableto auto-maticallyinterpretthiskinematicinformationintocomplex, ethologi-callyrelevantbehaviours.Whenthishurdleisovercome,andthe algo-rithmsharedwiththeinternationalcommunity,providingstandardized dataofhome-cagebehaviouralongwithindividualMRIscanswillbe straightforward.

3. Genotypingdata

Neuroimagingdata,bothstructuralandfunctional,provideinsight intothecorrelationsbetweenexpressedbehaviourandtheneural cir-cuitsthatdrive andexecute particularbehaviours.However,a more complete understanding of the underlying cellular biology can be achievedifweinvestigatetherelationshipsbetweengenes,brains,and behaviour.Thisapproachwillallowresearcherstoinvestigatethe ge-neticmechanismsthatshapebraindevelopment,contributetojuvenile oradultneurophysiology,andultimatelyinfluencebehaviour.

Itiswellestablishedthatenvironmentalexposureand developmen-talexperience,especiallyearlyinlife,caninfluenceneurodevelopment andthus affectjuvenileandadultbehaviour.Adversedevelopmental environmentssuchasnurseryrearingwithlackofamaternal relation-ship,asopposedtonormalmaternalrearing,canalterbehavioural out-comes(Bastianetal., 2003;Higleyetal.,1991).While acknowledg-ingthepotentialeffectsofearlyrearinganddevelopmentalconditions onNHPneurobiologyandbehaviour,itisalsocriticaltoconsiderthe effectsofinheritedgeneticvariation.Theevidencesupportingstrong geneticeffectsonbothriskforpsychiatricillnessandindividual varia-tioninnormalbehaviouramonghumansissubstantialanddefinitive (Cloningeret al., 2019;Rees & Owen, 2020).Though fewergenetic analyseshavebeenperformedinNHP,itisclearthatinNHPaswell asinhumans,geneticvariationamongindividualsofthesamespecies doesinfluencevariationinboth neuralcircuitfunction(Fearset al., 2009;Oleretal.,2010)andexpressedbehaviour(Hopkinsetal.,2014b;

Johnsonetal.,2015;Rogers,2018;Rogersetal.,2013a).Therefore,in ordertofullyunderstandthecausesof behaviouralvariation,andto identifythefactorsthatdriveindividualdifferencesinbrainstructure andfunction,itisimportanttoinvestigatetheinfluenceofgenetic vari-ationontheseoutcomephenotypes.

Geneticanalysesofneuroimagingorbehaviouraldatacantake sev-eralforms. One fundamentalapproach is tousethe toolsof

quanti-tativegeneticstoestimatetheadditivegeneticheritabilityofspecific phenotypesmeasuredeitherthroughneuroimagingorbehavioural ob-servations.Analysesof additivegeneticheritabilityprovide quantita-tiveestimatesoftheproportionoftotalphenotypicvariationinagiven studypopulationthatisattributabletogeneticdifferencesamongthose individuals(Falconer,1997).Heritabilitycanbe estimatedin various ways,butamongthemostcommonareanalysesofphenotypicvariation acrosseitherapopulationofinter-relatedindividualswithknown pedi-greerelationshipsoracrosssetsoffraternalandidenticaltwins.Both approachesexploittheexpectationthatifaparticularphenotypeis in-fluencedbygeneticdifferencesamongindividuals,thenthepair-wise phenotypicdifferencesacrossallpairsinapopulationshouldbelessfor pairsthatsharemoregenesthroughcommondescent(i.e.havehigher pairwisekinshipvalues)thanforpairsthataremoredistantlyrelated andthussharealowerproportionofgenesincommon.Variousstudies havereportedsignificantheritabilityforavarietyofNHPbehaviours (Fairbanksetal.,2004;Fawcettetal.,2014;Hopkins,etal.,2014a)as wellasforneuroimagingphenotypes(Lyonsetal.,2001;Rogersetal., 2010;Oleretal.,2010;Foxetal.,2015;Foxetal.,2018;Trompetal., 2019).

Thesecondfundamentalapproachtogeneticanalysisisgenetic as-sociationtestingtoidentifythespecificgenesandpolymorphismsthat contributetobrainfunctionandbehaviour.Inthiscase,specific geno-typeswithinknowngenesorotherDNAsequencesarescoredacrossa setofindividualsinapopulationandastatisticaltestforassociation betweengenotypeandphenotypeisperformed.Thesestudiesoftenuse largecohortsofunrelatedindividuals,whichavoidsundetectedgenetic correlationsamongindividualsthatcanskewteststatistics.However, in-creasedstatisticalpowercanbeobtainedbyperforminggenetic associ-ationincohortsthatincludeindividualswithcloseormoderatekinship relationships(Blangeroetal.,2001;Lippertetal.,2011;Glahnetal., 2019).Inthesecircumstances,itisnecessarytoaccountforrelatedness whentestingforsignificantassociationbetweenspecificgenotypesand agivenphenotypeofinterest.

NHPsprovideapowerfulopportunityforidentifyinggenesthat con-tributetocomplexphenotypes.Inparticular,comparedtomodern hu-mans,whounderwentanevolutionarypopulationbottleneck,NHPhave been shown to have greater levels of within-species DNA sequence variation, lower linkagedisequilibrium anda larger numberof pre-dicted deleterious polymorphisms (Gibbs et al., 2007. Rogerset al., 2006; Xue etal., 2016; Bimberet al.,2017). Theevidenceforboth heritabilityandparticulargeneticassociationsaffectingbehaviouror neuroimaging datain NHPisgrowing,reinforcingtheutilityofNHP models(Rogers,2018).Thereisnowasignificantopportunityto ad-vanceourunderstandingofthefactorsthatinfluenceindividual vari-ationbyincorporatinggenetictestsintofutureprojects.Increasingly, researchcoloniesof NHPidentifyandmakeavailablethekinship re-lationshipsamongtheirresearchanimals,andthismakesquantitative geneticanalysesofheritabilitystraightforward.Documentingthe her-itabilityofcomplextraitssuchasneuroanatomyorneuralcircuit ac-tivityprovidesthebasisforsubsequentstudiesintendedtoidentifythe genesinvolved,oronfocusedexplorationoftheinteractionsbetween geneticvariationandenvironmentinfluencesondevelopment.Thecost oflarge-scalegenotyping,wholegenomeorwholeexomesequencing ofNHPisconsistentlydecreasing.Thismakeslarge-scalegenome-wide genetic associationstudiesmorefeasible thantheyhave beenin the past.Overall,theprospectsforincorporatinggeneticanalysesinto re-searchprogramsinvestigatingneuroanatomicalstructure,neuralcircuit functionorexpressedbehaviourareimprovingrapidly.Thisincludes in-creasingopportunitytounderstanddifferentialgeneexpressionacross individualswithinaspeciesorbetweenspeciesusingRNAsequencing. Werecommendthatresearchersstoretissuesamples(e.g.blood)or ex-tractedDNAfromanimalsthatundergoMRIscans,eveniftheyhaveno immediateplansforsequencing.Nationalbreedingcentresmighthelp storingand/orprocessingthesesamples,ifnecessary.DNAsampleswill facilitatefuturelarge-scaleeffortstoaggregateprimatedatatoidentify

(4)

thegeneticcontributionstobrainstructureandfunction.Thescientific benefitsofthiswillbetremendousassuchstudiesprovidethebasisfora morecompleteanddetailedunderstandingofthebiologicalfactorsthat influenceNHP neurobiologyandbehaviour,andfacilitate integrative cross-speciesgenomicanalyses.

4. Welfareinformation

Tounderstandenvironmentalcontributionstobrainstructureand function,researchersmustconsidertheanimalspastandpresent wel-fare.OnewaytoassessNHPwelfareistorelyonphysicalandsocial characteristicsoftheirpastandpresentenvironment.Rearinghistory (mother/peer-rearing;rearingcagesize;weaningage),socialnatureof currenthousing(single-,pair-orsocialhousing),cagesize,presenceof foragingopportunity,andothertypesofphysicalenrichmentshouldbe easytocollectandsharealongeachMRIdataset.Thesekindsofdata arealreadybeginningtoprovideinsight,asrearinghistory,cagesize, andnumberofcagemateshave beenshowntoimpactneuroimaging measures(e.g.Salletetal., 2011;Noonanetal.,2014; Howelletal., 2019).However,theseenvironmentalcharacteristicsonlyprovide in-directevidenceaboutNHPwelfare anddonot takeintoaccountthe factthatdifferentanimalsmayreactdifferentlytoasimilar environ-ment.AnotherwaytoassessNHPwelfareis totakeindividual-based measures.Bodyweightandbodyconditioncanbemeasuredina stan-dardisedwaybutprobablylacksensitivitytodetectanythingbutthe biggestwelfareproblems.In-depthwelfareassessmentrequires incorpo-ratingregularbehaviouralobservationsofeachindividual.Whilesuch directobservationsareusuallymadeineveryprimatefacility,thereare usuallynotdoneinastandardisedway.Suchastandardizationrelies onusingthesamelistofquantifiablebehaviours,thesamebehavioural definitionsandthesamedatacollectionprotocols.While standardiza-tionisalreadychallengingtoobtainwithinonefacility,itisevenmore difficulttoachieveacrossfacilities.Inaddition,themerepresenceofa humanobserveratthecagesidetendstomodifymacaques’behaviour, leadingtoinaccuratequantificationof behaviouralwelfareindicators (Iredaleetal.,2010).Thegoldstandardinbehaviouralwelfare assess-mentconsistsofsystematicquantificationofindividuals’behaviourvia remotely-controlledcameras.However,consideringthehumanresource necessarytoanalysemanuallythesevideos,itiscurrentlynotfeasible tocollectandsharesuchdetailedbehaviouraldataforlargenumbers ofindividuals.TheautomaticidentificationandquantificationofNHP behavioursfromvideo-recordingswillallowachievingthisgoalinthe future.

Independentlyoftheirnature,welfareassessmentmeasurescanbe used fordifferent purposes,when sharedalong withindividual MRI scans.ThevariabilityinMRIdataassociatedwithdifferentwelfare sta-tuscouldbetreatedeitherasnoiseorasasourceofinvaluable infor-mation.Inthefirstcase,welfareassessmentmeasurescanbe usedto harmonizeMRIsamples,bycontrollingstatisticallyforthevariability associatedwithwelfaremeasures.Alternatively,theimpactofdiverse welfarestatusonbrainstructureandfunctionmightbetheobjectof sci-entificinvestigationastheymightshedlightontheimpactofsimilarly diverselevelsofwell-beinginthehumanpopulation.Eveninstudies whoseprimarytopic ofinvestigationis nottheimpactofwelfare on brainstructureandfunction,thesharingoflargeamountsofdatafrom NHPsof differentwelfarestatusofferstheopportunitytoinvestigate theinteractionbetweentheprimaryfactorofinterest(e.g.ageing, cog-nition,genetics)andwelfare.Suchstudiesarelikelytobemore repre-sentativeofthelargevariabilityinwell-beingobservedinhuman be-ings.Fromanethicalpointofview,whilemany(includingthepresent authors)considerimprovingthewelfare statusof experimentalNHP overtheworldasacrucialgoal,itmightbe arguedthatresearchers havethemoralduty,inthemeantime,tomakeuseofthisNHP wel-farevariabilitytomaximisetheamountofknowledgeprovidedbyNHP experiments.

5. Manuallateralization

Aprominentfeatureofthehumanbrainisitshemispheric special-ization,whichreferstothefunctionallateralizationofthebrainfora particular cognitiveprocess,aswell astointerhemispheric anatomi-calasymmetriesforspecificstructures.Inhumans,handednessisone thebest-knownbehaviouralmanifestationsofsuchahemispheric spe-cialization includingtheprimarymotorcortexalong thecentral sul-cus (Hammond, 2002; Amunts et al., 1996; 2000; Foundas et al., 1998). About 90% of humans are right-handed regardless of cul-tures(Annett,1985;Marchant,McGrew&Eibl-Eibesfeldt,1995). Left-handedness hashistorically been considered asdifferent in termsof hemisphericorganizationincludinglateralizationoflanguage process-ingorspatialcognition,comparedtoright-handedness(Tzourioetal., 1998;Zagoetal.,2016;O’Regan&Serrien,2018),althoughrecent find-ingsreportthatalargemajorityofleft-handedindividualshowedalso left-hemisphericspecializationforlanguageprocessing,justlike right-handedpeople(Knechtetal,2000;Mazoyeretal.,2014).Asaresult, giventhathandednessofparticipantsmightrepresentapotential criti-calsourceofvariabilityinthebrain(seealsoBryden,1987),most neu-ropsychologicalstudieslimitsuchbrainvariabilityacrossparticipants byeitherincludingsamplesizecarefullybalanced forhandednessor targetingexclusivelyright-handedparticipants.

Incontrast,neuroimagingstudiesconductedinNHPhavenever con-sideredcontrollingthehandednessofsubjectswhendevelopingtheir sample population, although such a question should be debated in the community. One of the potential explanationsis that reports of manual lateralityin NHPwerehistorically consideredasinconsistent acrosstheliteratureifnotnon-existent,suggestingthehuman’s unique-nessforbothpredominanceofright-handednessandhemispheric spe-cialization(Warren,1980;McGrewandMarchant,1997;Crow,2004;

Cashmoreetal.,2008).

However,thisviewhasbeenchallengedbyalargebodyofrecent evidenceshowingbrainandbehaviouralasymmetriesinmany verte-bratesincludingNHP(Marieetal.2018;Rogersetal.,2013b).To ad-dresstheinconsistencyoftheprimatehandednessliterature,some au-thorspointedoutthatmostofthesestudiesfocusedonsimpleunimanual behaviours(e.g.,objectsreaching)forquantifyinghandpreference (re-viewedinPapademetriou,Sheu&Michel,2005).Infact,incontrastto morecomplexmanualtasks,simpleunimanualbehavioursturnedoutto bepoormeasuresofhandednessgiven(1)theirsensitivenesstobiases relatedtoconfoundingsituationalfactorssuchasthesubjects’postureor theinitialpositionofobjecttoreachand(2)theirrelatedlowmotor de-mandswhichdonotespeciallyrequiretheuseofthepreferredhand.As aresult,simpleunimanualbehaviourswerethenconsideredas inappro-priatefordetectingindividualhandpreference(Meguerditchianetal., 2013).

Itis nowwell acknowledgedthatthecomplexityof manualtasks is acriticalfactortoconsiderforassessinghandpreference(Fagot& Vauclair,1991;Meguerditchianetal.,2013).Thereareanincreasing numberofhandednessstudiesinNHPwhichreportedrobustindividual handpreferenceforcomplexmanualtaskssuchastooluse(Lonsdorfand Hopkins,2005;Hopkinsetal.,2009),bimanualcoordinatedaction (re-viewedinMeguerditchianetal.,2013),andgestures(Meguerditchian &Vauclair,2006;Meguerditchianetal.,2011;Prieuretal.,2017).The bimanualcoordinatedtubetask(video1),initiallydesignedbyWilliam Hopkinsfortestingchimpanzees(Hopkins,1995),hasreceivedspecial attentionforassessinghandpreferencesinNHPforthefollowing rea-sons.First,thetubetask,whichconsistsofholdinganopaquePVCtube withonehandandremovingfoodinsidethetubewiththefingersofthe other“dominant” hand,iseasytoproposetoaprimateindividualandto beperformedbyanyprimatespecies(incontrasttotooluse).Thishas favoureditsgeneralizationforalargecomparativeperspectiveon pri-matehandedness.Second,thetypeofbimanualcoordinationinducedby thetubetaskallowsminimizingconfoundingsituationalfactorsby stan-dardizingsubjectpostureaswellasthepositionofthetubefor

(5)

retriev-ingfoodacrossdatapointswithinasubject,acrosssubjectsandacross species.Third,itiscomplexenoughtoelicithighmotordemandsthat resultinrobustandconsistentindividualhandpreferenceacrosstime (e.g.Molestietal.,2016).Fourth,thebimanualcoordinatedtubetask wasfoundtoelicitrobustpopulation-levelright-handednessmostlyin terrestrialNHPincludingbaboons,gorillas,chimpanzeesandhumans, andpopulation-levelleft-handednessinarborealspeciessuchassquirrel monkeys,orangutansandsnub-nosedmonkeys(Meguerditchianetal., 2013).RegardingthetwomainprimatespeciesusedinMRI neuroimag-ing– macaquesandmarmosets– theexistence ofa population-level handednessremainsunclearforbimanualcoordinatedtasks.Inmacaque species, strong individual hand preferences have been reported, but directionofpopulation-levelhandednessseemtodifferacrossstudies (Meguerditchianetal.,2013forareview).Inmarmosets,toour knowl-edge,nodatarelatedtobimanualtasksareavailablesofar.Onereason isthatNewWorldmonkeyssuchasmarmosetsorsquirrelmonkeysare notabletoinsertasinglefingerinsidethetubetoremovethefood.So, thetubetaskmustbeadaptedinordertoallowthesemonkeystoinsert thewholehandinsidethetubeasthishasbeendoneinastudyin squir-relmonkeys(seeMeguerditchian etal., 2012).Finally,directionand degreeofhandpreferenceforthetubetaskinNHPsuchasbaboons, ca-puchinmonkeys,squirrelmonkeysorchimpanzeeshavebeenfoundto beassociatedwithcontralateralneuro-structuralasymmetriesinthe pri-marymotorcortexincludingthesurfaceofthemotorhandareasurface, itsneuronaldensitiesoritsadjacentCentralsulcusdepth(Nudoetal., 1992;HopkinsandCantalupo,2004;Daddaetal.,2006;Sherwoodetal., 2007;Phillips& Sherwood,2005;Hopkins,2013; Margiotoudietal., 2019).These latter studiesclearlysuggestthat, justlike in humans, handednessinNHPisarobustlateralizationphenomenonwhichreflects hemisphericspecializationofthebrain.Inhumans,handednessandthe associatedmotorcortexlateralizationoftenco-varywithmorecomplex lateralizationpatternsintheparietal,temporal,prefrontalandfrontal cortex(e.g.Fischeretal.,1991;Frässleetal.,2016;Moritaetal.,2020). InNHP,whilealateralisationofneuralmechanismsunderlying cogni-tiveprocesseshavebeenanecdotallyreported,asystematicevaluation ofthisfundamentalneurosciencequestionisstillmissing.Asystematic documentationofhandednesswhencollectingNHPMRIdatamaythus servetoinvestigatewhetherindividualhandednessandmotorcortex lateralizationalsoco-varywithalateralizationofotherbrain organi-sationalfeatures (e.g.resting-statenetworks,orotherlocalizer-based functionalregionsofinterest,seeRuss,BenHamedetal.,thisissue).

Inconclusion,webelievethereis nowenough evidencetospeak (1)foraprimatecontinuitywithhumanhandednessandthus(2)for thegeneralizationoftheuseofbimanualcoordinatedbehaviours-such asthetubetask-forcontrollingorassessingtheimpactofindividual handednessonbrainstructureandfunction.

6. Fluidcontrol

DuringneuroimagingexperimentsinawakeNHPs,animalsareoften rewardedbyadropoffluidforstayingmotionlessand/orfor success-fullyperforming therequestedtask.Whenfluidpreferencehasbeen measuredattheindividuallevelandthesubject-specificpreferredfluid isused(Grayetal.,2019),thisapproachcanbesufficienttoacquire highqualitydata.However,whenahighnumberoftrialsisnecessary toobtainstatisticallyrobustresults,itissometimesnecessaryto com-binethisstrategywithsomeleveloffluidcontrolorrestrictionoutside thescanner.Theseverityoffluidcontrolvariesgreatlybetweensites, notonlyintermsofamountsoffluidaccessiblebyeachindividualbut alsointermsoftiming(whentheanimalhasaccesstofluids).Aminimal amountoffluidisalwaysprovidedtoeachanimalbutthisamountcan bemeasuredbasedontheanimal’sweightorbasedonitsconsumption whenithasfreeaccesstofluids.Whenananimaldoesnotperformwell enoughinthescannertogainaccesstothisminimalamountoffluid,the remainingamountcanbegivenattheendofthedayorattheendofthe week.Thereisalsovariationinthemaximalamountoffluidaccessible

toeachNHP.Insomelaboratories,animalsareallowedtodrinkasmuch astheywantinthescanneraslongastheyperformwellbehaviourally. Inotherplaces,themaximalamountperdayiscappedtoensurethat animalsarestillmotivatedthefollowingday.Thefluidrestriction pro-tocolcanalsobeapplied7daysaweekorberelaxedduringweek-ends (whenanimalshavefreeaccesstowateroraccesstoaquantitysimilar towhattheyusuallydrinkoutsideoffluidcontrolperiods).Despitethe factthateveryprotocolensuresthatthelong-termphysiologyofthe an-imalsisnotcompromised,thevariationinfluidrestrictionprotocols in-ducesavariationinthehydrationlevelofNHPswhentheyarescanned, whichcanresultincontrastdifferencesinMRIimages.Suchdifferences mightaffecttheestimationofclassicalmeasuressuchasBOLDsignal, corticalthickness,andvoxel-basedmorphometrymetrics(fig.1).When conjointlyanalysingMRIdatasetsfromdifferentsites,researchersmight thereforebeinterestedincontrollingthissourceofvariability.Another sourceofvariabilityinMRIdatasetsisthepotentialimpactoffluid con-trolonprimatepsychologicalwell-being.Thisimpactislikelytodepend onthedetailsofthefluidcontrolprotocols.Researchersusuallyensure thatthisimpactisnottooseverebyensuringthatNHPsubjects main-tainahealthybodyweight.However,moresubtleconsequencescannot beexcludedwithoutasystematicassessmentofsubjects’well-being us-ingmoresensitivemeasures(e.g.Hageetal.,2014;Grayetal.2016;

Pfefferleetal.,2018).Suchassessmentsatthebehaviourallevelare dif-ficult(seesection4) andsufferfrommethodologicallimitations(e.g.

PoirierandBateson,2017; Poirieretal., 2019a).LargeMRIdatasets wherevariation influidrestriction is not confoundedwith scanning sites offertheuniqueopportunitytoinvestigatetheconsequencesof fluidcontrolonsubjects’well-beingattheneurallevel(Poirieretal., 2019b),and,ifmetadatarelatedtospontaneoushomecagebehaviour arealsoshared,atthebehaviourallevelaswell.Suchdatawouldallow researcherstoscientificallyassessandifnecessaryrefinefluidcontrol protocols,inlinewiththe3R’s(RussellandBurch,1959).

7. MetadataspecifictofunctionalMRI

FunctionalMRIreliesonanindirectmeasureofneuronalactivity. Thisinformationiscorruptedbymultiplesourcesofnoise (Caballero-GaudesandReynolds,2017).Partofthisnoiseisofinstrumentalorigin (e.g.instrumentaldrifts,hardwareinstabilities,signalchangesdueto headmotionetc.).Anothercontributorisofphysiologicalnon-neuronal origin (e.g.cardiac andrespiratorynoise,changesin arterialCO2or bloodpressure,vasomotion,cerebralautoregulationmechanisms).

A third part is of neuronal origin (e.g. eye movements, arousal, blinks).Signaldenoisingisthusacrucialpartofdataanalysispipelines, both in task-based and in resting state fMRI studies ( Caballero-GaudesandReynolds,2017;Murphyetal.,2013).Someofthese denois-ingapproachesaredata-driven,basedondatadecompositionmethods suchasprincipalorindependentcomponentanalysis.Theseareblindto actualsourcesofnoiseandareextremelyusefulincasesinwhich physi-ologicalmonitoringisunavailable.Othersignaldenoisingapproaches are based on metadata recordedsynchronously with thefMRI data. These metadataarerealignedtofMRItimeseriesanddown sampled at a repetitiontime(TR) resolutiontogenerate nuisance regressors. Thesecanthenbeintroducedinaregressionmodelinordertoaccount fortheirexplainedvariance.Theuseofsuchregressorsofnon-interest mustbebalancedagainstthelossofdegreesoffreedomsinceitisnot possibletoknowwhetherallnoiserelatedeffectsinthesignalare be-ingremoved,orwhetherneuronal-relatedfluctuationsarealsobeing removed.

Afirstobvioussourceofnon-neuronalvariabilitythatisclassically takenintoaccountismotionartefacts,byadding,aftervolume regis-tration,thetimeseriesofthesixestimatedtranslationalandrotational realignmentparametersasnuisanceregressorsintheregressionmodel. Whileallprocessingpipelinesinvolvemotionartefactcorrection,itis worthnotingthatnewmulti-shot3DEPIacquisitionsaremoresensitive tophysiologicalnoiseingeneralandtomotionartefactsinparticular,

(6)

Fig.1.Scan-rescanvariabilityincorticalthicknessduringfreewaterandwatercontrolconditionsinoneRhesusmacaque.ScansP1andP2werebothacquired whenthesubjecthadunlimitedaccesstowaterforatleastonemonth,andwereseparatedby13days.P3wasacquiredattheendofa24-dayperiodoffluidcontrol thatstartedimmediatelyafterP2.Thefluidcontrolprotocolconsistedinaccessto70%offreeintake,6daysaweek.Regions-of-interestwerechosenrandomly. CT.CorticalThickness.SMA.SupplementaryMotorArea.pre-SMA.Pre-SupplementaryMotorArea.∗paired-t-test,p<0.0001.Notethatthedifferenceisofsmall

amplitudebutconsistentacrossbrainregions.Theseresultscomefromonesubjectandneedtobereplicated.

thansingle-shot2DEPIacquisitions.Inaddition,itisimportanttokeep inmindthatawakeNHPexperiments,inwhichanimalsaretypically head-fixed,involvespecificmotionartefactsthatcannotalwaysbe min-imizedbytraining,suchasswallowing,task-relatedheadmovementsor specificrewardintakemovements.

Asecondsourceof(mostly)non-neuronalvariabilitythatishighly relevanttobothanesthetizedandawakeNHPfMRIis heartand res-piratoryrate. Amongst other effects(see for exhaustive description, Caballero-GaudesandReynolds,2018),bloodpulsationinducessmall changesin braintissueclose toblood vessels(e.g.aroundthe sagit-talsinus,theedgesofthebrainandinthesulci).Bloodpulsationand respirationalsoresultinmotionoflargebrainregionssuchasthe tha-lamus,thediencephalonorthebrainstem.Intheanesthetized mon-key,thisinformationcanberecordedusingpulseoximetry(measuring changesintheinfraredlightabsorbedbybloodinfusedtissue,dueto globalchangesinoxygenationlevels)orelectrocardiograms(ECG). Res-pirationratecanberecordeddirectlyfromtheventilatorthatis main-taininganaesthesia.Alternatively,ifrespirationsignalsareunavailable,

theycanalsobeextractedfromtheECGsignals(Labateetal.,2013). Heartand respiratoryrateare highlydependent onanaesthesia and medicationkineticsandmayvaryduringdataacquisitionifcareisnot taken toprevent this.It istypicallyeasiertostabilizethese parame-tersusinggasorperfusionanaesthesia.InawakemonkeyfMRI exper-iments,althoughheartandrespiratoryratesarechallengingtorecord, theyareimportanttotrack.Indeed,heartandrespiratoryratesare typ-icallynon-stationaryandcan thusnotberemovedbyasimple band-pass filter.Crucially,heartratevariabilityis consideredasa marker of theactivityof theautonomous system(Berntsonetal., 1997).In humans,thisvariabilityisassociatedwithfluctuationsinresting-state functionalconnectivitybetweencorticalregionsinvolvedinvigilance andarousal(Changetal.,2013).Humanheartratevariabilityhasalso beenshowntocorrelatewithlocalchangesinBOLDsignalin experi-mentsinvolvingemotions(Critchleyetal.,2005),pain(Scloccoetal., 2016),cognition(Basileetal.,2013),autonomicnervoussystem mod-ulation(Napadowetal.,2008).Asisthecaseinhumans,theemotional reactiontopassivelyviewedvisualstimuliinducesheartratevariations

(7)

inmacaques(Bliss-Moreauetal.,2013).HeartratevariabilityinNHPs isthusexpectedtofollowthesamemodulatorsasevidencedinhumans, andtomodulateNHPhemodynamicresponsesinthesameway.New methodsallowforheartrateestimationfromhighresolutionNHP fa-cialvideoimages(Unakafovetal.,2018),includingduringscanningof awakeNHPsviewingemotionalstimuli(Froeseletal.,2020).

InawakeNHP imaging,anothersourceofnoiseinthefMRIdata importanttoconsideriseye-relateddata.Acquiringthismetadata re-quiresanMRIcompatibleeyetracker,aswellasaminimaltrainingin ordertocalibrateeyeinformation.Inminimallytrainedanimals,coarse eyecalibrationcanbeachievedbyhavingmonkeysgazeatinformation richsmallimages.Thesizeoftheimagewilldeterminetheprecisionof thecalibration.Inhighlytrainedanimals,eyetrackingcalibration in-volvesfixatingstimuliofonlyafewpixelsinsizeanddiscriminatinga colourchangeforareward.Eyetrackinginformationisveryrichand multipledistinctsignalscanbeextracted.Epochsofeyesopenvs.eyes closed,thathavebeenassociatedwithchangesinglobalneuronal sig-nalamplitude,canforexamplebeestimated(Wongetal.,2015).More specificinformationoneyepositionandsaccades,blinksandpupilsize canalsobeextracted,allofwhichhavebeenassociatedwithspecific corticalactivations.Asaresult,notconsideringthemasregressorsof non-interestcanleadtoimportantconfoundsbothinrestingstate ex-periments(reportingtemporalcorrelationsbiasedbytheseeyesignals) aswellasduringtask-basedexperiments,wheneyesignalscorrelate withtasktimings(andarethusnotaveragedoutduringdataanalysis). Forexample,spontaneousblinksaremostlygeneratedtolubricatethe corneawhenneeded.Theyhaveconsequencesonthebrainnotonlyin thevisualcortex(Hupé etal.,2012),butalsoincorticalregions process-ingthesomatosensory,proprioceptive,peripheralvisual,andpossibly nociceptiveconsequencesofblinks(Guipponietal.,2015,Cléryetal., 2018).ThiscanresultinthecontaminationoffMRIprotocolsthat gener-ateheterogeneousblinkbehaviours.Inparticular,duringactive cogni-tivebehaviour,spontaneousblinksaresuggestedtobeactivelyinvolved inattentiondisengagement,coincidingwithadeactivationofthedorsal attentionalnetworkaswellasanactivationofthedefault-modenetwork (Nakanoetal.,2013).

Tracking eye position is behaviourally informative, both during resting-statescansinwhichmonkeysareexpectednottofallasleep, duringtheviewingofinformationrichnaturalisticmoviesaswellas duringmorecomplexcognitivetasks.IntheabsenceofMRIcompatible eyetrackingtechnology,machinelearningcanbeusedtoestimatethe directionofgazefromthefMRItimeseriesoftheeyevoxelsataTR res-olution.Thisapproachhasbeendevelopedinhumans(Sonetal.,2019,

LaConteetal.,2006,2007)andisbeingtestedinNHPexperiments(Russ etal.,personalcommunication).Wheneyepositionisusedasasignal regressor,theparieto-frontaloculomotornetworkistypicallyidentified, aswellaspremotorareas(Koyamaetal.,2004)andcingulatefaceareas (Cléryetal.,2018).Usingeyepositionasanuisanceregressoristhus importantnottoconfoundreportedobservations(whetherintermsof inter-arealcorrelationsorintermsof%ofsignalchange)bythis vari-able,which hasbeen repeatedlyreported tobe astrongbehavioural markerofovertcognitiveprocesses.

Bothspontaneousblinkandeyemovementfrequencycanbetaken asanindexofthelevelofthemonkey’svigilanceandengagementin thetask,whetherduringunrestrainedresting-statescans,during rest-ingstatescansimposingfixationorduringmorecomplextasks.Inthis respect,pupildatacanalsobeextremelyusefultoobjectifysuch vari-ationsinstatesofvigilance(Pais-Roldanetal.,2020).Pupildiameter isknowntobeassociatedwithLocusCoeruleusnoradrenergicneuronal firing.PupilsizepositivelycorrelateswithBOLDactivationsinthe Lo-cusCoeruleus,thalamus,posteriorcingulatecortex,dorsalanterior cin-gulateandparacingulate cortex,orbitofrontalcortex,andright ante-riorinsularcortex,i.e.inbrainregionsassociatedwithselective atten-tion,salience,error-detectionanddecision-making(Yellinetal.,2015,

DiNuzzoetal.,2019).

Overall,thesystematicrecordingoftheabovediscussedmetadata wouldallowabetterdenoisingoffMRIdata.Inaddition,the availabil-ityofthesemetadataonalargersetofanimalswouldfacilitatea bet-terassessmentoftheneuronalprocessesassociatedwitheachofthese physiologicalandbehaviouralmeasures.Last,thiswouldallowthe in-vestigationofindividualdifferencesincognitiveprocessesindexedby someofthesemetadata.

8. Phylogeneticinformation

Understanding primatecognition from anethological perspective requires usto studyits mechanisms, ontogeny (development), func-tion, and phylogeny (evolution) (Tinbergen, 1963). A popular ap-proachtostudytheevolutionofcognitionconsistsofcomparing cog-nitiveabilitiesofdifferentprimatespeciesandtheirunderlyingbrain structure and function. So far, comparative studies of primate cog-nition havebeen dominatedby behaviouralassays,withfew studies using aneuroscienceapproach (Balezeauetal., 2020; Duong,2010;

Rilling,2014).Between-speciesbehaviouralandbrainvariabilityhas alsomainlybeenassessedfromaqualitativepointofview(for excep-tions,seeforinstanceBarton1998;Dunbar1998b;Deaneretal.2000,

2007;Lindenforsetal.2007;IslerandvanSchaik2009).

Phylogeneticsisthestudyoftheevolutionaryhistoryand relation-shipsamongindividualsorgroupsoforganisms(e.g.speciesor popula-tions).Traditionally,therelationshipsbetween(sub-)speciesare anal-ysedandunderstoodviaphylogeneticmethodsthatevaluateobserved heritabletraits,suchasDNAsequencesormorphologyunderamodelof evolutionofthesetraits.Theresultoftheseanalysesisaphylogeny(also knownasaphylogenetictree)– adiagrammaticdisplayandhypothesis aboutthehistoryoftheevolutionaryrelationshipsofagroupof organ-isms(Felsenstein,1985).Giventhatspecieswithmoresharedancestry areexpectedtoperformcognitivetasksinamoresimilarwaythanmore distantlyrelatedspecies(MacLeanetal.,2012),phylogeneticscanalso beappliedtocognition.Thisapproachofferstheopportunitytoassess quantitativedifferencesbetweenspecies,takingintoaccountshared an-cestry,andtoinfertheevolutionaryhistoryofcognitivetraits.However, itrequiresextensivedatasetscoveringalargevarietyofspecies.

Thefieldofprimatecognitionhasrecentlyseentheemergenceof aninternationalconsortiumtosupportlarge-scalecollaborationsin pri-matebehaviouralresearch(D.AltschulandBeran,2019a;DAltschul and Beran, 2019b). This initiative has produced one of the largest andmostdiverseprimatedatasetsdescribingbehaviour,enabling re-searcherstoaddressnovelresearchquestionsregardingtheevolution ofprimatecognition(inthiscase,short-termmemory).

TherecentexpansionofneuroimagingtoseveralNHPspecies, com-bined withlarge-scale data sharinginitiatives (Milhamet al., 2018,

2020),offertheopportunitytofollowasimilarapproach.Itisworth notingthatcurrentEuropean(asof2010)andUS(asof2015) regula-tionsdonotauthorizeexperimentalresearchingreatapes(e.g. goril-las,orang-utansandchimpanzees).Thus,forthesespecies, neuroimag-ingdataareeithercollectedpost-mortemorduringveterinary inves-tigations related tothe individual’shealth.Combining primate neu-roimagingdatafrommultiplespecieswithprimatephylogenetictrees (foradigitalversion,seeArnoldetal.,2010)willallowinvestigating (Freckletonetal.2002, MacLeanandHare,2012) orcontrollingfor (Grafen1989;Pagel1999)thevariabilityinspeciesdifferencesdueto sharedancestry.Examplesofpotentialapplicationsincludequantifying howmuchofthebetween-speciesvariabilityofanyneuroimagingtrait (e.g.corticalthickness,braingyrification,connectivityprofileofa spe-cificbrainregion)isduetosharedancestry(phylogeneticsignal)and howmuchisduetootherfactors(e.g.asharedphysicalenvironmentor sharedlevelofcomplexityinsocialrelationships),andinferringthistrait incommonancestors(Heueretal.,2019).Ultimately,comparingand mergingtheevolutionaryhistoryofcognitivetraitsfromabehavioural, neural,andgeneticpointofviewpromisetotransformour understand-ingofprimatecognition.

(8)

Fig.2. ExampleBIDSFolderforPrimateNeuroimagingwithMetadata.TheBIDSformatdescribesaunifiedstructureforsharingbrainimagingdatainfilesand folders(grey).HereweshowtheorganizationofanexampleBIDSdataset,withfiledescriptions(connectedtofileswithcolouredlines).Briefly,eachstudyhasa top-leveldirectory(e.g.PrimateBIDS),whichcontainsfoldersforrawdata(raw)andphenotypeinformation(pheno),alongwithdescriptorfileswhereresearchers cansharedescriptionsofthesubjects,dataset,andaccompanyinggeneticinformation.Thephenofolderhousesacross-subjectdata(.tsv)anddescriptionsofthose data(.json).Therawfoldercontainsafolderforeachsubject,e.g.subj-XX.Eachsubject-folder,inturn,containsanat,func,andbehfolders,whichcontainanatomical, functional,andbehaviouraldata,respectively.Similartothephenofolder,eachofthesefolderscontainsdata(e.g..nii.gzor.tsv)withanaccompanyingdescriptor file(.json),whichdescribesrelevantacquisition/quantificationparameters.Individualsubjectfolderscanbeusedtoshareanydatathatcannotbeeasilysummarized intoanacross-subjecttabular.tsvfileinthephenofolder.

(9)

9. Organizationofmetadatasharing:IntroductiontoBIDS

Neuroimagingexperimentsarecomplicatedandoftenrequire rele-vantscanparametersandassociatedmetadataforinterpretation.Data canbe organizedinmany differentways,andalackofstandard or-ganizationcanleadtomisunderstandingswhensharingdata,evenfor similarexperimentsfromthesamelab.Recenteffortstodevelop con-sensusonhowtoorganizeneuroimaging datahaveled tothe devel-opmentof theBIDS(Gorgolewski,etal., 2016).BIDSisaconsensus frameworkforhowtoorganizeneuroimagingdataandassociated meta-data. The BIDS format makes it easy for other investigators to un-derstandwhatdatawas collectedtofacilitatecollaboration.In addi-tion,BIDS-Apps(http://bids-apps.neuroimaging.io/)andothersoftware toolscaninterpretBIDSformatteddata,greatlysimplifyingtheanalysis processandprovidinganopportunitytostandardizeanalysispipelines. The open-scienceneuroimaging data-sharing resourcePRIMatE Data Exchange(PRIME-DE)acceptsandencouragescontributorstoupload BIDSformatted data.Bysharing datain BIDSformat,neuroimaging methodsresearchcanusethelarge-scaleneuroimagingdatasets,such asPRIME-DE,tofurthertest,develop,andoptimizeNHPneuroimaging tools.

The full BIDS specification can be found at https://bids-specification.readthedocs.io/en/stable. In brief, it specifies a stan-dard naming structure for reconstructed images and folders, which include multiple key-value pairs separated by a “_“ with keys and values separated by a “-“. For example, each functional scan is stored as a 4-D niftii named sub-XX_task-XX_bold.nii.gz file in

dataset/subj-XX/func, and each T1-anatomical data is stored as a 3-D niftii file named sub-XX_T1w.nii.gz in dataset/subj-XX/anat. There are a number of tools that can help researchers get their data into BIDS format (e.g. HeuDiConv https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/heudiconv.html) and validate that a BIDS dataset (e.g. BIDS-validator https://bids-standard.github.io/bids-validator/).Thesetoolsarerapidlyimproving, and evolving, to further simplify the process of converting DICOM dataintothisstandardizedBIDSformattofacilitatedatasharingand homogenizedanalyses. Werealize that many existing, ongoing, and futureprojectswillidentifystudy-specificreasonstousetheirowndata structure.Toaddressthisproblem,researcherscanwritescriptsto con-vertbetweenvariousstandardizeddataformats.Inthecontextofthe HumanConnectomeProject(HCP),forexample,researchershave cre-atedheuristicsforconvertingfromHCPtoBIDS,aswellasBIDS-Apps that aredesignedtorun HCP processing pipelines on BIDSdatasets (https://github.com/BIDS-Apps/HCPPipelines; Glasser et al. 2013,

Smithetal.2013).

Inaddition toneuroimaging data, theBIDS format hasbeen ex-pandedto allow forstandardized sharingof relatedmetadata when available,includingin-scannertask/manipulationdata(including dif-ferent“resting” conditions,suchaslevelsof anaesthesia),in-scanner physiological data, as well as behavioural data collected outside of thescanner,rearinginformation(e.g.early-liferearing/housing infor-mation),andgeneticdescriptors(includingsingle-nucleotide polymor-phismsandwhole-genomesequences).Fig.2 outlineshowto incorpo-ratethedatadescribedaboveintotheBIDSformat.

Some types of data, including genetic information, can be shared in multiple ways. Individual SNP data can be shared in the tabular dataset/participants.tsv file, with columns for individ-ual SNP locations and rows for subjects. If whole-genome se-quencing data is available, information about, and links to, this data can be shared in the dataset/genetic_info.json file. Impor-tantly, the sharing of genetic information is not limited to DNA, but can include epigenetic, transcriptomic, metabolomic, and pro-teomic data (see Fig 2). As with genomic data, these data can be shared for individual sites in the dataset/participants.tsv or link to larger datasets in the dataset/genetic_info.json file. Addi-tionaldetailscanbe foundin theGeneticDescriptorBIDS

specifica-tion ( https://bids-specification.readthedocs.io/en/latest/04-modality-specific-files/08-genetic-descriptor.html).

Behavioural data acquired outside the MRI scanner can also be sharedindifferentplaces,atthestudylevel,inthedataset/pheno/folder, andatthesubjectlevel,inthedataset/subj-XX/beh/folder.Thepheno

foldercontains.tsvfileswithtabularmeasurebysubjectdata,i.e.one subjectperrow,andonecolumnpermeasure.Each.tsvfileis accom-paniedbya.jsonfile,whichdescribesthemeasuresforwhichthereare data.Thephenofolderis intendedforstoringphenotypicdatathatis easily summarizedatthesubjectlevel. Forinstance,summary statis-ticsfromstandardizedcognitivetestsshouldbesharedhere.Formore complexdata,BIDSalsospecifiesadataset/subj-XXX/beh/folder,within eachsubjectdirectory.TheBehfoldercontains.tsvfileswhererows de-notetime/trialratherthansubject,andaccompanying .jsonfilesthat clearlydescribethecontentsofthe.tsvfiles.Dependingonwhether be-haviouraldataaretime-lockedtoeventsornot,theycanbestoredin .tsv files namedsubj-XXX_task-XXX-events.tsv.gzor subj-XXX_task-XXX-beh.tsv.gz,respectively(Fig.2).TheBehfolderisdesignedtocontain experimentalorobservational datathatcannotbeeasilysummarized intoa tabularformatacross-subjects, orthat wouldbenefitfrom be-ingsharedintheirrawformattoallowresearcherstoderivemultiple phenotypicmeasures.Examplesofsuchdataincludenon-standardised cognitivetestsandobservationsofhomecagespontaneousbehaviour. Asthiscanbeconfusing,itisworthreiteratingthatBIDSisdesignedto storebehaviouraldataintwolocations,thedataset/pheno/folder,for tabularacross-subjectsdata,andthedataset/subj-XX/beh/folder,for in-dividualsubjectdatathatcannotbeeasilycoercedintoaacross-subjects tabularformat.

10. Conclusion

Combinedwithopensharingofneuroimagingdata, metadatahas thepowertotransformprimateneuroimaging.Metadatawillhelp re-movingnoisefromthedatasets,increasingthestatisticalpowerof stud-iesthatcombinedatasetsfromdifferentfacilities.Perhapsmore impor-tantly,theywillalsoallowtheintegrationofneuroimagingdataintoa multi-disciplinaryframework,providinganintegrativeviewofthe pri-matebrainwithinawidercontextofprimatebiology,tounderstandits mechanismsandevolution.

Here,weprovidesuggestionsforwhatmetadatatoshare,alongwith anintroductiontotheBIDSframeworkwhichfacilitatessharingthese datainastandardform.BIDSallowsresearcherstosharebehavioural data(e.g.taskperformance,homecagespontaneousbehaviours), wel-faredata(e.g.rearinghistory,housing),geneticdata(e.gwhole-genome sequencing), manual lateralization data (i.e. estimated handedness), fluidinformation(i.e.fluidintakeandcontrol),physiologicaldata(e.g. ECG),acquisition conditions(e.g. awake-task, anaesthesialevels),as wellasneuroimagingdata(e.g.BOLD,diffusion-imaging)andrelevant descriptors(e.g.acquisitionparameters).

As primateresearchersmovetoward opensharing of neuroimag-ingdata,weurgethemtoshareasmuchmetadataaspossibleandto use theBIDS format,whichis already accepted in PRIME-DE.Here, wehaveprovidedsuggestionsaboutwhatmetadataarerelevant,and whereitcanbesharedintheBIDSformat.Thesesuggestionsarenot meanttobedefinitive andshouldbeseenasastartingpointfor fur-ther discussionwithin the whole primate neuroimaging community. Thecommunitywillneedtocometogethertoagreewhat,where,and howmetadatashouldbesharedprecisely.Metadatasharingprotocols could thenbe publishedonthePRIMatE-ResourceExchange website (https://prime-re.github.io/).Inparticular,amajorchallenge for pri-mateopen-sciencemovingforwardwillbetodevelopstandardized de-scriptionofrecommendedmetadatawhichcanbesharedintheform ofcommon.jsonfiles(e.g.nomenclatureforanimalhousing,common ethogramforspontaneousbehaviour,formalnamingconventionfor pri-matecognitive/behaviouraltasks(thoughseePoldraketal.,2011).We encourageNHPresearcherstodiscussandagreecollectivelyhowto

(10)

in-corporatemetadataintheBIDSformat,toensureoptimalprogressin thefieldofNHPneuroimaging.

DataandCodeAvailabilityStatement

Datawereusedforillustrationpurposeonly.

DeclarationofCompetingInterest

Theauthorsdeclarenocompetinginterests.

Funding

CollinePoirierwassupportedbyaNewcastleUniversityResearch Fellowship.SuliannBenHamedwassupportbyafundingfromthe Cen-terNationalpourlaRechercheScientifique(CNRS).SzeChaiKwokwas supportedbytheNationalNaturalScienceFoundationofChina(Grant No. 32071060), the Science andTechnology Commission of Shang-haiMunicipality (grantnumber: 201409002800)andJORISSproject grants.HugoMerchantwassupportedbyConsejoNacionaldeCiencia ytecnologíaA1-S-8430.AdrienMeguerditchianwassupportedby fund-ingsfromtheEuropeanResearchCouncilundertheEuropeanUnion’s Horizon2020researchandinnovationprogrammgrantagreementNo

716931 - GESTIMAGE -ERC-2016-STG. PamelaGarcía-Saldivar was supportedbyaConsejoNacionaldeCienciaytecnologíastudentship number280464.SaraWellswassupportedbycorefundingfromthe MedicalResearchCouncil(UK),totheCentreforMacaques(A430). An-drewS.FoxwassupportedbytheCaliforniaNationalPrimateResearch Center(P51OD011107).

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.neuroimage.2020.117679.

References

Amunts, K. , Schlaug, G. , Schleicher, A. , Steinmetz, H. , Dabringhaus, A. , Roland, P.E. , Zilles, K. , 1996. Asymmetry in the human motor cortex and handedness. Neuroim- age 4 (3), 216–222 .

Amunts, K. , Jäncke, L. , Mohlberg, H. , Steinmetz, H. , Zilles, K. , 2000. Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsy- chologia 38 (3), 304–312 .

Annett, M.A. , 1985. Left, right, hand and brain: The right shift theory. Erlbaum, Hillsdale, NJ .

Arnold, C., Matthews, L.J., Nunn, C.L., 2010. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. 19 (3), 114–118. doi: 10.1002/evan.20251 . Bala,P.C., Eisenreich,B.R., Bum, S., Yoo, M., Hayden, B.Y., Park H.S., Zimmermann, J.,

2020. Open monkey studio: automated markerless pose estimation in freely moving macaques. Preprint: http://dx.doi.org/10.1101/2020.01.31.928861.

Balezeau, F., Wilson, B., Gallardo, G., Dick, F., Hopkins, W., Anwander, A., Friederici, A.D., Griffiths, T.D., Petkov, C.I., 2020. Primate auditory prototype in the evolution of the arcuate fasciculus. Nature Neurosci. 23 (5), 611–614. doi: 10.1038/s41593-020-0623-9 .

Barton, R.A., 1998. Visual specialization and brain evolution in primates. Proc. R. Soc. B Biol. Sci. 265, 1933–1937. doi: 10.1098/rspb.1998.0523 .

Basile, B. , Bassi, A. , Calcagnini, G. , Strano, S. , Caltagirone, C. , Macaluso, E. , Cortelli, P. , Bozzali, M. , 2013. Direct stimulation of the autonomic nervous system modulates activity of the brain at rest and when engaged in a cognitive task. Hum. Brain Mapp. 34, 1605–1614 .

Bastian, M.L., Sponberg, A.C., Sponberg, A.C., Suomi, S.J., Higley, J.D., 2003. Long-term effects of infant rearing condition on the acquisition of dominance rank in juve- nile and adult rhesus macaques (Macaca mulatta). Dev Psychobiol 42 (1), 44–51. doi: 10.1002/dev.10091 .

Berntson, G.G. , Bigger Jr, J.T. , Eckberg, D.L. , Grossman, P. , Kaufmann, P.G. , et al. , 1997. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34, 623–648 .

Bimber, B.N., Ramakrishnan, R., Cervera-Juanes, R., Madhira, R., Peterson, S.M., Norgren Jr, R.B., Ferguson, B., 2017. Whole genome sequencing predicts novel human disease models in rhesus macaques. Genomics 109, 214–220. doi: 10.1016/j.ygeno.2017.04.001 .

Birn, R.M., Shackman, A.J., Oler, J.A., et al., 2014. Evolutionarily conserved prefrontal- amygdalar dysfunction in early-life anxiety. Mol Psychiatry 19 (8), 915–922. doi: 10.1038/mp.2014.46 .

Blangero, J. , Williams, J.T. , Almasy, L. , 2001. Variance component methods for detecting complex trait loci. Adv Genet 42, 151–181 .

Bliss-Moreau, E., Machado, C.J., Amaral, D.G., 2013. Macaque cardiac physiology is sen- sitive to the valence of passively viewed sensory stimuli. PLoS One; 8 (8), e71170. doi: 10.1371/journal.pone.0071170 .

Bryden, M.P. , 1987. Handedness and cerebral organization: data from clinical and normal populations. In: Ottoson, D. (Ed.), Duality and Unity of the Brain. Wenner-Gren Center International Symposium Series, vol 47. Springer, Boston, MA .

Butler, J.L., Kennerley, S.W., 2019. Mymou: a low-cost, wireless touchscreen system for automated training of nonhuman primates. Behav Res Methods 51 (6), 2559–2572. doi: 10.3758/s13428-018-1109-5 .

Caballero-Gaudes, C., Reynolds, R.C., 2017. Methods for cleaning the BOLD fMRI signal. Neuroimage 154, 128–149. doi: 10.1016/j.neuroimage.2016.12.018 .

Calapai, A., Berger, M., Niessing, M., Heisig, K., Brockhausen, R., Treue, S., Gail, A., 2017. A cage-based training, cognitive testing and enrichment system optimized for rhesus macaques in neuroscience research. Behav Res Methods 49 (1), 35–45. doi: 10.3758/s13428-016-0707-3 .

Cashmore, L. , Uomini, N. , Chapelain, A. , 2008. The evolution of handedness in humans and great apes: a review and current issues. J. Anthropol. Sci. 86, 7–35 .

Chang, C. , Metzger, C.D. , Glover, G.H. , Duyn, J.H. , Heinze, H.J. , Walter, M. , 2013. As- sociation between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage 68, 93–104 .

Cléry, J., Amiez, C., Guipponi, O., Wardak, C., Procyk, E., Ben Hamed, S., 2018. Reward activations and face fields in monkey cingulate motor areas. J Neurophysiol. 119 (3), 1037–1044. doi: 10.1152/jn.00749.2017.Cloninger .

Cloninger, C.R., Cloninger, K.M., Zwir, I., Keltikangas-Jarvinen, L., 2019. The com- plex genetics and biology of human temperament: a review of traditional con- cepts in relation to new molecular findings. Transl Psychiatry 9 (1), 290. doi: 10.1038/s41398-019-0621-4 .

Critchley, H.D. , Rotshtein, P. , Nagai, Y. , O’Doherty, J. , Mathias, C.J. , Dolan, R.J. , 2005. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 24, 751–762 .

Crow, T. , 2004. Directional asymmetry is the key to the origin of modern Homo sapiens (the Broca-Annett axiom): a reply to Rogers’ review of The Speciation of Modern Homo Sapiens. Laterality: Asymmetries Body, Brain Cogn 9 (2), 233–242 . Dadda, M. , Cantalupo, C. , Hopkins, W.D. , 2006. Further evidence of an association be-

tween handedness and neuroanatomical asymmetries in the primary motor cortex of chimpanzees (Pan troglodytes). Neuropsychologia 44 (12), 2582–2586 .

Deaner, R., Nunn, C., Schaik, C., 2000. Comparative tests of primate cognition: dif- ferent scaling methods produce different results. Brain. Behav. Evol. 55, 44–52. doi: 10.1159/000006641 .

Deaner, R.O., Isler, K., Burkart, J., Van Schaik, C., 2007. Overall brain size, and not en- cephalization quotient, best predicts cognitive ability across non-human primates. Brain. Behav. Evol. 70, 115–124. doi: 10.1159/000102973 .

DiNuzzo, M., Mascali, D., Moraschi, M., Bussu, G., Maugeri, L., Mangini, F., Fratini, M., Giove, F., 2019. Brain networks underlying eye’s pupil dynamics. Front Neurosci 13, 965. doi: 10.3389/fnins.2019.00965 .

Dunbar, R.I.M., 1998. The social brain hypothesis. Evol. Anthropol. 6, 178– 190. doi: 10.1002/(SICI)1520-6505 , https://doi.org/(1998)6:5 < 178::AID- EVAN5>3.0.CO;2-8.

Duong, T.Q., 2010. Diffusion tensor and perfusion MRI of non-human primates. Methods 50 (3), 125–135. doi: 10.1016/j.ymeth.2009.08.001 .

Fagot, J. , Vauclair, J. , 1991. Manual laterality in nonhuman primates: a distinction be- tween handedness and manual specialization. Psychological bulletin 109 (1), 76 . Fairbanks, L.A., Newman, T.K., Bailey, J.N., et al., 2004. Genetic contributions to social

impulsivity and aggressiveness in vervet monkeys. Biol Psychiatry 55 (6), 642–647. doi: 10.1016/j.biopsych.2003.12.005 .

Falconer, D.S. , 1997. Quantitative Genetics, 4th ed. Benjamin Cummings .

Fawcett, G.L., Dettmer, A.M., Kay, D., et al., 2014. Quantitative genetics of response to novelty and other stimuli by infant rhesus macaques across three behavioral assess- ments. Int J Primatol 35 (1), 325–339. doi: 10.1007/s10764-014-9750-z .

Fears, S.C., Melega, W.P., Service, S.K., et al., 2009. Identifying heritable brain pheno- types in an extended pedigree of vervet monkeys. J Neurosci 29 (9), 2867–2875. doi: 10.1523/JNEUROSCI.5153-08.2009 .

Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N. Y). 39, 783–791. doi: 10.2307/2408678 .

Fischer, R.S., Alexander, M.P., Gabriel, C., Gould, E., Milione, J., 1991. Reversed later- alization of cognitive functions in right handers: exceptions to classical aphasiology. Brain 114A (1), 245–261. doi: 10.1093/oxfordjournals.brain.a101860 .

Fizet, J., Rimele, A., Pebayle, T., Cassel, J.C., Kelche, C., Meunier, H., 2017. An au- tonomous, automated and mobile device to concurrently assess several cognitive functions in group-living non-human primates. Neurobiol Learn Mem 145, 45–58. doi: 10.1016/j.nlm.2017.07.013 .

Foundas, A.L. , Eure, K.F. , Luevano, L.F. , Weinberger, D.R. , 1998. MRI asymmetries of Broca’s area: the pars triangularis and pars opercularis. Brain and language 64 (3), 282–296 .

Fox, A.S., Oler, J.A., Shackman, A.J., et al., 2015. Intergenerational neural mediators of early-life anxious temperament. Proc Natl Acad Sci USA., 112 (29), 9118–9122. doi: 10.1073/pnas.1508593112 .

Fox, A.S., Oler, J.A., Birn, R.M., Shackman, A.J., Alexander, A.L., Kalin, N.H., 2018. Func- tional connectivity within the primate extended amygdala is heritable and associated with early-life anxious temperament. J. Neurosci. 38, 7611–7621. doi: 10.1523/JNEU- ROSCI.0102-18.2018 .

Frässle, S., Krach, S., Paulus, F., et al., 2016. Handedness is related to neural mecha- nisms underlying hemispheric lateralization of face processing. Sci. Rep. 6, 27153. doi: 10.1038/srep27153 .

Freckleton, R.P., Harvey, P.H., Pagel, M., 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726. doi: 10.1086/343873 .

(11)

Froesel, M., Goudard, Q., Hauser, M., Gacoin, M., Ben Hamed, S., 2020. Automated video-based heart rate tracking for the anesthetized and behaving monkey Preprint https://biorxiv.org/cgi/content/short/2020.06.23.167411v1 .

Gibbs, R.A. , Rogers, J. , Katze, M.G. , et al. , 2007. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 .

Glahn, D.C., Nimgaonkar, V.L., Raventós, H., et al., 2019. Rediscovering the value of families for psychiatric genetics research. Mol. Psychiatry 24, 523–535. doi: 10.1038/s41380-018-0073-x .

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., et al., 2013. The minimal prepro- cessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124. doi: 10.1016/j.neuroimage.2013.04.127 .

Gorgolewski, K. , Auer, T. , Calhoum, V.D. , et al. , 2016. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data 3 Article number: 160044 .

Grafen, A., 1989. The Phylogenetic Regression. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 326, 119–157. doi: 10.1098/rstb.1989.0106 .

Gray, H., Bertrand, H., Mindus, C., Flecknell, P., Rowe, C., Thiele, A., 2016. Physiological, behavioral, and scientific impact of different fluid control protocols in the rhesus macaque (Macaca mulatta). eNeuroSep 22 (3(4)). doi: 10.1523/ENEURO.0195-16.2016 , ENEURO.0195-16.2016.

Gray, H., Thiele, A., Rowe, C., 2019. Using preferred fluids and different reward schedules to motivate rhesus macaques (Macaca mulatta) in cognitive tasks. Lab Anim 53 (4), 372–382. doi: 10.1177/0023677218801390 .

Guipponi, O., Odouard, S., Pinède, S., Wardak, C, Ben Hamed, S., 2015. fMRI cortical correlates of spontaneous eye blinks in the nonhuman primate. Cereb Cortex 25 (9), 2333–2345. doi: 10.1093/cercor/bhu038 .

Hage, S.R. , Ott, T. , Eiselt, A. , Jacob, SN , Nielder, A. , 2014. Ethograms indicate stable well-being during prolonged training phases in rhesus monkeys used in neurophysio- logical research. Lab. Anim. 48 (1), 82–87 .

Hammond, G. , 2002. Correlates of human handedness in primary motor cortex: a review and hypothesis. Neurosci. Biobehav. Rev. 26, 285–292 .

Heuer, K., Gulban, O.F., Bazin, P., Osoianu, A., Valabregue, R.V., Santin, M., Herbin, M., Tro, R., 2019. Evolution of neocortical folding: a phylogenetic comparative analysis of MRI from 34 primate species. Cortex 118, 275–291. doi: 10.1016/j.cortex.2019.04.011 .

Higley, J.D., Hasert, M.F., Suomi, S.J., Linnoila, M., 1991. Nonhuman primate model of alcohol abuse: effects of early experience, personality, and stress on alcohol consump- tion. Proc. Natl. Acad. Sci. U S A 88 (16), 7261–7265. doi: 10.1073/pnas.88.16.7261 . Hopkins, W.D. , Cantalupo, C. , 2004. Handedness in chimpanzees (Pan troglodytes) is as- sociated with asymmetries of the primary motor cortex but not with homologous language areas. Behav. Neurosci. 118 (6), 1176 .

Hopkins, W. , Russell, J. , Schaeffer, J. , Gardner, M. , Schapiro, S. , 2009. Handedness for tool use in captive chimpanzees (Pan troglodytes): sex differences, performance, her- itability and comparison to the wild. Behaviour 146 (11), 1463–1483 .

Hopkins, W.D., Keebaugh, A.C., Reamer, L.A., Schaeffer, J., Schapiro, S.J., Young, L., 2014a. Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes). Sci Rep 4, 3774. doi: 10.1038/srep03774 .

Hopkins, W.D., Russell, J.L., Schaeffer, J., 2014b. Chimpanzee intelligence is heritable. Curr Biol 24 (14), 1649–1652. doi: 10.1016/j.cub.2014.05.076 .

Hopkins, W.D. , 1995. Hand preferences for a coordinated bimanual task in 110 chim- panzees: Cross-sectional analysis. J. Comp. Psychol. 109, 291–297 .

Hopkins, W.D. , 2013. Neuroanatomical asymmetries and handedness in chimpanzees (Pan troglodytes): a case for continuity in the evolution of hemispheric specialization. Ann. N. Y. Acad. Sci. 1288 (1), 17–35 .

Howell, B.R., Ahn, M., Shi, Y., Godfrey, J.R., Hu, X., Zhu, H., Styner, M., Sanchez, M.M., 2019. Disentangling the effects of early caregiving experience and heritable factors on brain white matter development in rhesus monkeys. Neuroimage 197, 625–642. doi: 10.1016/j.neuroimage.2019.04.013 .

Hupé, J.M., Bordier, C., Dojat, M., 2012. A BOLD signature of eyeblinks in the visual cortex. Neuroimage 61 (1), 149–161. doi: 10.1016/j.neuroimage.2012.03.001 . Iredale, S.K., Nevill, C.H., Lutz, C.K., 2010. The influence of observer presence on baboon

(Papio spp.) and Rhesus Macaque (Macaca mulatta) Behavior. Appl. Anim. Behav. Sci. 122 (1), 53–57. doi: 10.1016/j.applanim.2009.11.002 .

Isler, K., van Schaik, C.P., 2009. The expensive brain: a framework for ex- plaining evolutionary changes in brain size. J. Hum. Evol. 57, 392–400. doi: 10.1016/j.jhevol.2009.04.009 .

Johnson, Z., Brent, L., Alvarenga, J.C., et al., 2015. Genetic influences on response to novel objects and dimensions of personality in Papio baboons. Behav Genet 45 (2), 215–227. doi: 10.1007/s10519-014-9702-6 .

Knecht, S. , Dräger, B. , Deppe, M. , Bobe, L. , Lohmann, H. , Flöel, A. , Ringelstein, E.B. , Hen- ningsen, H. , 2000. Handedness and hemispheric language dominance in healthy hu- mans. Brain 123, 2512–2518 .

Koyama, M., Hasegawa, I., Osada, T., Adachi, Y., Nakahara, K., Miyashita, Y., 2004. Func- tional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41 (5), P795– P807. doi: 10.1016/S0896-6273(04)00047-9 .

Labate, D. , Foresta, F.L. , Occhiuto, G. , Morabito, F.C. , Lay-Ekuakille, A. , Vergallo, P. , 2013. Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: a comparison. IEEE J. Sens. 2666– 2674 .

Labuguen, R., Bardeloza, D. K., Negrete, S.B., Matsumoto, J., Inoue, K., Shibata, T., 2019. Primate markerless pose estimation and movement analysis using DeepLabCut. Con- ference Paper DOI: 10.1109/ICIEV.2019.8858533

LaConte, S. , Peltier, S. , Heberlein, K. , Hu, X. , 2006. Predictive eye estimation regression (PEER) for simultaneous eye tracking and fMRI. Proc. Intl. Soc. Magn. Reson. Med 2808, 13 .

LaConte, S. , Glielmi, C. , Heberlein, K. , Hu, X. , 2007. Verifying visual fixation to improve fMRI with predictive eye estimation regression (PEER). Proc. Intl. Soc. Magn. Reson. Med 3438 .

Lindenfors, P., Nunn, C.L., Barton, R.A., 2007. Primate brain architecture and selection in relation to sex. BMC Biol 5, 20. doi: 10.1186/1741-7007-5-20 .

Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I., Heckerman, D., 2011. FaST linear mixed models for genome-wide association studies. Nat. Methods 8 (10), 833– 835. doi: 10.1038/nmeth.1681 .

Lonsdorf, E.V. , Hopkins, W.D. , 2005. Wild chimpanzees show population level handedness for tool use. Proceed. Natl. Acad. Sci. 102, 12634–12638 .

Lyons, D.M. , Yang, C. , Sawyer-Glover, A.M. , Moseley, M.E. , Schatzberg, A.F. , 2001. Early life stress and inherited variation in monkey hippocampal volumes. Arch. Gen. Psy- chiatry 58 (12), 1145–1151 .

MacLean, E.L., Hare, B., 2012. Bonobos and chimpanzees infer the target of another’s attention. Anim. Behav. 83, 345–353. doi: 10.1016/j.anbehav.2011.10.026 . MacLean, E.L., Matthews, L.J., Hare, B.A., et al., 2012. How does cognition

evolve? phylogenetic comparative psychology. Animal cognition 15 (2), 223–238. doi: 10.1007/s10071-011-0448-8 , 2011/09/17.

ManyPrimates, Altschul, D., Beran, M., et al., 2019a. Establishing an infrastructure for col- laboration in primate cognition research. PLoS One 14, e0223675. doi: 10.1371/jour- nal.pone.0223675 .

Manyprimates , Altschul, D. , Beran, M.J. , et al. , 2019b. Collaborative open science as a way to reproducibility and new insights in primate cognition research. Jpn. Psychol. Rev. 62 (3), 205–220 .

Marchant, L.F. , McGrew, W.C. , Eibl-Eibesfeldt, I. , 1995. Is human handedness univer- sal? ethological analyses from three traditional cultures. Ethology 101 (3), 239– 258 .

Margiotoudi, K. , Marie, D. , Claidière, N. , et al. , 2019. Handedness in monkeys reflects hemispheric specialization within the central sulcus. an in vivo MRI study in right- versus left-handed baboons (Papio anubis). Cortex 118, 203–211 .

Marie, D. , Roth, M. , Lacoste, R. , et al. , 2018. Left brain asymmetry of the planum temporale in a nonhominid primate: redefining the origin of brain specialization for language. Cereb. Cortex 28, 1808–1815 .

Mazoyer, B. , Zago, L. , Jobard, G. , Crivello, F. , Joliot, M. , Perchey, G. , Mellet, E. , Petit, L. , Tzourio-Mazoyer, N. , 2014. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS ONE 9, e101165 .

McGrew, W.C. , Marchant, L.F. , 1997. On the other hand: current issues in and meta-anal- ysis of the behavioral laterality of hand function in nonhuman primates. Am. J. Phys. Anthropol. 104 (s 25), 201–232 .

Meguerditchian, A. , Vauclair, J. , 2006. Baboons communicate with their right hand. Be- hav. Brain Res. 171 (1), 170–174 .

Meguerditchian, A. , Molesti, S. , Vauclair, J. , 2011. Right-handedness predominance in 162 baboons (Papio anubis) for gestural communication: consistency across time and groups. Behav. Neurosci. 125 (4), 653 .

Meguerditchian, A. , Donnot, J. , Molesti, S. , Francioly, R. , Vauclair, J. , 2012. Sex difference in squirrel monkeys handedness for unimanual and bimanual coordinated tasks. Anim. Behav. 83, 635–643 .

Meguerditchian, A. , Vauclair, J. , Hopkins, W.D. , 2013. On the origins of human handed- ness and language: a comparative review of hand preferences for bimanual coordi- nated actions and gestural communication in nonhuman primates. Dev. Psychobiol. 55 (6), 637–650 .

Milham, M.P., Ai, L., Koo, B., et al., 2018. An open resource for non-human primate imag- ing. Neuron 100 (1), 61–74.e2. doi: 10.1016/j.neuron.2018.08.039 .

Milham, M., Petkov, C.I., Margulies, D.S., et al., 2020. Accelerating the evolu- tion of nonhuman primate neuroimaging: The PRIMatE data exchange (PRIME- DE) global collaboration workshop and consortium. Neuron 105, 600–603. doi: 10.1016/j.neuron.2019.12.023 .

Molesti, S. , Vauclair, J. , Meguerditchian, A. , 2016. Hand preferences for unimanual and bimanual coordinated actions in olive baboons (Papio anubis): consistency over time and across populations. J. Comp. Psychol. 130 (4), 341 .

Morita, T., Asada, M., Naito, E., 2020. Right-hemispheric dominance in self-body recognition is altered in left-handed individuals. Neuroscience 425, 68–89. doi: 10.1016/j.neuroscience.2019.10.056 .

Murphy, K., Birn, R.M., Bandettini, P.A., 2013. Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359. doi: 10.1016/j.neuroimage.2013.04.001 .

Nakano., T., Kato, M., Morito, Y., Itoi, S., Kitazawa, S., 2013. Blink-related momentary activation of the default mode network while viewing videos. Proc. Natl. Acad. Sci. U S A 110 (2), 702–706. doi: 10.1073/pnas.1214804110 .

Napadow, V. , Dhond, R. , Conti, G. , Makris, N. , Brown, E.N. , Barbieri, R. , 2008. Brain cor- relates of autonomic modulation: combining heart rate variability with fMRI. Neu- roimage 42, 169–177 .

Noonan, M.P., Sallet, J., Mars, R.B., Neubert, F.X., O’Reilly, J.X., Andersson, J.L., Mitchell, A.S., Bell, A.H., Miller, K.L., Rushworth, M.F., 2014. A neural circuit covary- ing with social hierarchy in macaques. PLoS Biol. 12 (9), e1001940. doi: 10.1371/jour- nal.pbio.1001940 .

Nudo, R.J. , Jenkins, W.M. , Merzenich, M.M. , Prejean, T. , Grenda, R. , 1992. Neurophysi- ological correlates of hand preference in primary motor cortex of adult squirrel mon- keys. J. Neurosci. 12, 2918–2947 .

O’Regan, L. , Serrien, D.J. , 2018. Individual differences and hemispheric asymmetries for language and spatial attention. Front. Hum. Neurosci. 12, 380 .

Oler, J.A., Fox, A.S., Shelton, S.E., et al., 2010. Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature 466 (7308), 864–868. doi: 10.1038/nature09282 .

Pagel, M., 1999. Inferring the historical patterns of biological evolution. Nature 401, 877– 884. doi: 10.1038/44766 .

Figure

Fig. 1. Scan-rescan variability in cortical thickness during free water and water control conditions in one Rhesus macaque

Références

Documents relatifs

In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle

First, the history of contra- rotating propellers and the design theory behind the contra-rotating code was introduced in chapter one .A CRP preliminary design for

بﺎﺼﻧ ﻻو ،ﺎﻨﺤﺠﻧ اذإ روﺮﻐﻟﺎﺑ بﺎﺼﻧ ﺎﻨﻋﺪﺗ ﻻ ﻲﺑر ﺎﻳ سﺎﺳأ ﻮﻫ ﻞﺸﻔﻟا نﺄﺑ ﺎﻤﺋاد ﺎﻧﺮﻛذ ﻞﺑ ﺎﻨﻠﺸﻓ اذإ سﺄﻴﻟﺎﺑ مﺎﻘﺘﻧﻻا ﺐﺣ نأو ةﻮﻘﻟا ﺐﺗاﺮﻣ ﺮﺒﻛأ ﺢﻣﺎﺴﺘﻟا نأ ﺎﻨﻤﻠﻋو حﺎﺠﻨﻟا

CLs incorporating SSC ionomer extend the current density of fuel cell polarization curves at elevated temperature and lower relative humidity compared to those based on long-side

Ordered weighted averaging (OWA) operator is a general mean type operator that provides flexibility in the aggregation process such that the aggregated value is bounded between

LLO dependent translocation of the late endosomal/lysosomal membrane proteins LAMP-1 and LAMP-2 was also characterized by flow cytometry: a marked increase of both proteins at the

The substantial research on human navigation in real environments was used to formulate guidelines for landmark design. Guidelines to increase the accuracy of a navigator’s

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des