• Aucun résultat trouvé

Towards experimentation at a Future Linear Collider

N/A
N/A
Protected

Academic year: 2021

Partager "Towards experimentation at a Future Linear Collider"

Copied!
140
0
0

Texte intégral

(1)

HAL Id: tel-00466550

https://tel.archives-ouvertes.fr/tel-00466550

Submitted on 24 Mar 2010

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Towards experimentation at a Future Linear Collider

R. Pöschl

To cite this version:

R. Pöschl. Towards experimentation at a Future Linear Collider. High Energy Physics - Experiment [hep-ex]. Université Paris Sud - Paris XI, 2010. �tel-00466550�

(2)
(3)
(4)

30%/√E

(5)
(6)
(7)
(8)
(9)
(10)
(11)

(12)
(13)
(14)

W

L

(15)

L = i ¯ψ(x)γµ∂µψ(x) − m ¯ψ(x)ψ(x) γµ ψ(x) → ψ(x)eiα ψ(x) → ψ(x)eiα(x) Dµ= ∂µ− ieAµ Aµ Aµ Aµ= eAµ+ 1 e∂µα(x) L = i ¯ψ(x)γµDµψ(x)−m ¯ψ(x)ψ(x) = ¯ψ(x)(iγµ∂µ−m)ψ(x)+e ¯ψ(x)γµAµψ(x). Aµ U (1) e ¯ψγµAµψ. e α e2/4π ε0 L = ¯ψ(x)(γµ∂µ− m)ψ(x) + e ¯ψ(x)γµAµψ(x) − 1 4F µνF µν. µ τ

(16)

µ− → e+ ¯ν e+ νµ ν¯e νµ GF GF = 1.16637(1) × 10−5GeV−2 e ν µ τ χL = (ν, e)L T T = 1/2 T3 g[¯uνγµ 12(cV − cAγ5)ue](W+)µ g[¯ueγµ 12(cV − cAγ5)uν](W−)µ ! = g ¯χγµτ∓χ(W±)µ cV = cA= 1. V − A V A (1 − γ5) W± µ g τ∓= 1 2(τ1∓ τ2) 12τ1,2 1 2τ3 2 × 2 SU (2) SU (2) n n SU (2) ¯ νµe− → ¯νµe− g ¯χγµτ3χ(W3)µ T = 1

(17)

T3 SU(2)L cV, cA'= 1 Y Bµ g′ SU (2)L U (1)Y SU (2)L× U(1)Y Y T3 Q Q = T3+ Y /2. SU (2)L× U(1)Y Z sin θW Aµ= Bµcos θW + Wµ3sin θW Zµ= −Bµsin θW + Wµ3cos θW. e e = g sin θW = g′cos θW W± Z SU (3) αs

(18)

• SU (2)L× U(1)Y CP CP • W± Z Q •

(19)

T T3 Q   νe e   L   νµ µ   L   ντ τ   L 1/2 +1/2 −1/2 0 −1 νeR νµR ντ R 0 eR µR τR −1   u d   L   c s   L   t b   L 1/2 +1/2 −1/2 +2/3 −1/3 uR cR tR +2/3 dR sR bR −1/3 T T3 Q < 20 M eV |(i|S|f)|2 i f S S α S S e+e− e+e− Z s t u

(20)

γ∗ e− e+ f ¯ f Z∗ e− e+ f ¯ f s e+e−→ f ¯f e+e− t u e− e+ ¯ f f ¯ f f e− e+ f ¯ f • α αs αs •

(21)

Z e+e− √ s ≈ 60 GeV s = 35 GeV µ τ Z Z W Z W Z MW MZ mW= 81+5−3GeV mW = 80+10−6 mZ= 95.2 ± 2.5 GeV mZ= 91.9 ± 1.3 ± 1.4 W GF = e 2√2 8m2Wsin2θW . W sin θW ≈ 0.25

(22)

θ W Z mW mZ = cos θW. Z 90 ! mZ ! 100 GeV Z

(23)

Z W • Z WW • Z e+e− Z Z Z mZ= 91.1874 ± 0.0021 GeV.

(24)

Measurement

Fit

|O

meas

O

fit

|/σ

meas

0

1

2

3

0

1

2

3

∆α

had

(m

Z

)

∆α

(5)

0.02758 ± 0.00035 0.02768

m

Z

[GeV]

m

Z

[GeV]

91.1875 ± 0.0021

91.1874

Γ

Z

[GeV]

Γ

Z

[GeV]

2.4952 ± 0.0023

2.4959

σ

had

[nb]

σ

0

41.540 ± 0.037

41.478

R

l

R

l

20.767 ± 0.025

20.742

A

fb

A

0,l

0.01714 ± 0.00095 0.01645

A

l

(P

τ

)

A

l

(P

τ

)

0.1465 ± 0.0032

0.1481

R

b

R

b

0.21629 ± 0.00066 0.21579

R

c

R

c

0.1721 ± 0.0030

0.1723

A

fb

A

0,b

0.0992 ± 0.0016

0.1038

A

fb

A

0,c

0.0707 ± 0.0035

0.0742

A

b

A

b

0.923 ± 0.020

0.935

A

c

A

c

0.670 ± 0.027

0.668

A

l

(SLD)

A

l

(SLD)

0.1513 ± 0.0021

0.1481

sin

2

θ

eff

sin

2

θ

lept

(Q

fb

) 0.2324 ± 0.0012

0.2314

m

W

[GeV]

m

W

[GeV]

80.399 ± 0.023

80.379

Γ

W

[GeV]

Γ

W

[GeV]

2.098 ± 0.048

2.092

m

t

[GeV]

m

t

[GeV]

173.1 ± 1.3

173.2

August 2009 χ2

(25)

Z ΓZ = 2.4952±0.0023 Z Z Nν = 2.9840 ± 0.0082 10 102 103 104 105 0 20 40 60 80 100 120 140 160 180 200 220 Centre-of-mass energy (GeV)

Cross-section (pb) CESR DORIS PEP PETRA TRISTAN KEKB PEP-II

SLC

LEP I

LEP II

Z

W

+

W

-e

+

e

hadrons

e+e− AF B = NF − NB NF + NB NF/B F B ALR= N L− NR NL+ NB 1 (|Pe|)

(26)

L R

Pe

sin2θlept.eff. eff.

AF B

c b

b

sin2θeff.lept.

sin2θlept.eff. = 0.23221 ± 0.00029.

ALR

sin2θeff.lept.

Z

ALR = Al= 0.1513 ± 0.0021

sin2θlept.eff.

sin2θlept.eff. = 0.23098 ± 0.00026

sin2θlept.

eff.

AF B

sin2θlept.eff.

AF B,LR sin2θeff.lept.

W WW e+e→ W+WWW W W mW = 80.376 ± 0.033 GeV. ΓW = 2.196 ± 0.083 GeV.

(27)

x u d Q2 y q V∗ P e q′ ℓ′ e q P V∗ V = Z, W, γ ℓ = e, ν q′ Q2 Q2 ≈ 0 Q2 ≈ 104GeV • •

(28)

Q2 W± Z Q2 ≈ 104GeV Z W± Q2 uud 3 10 10 -7 -5 -3 -1 10 ] 2 [pb/GeV 2 /dQ σ d -7 10 -5 10 -3 10 -1 10 10 ] 2 [GeV 2 Q 3 10 104 p CC (prel.) + H1 e p CC (prel.) -H1 e p CC 06-07 (prel.) + ZEUS e p CC 04-06 -ZEUS e p CC (HERAPDF 1.0) + SM e p CC (HERAPDF 1.0) -SM e p NC (prel.) + H1 e p NC (prel.) -H1 e p NC 06-07 (prel.) + ZEUS e p NC 05-06 -ZEUS e p NC (HERAPDF 1.0) + SM e p NC (HERAPDF 1.0) -SM e y < 0.9 = 0 e P HERA Q2 dσ/dQ2

(29)

e P -1 -0.5 0 0.5 1 [pb] CC σ 0 20 40 60 80 100 120 H1 Preliminary 2 > 400 GeV 2 Q y < 0.9 X ν → p + e X ν → p -e HERAPDF 1.0 H1 HERA I H1 HERA II (prel.) H1 HERA I H1 HERA II (prel.) e P -1 -0.5 0 0.5 1 [pb] CC σ 0 20 40 60 80 100 120 e+p Pe W −1, (+1) +1, (−1)

(30)

Q2 x ˜ Fi(x, Q2) σr,NC± = d 2σe± p NC dxdQ2 · Q4x 2πα2(y + 1)= ˜F2∓ y − 1 y + 1xF˜3− y2 y + 1F˜L. Q2 x x ≈ 1 xg x αs αs αs(mZ) 150 < Q2 < 15000 αs(mZ) = 0.1168 ± 0.0007(exp.)+0.0046−0.0030(th.) ± 0.0016

(31)

H1 and ZEUS

x = 0.00005, i=21 x = 0.00008, i=20 x = 0.00013, i=19 x = 0.00020, i=18 x = 0.00032, i=17 x = 0.0005, i=16 x = 0.0008, i=15 x = 0.0013, i=14 x = 0.0020, i=13 x = 0.0032, i=12 x = 0.005, i=11 x = 0.008, i=10 x = 0.013, i=9 x = 0.02, i=8 x = 0.032, i=7 x = 0.05, i=6 x = 0.08, i=5 x = 0.13, i=4 x = 0.18, i=3 x = 0.25, i=2 x = 0.40, i=1 x = 0.65, i=0

Q

2

/ GeV

2

σ

r,NC

(x,Q

2

) x 2

i + HERA I NC e+p Fixed Target HERAPDF1.0 10-3 10-2 10-1 1 10 102 103 104 105 106 107 1 10 102 103 104 105 e+p Q2 Q2 αs(mZ) = 0.1176 ± 0.0020 αs(mZ) = 0.1184 ± 0.0007

(32)

0 5 10 15 20 -4 10 10-3 10-2 10-1 1 0 5 10 15 20 )=0.1176) Z (M s α HERAPDF1.0 ( total uncertainty )=0.1156 Z (M s α )=0.1196 Z (M s α

x

xg

2 = 10 GeV 2 Q H1 and ZEUS xg 0 5 10 15 20 xg αS αs

(33)

from Jet Cross Sections in DIS

s

α

[GeV]

r

10

10

2 0.10 0.15 0.20 0.25

[GeV]

r

µ

10

10

2

α

s

0.10 0.15 0.20 0.25

H1

2 < 100 GeV 2 H1 data for 5 < Q 2 > 150 GeV 2 H1 data for Q PDF uncertaintyTheory 2 > 150 GeV 2 fit from Q s α αs µr

W

c 1 2 & N (Q2ν + Q2 + Nc(Q2u+ Q2d)) = 0 Qi NC u 1.5...3.3 MeV t p¯p

(34)

W t¯t t 10−26s t W b b W W mt = 173.7 ±1.8 mt= 173.1 ± 1.3 GeV (GeV) top M 150 155 160 165 170 175 180 185 190 max )/L top L(M 0 0.2 0.4 0.6 0.8 1 1.2 1.3 GeV ± = 174.8 top M lepton+jets 2D with prior calibrated -1

DØ Run IIb Preliminary, L=2.6 fb

t W W → ℓ±+ ν ℓ mW/2 W

(35)

(GeV) T m 50 60 70 80 90 100

χ

-20 250 60 70 80 90 100 Events/0.5 GeV 2500 5000 7500 10000 Data FAST MC Background -1 (a) D0, 1 fb /dof = 48/49 2 χ W χ2 W mW= 80.399 ± 0.023 GeV ΓW= 2.098 ± 0.048 GeV W

(36)

• • • • gµν GN ≈ 10−38GeV−2 ΛP ≈ 1019GeV •

(37)
(38)
(39)

φ(x)

φ(x) = 1

2[φ1(x) + iφ2(x)]

U (1)

φ(x) → φ′(x) = φ(x)eiα(x), φ⋆(x) → φ′⋆(x) = φ⋆(x)e−iα(x).

∂µ Dµ= ∂µ− ieAµ L = [∂µ+ ieAµ]φ⋆(x)[∂µ− ieAµ]φ(x) − µ2|φ(x)|2− λ|φ(x)|4−1 4F µνF µν, FµνFµν V(φ) = µ2|φ(x)|2+ λ|φ(x)|4 λ > 0 µ2 µ2 >0 -5 -4 -3 -2 -1 0 1 2 3 4 5 -400 -200 0 200 400 600 800 1000 1200 1400 1 φ 2 φ ) φ V( >0 2 µ -8 -6 -4 -2 0 2 4 6 8 -2000 -1500 -1000 -500 0 500 1000 1500 1 φ 2 φ ) φ V( <0 2 µ v V(φ) = µ2|φ(x)|2 + λ|φ(x)|4 λ > 0 µ2 µ2 <0 V(φ) = v V(φ) = 0 <0|φ(x)|0 >

(40)

µ2 < 0 V(φ) = 0 V(φ) = φ0=' −µ 2 2λ (1/2 eiγ(x)= veiγ(x). V(φ) = 0 < 0|φ(x)|0 >= v φ(x) = 1 2[v + σ(x) + iη(x)] L =) 1 2(∂µσ) 21 2(2λv 2σ2) * +) 1 2(∂µη) 2 * −14FµνFµν+ 1 2e 2v2A µAµ + ev(∂µη)Aµ + +

e[σ(∂µη) − η(∂µσ)]Aµ+ ve2σAµAµ+

e2 2(σ 2+ η2)(A µAµ) − vλ(σ3+ ση2) −1 4λ(σ 4+ 2σ2η2+ η4) ! +' v 2√λ 2 ( • σ(x) √2λv η(x)

(41)

η(x) • Aµ mA= ev. σ(x) • • η Aµ •

2 (complex scalar field)

+2 (transverse polarisation of the massless photon) =4.

1 (σ field) 1 (η field)

+3 (massive vector field) =5. eiηv (v + σ(x))eiη(x)v ≈ (v + σ(x))(1 + iη(x) v ) = v + σ(x) + iη(x) , -. / φ(x) +iσ(x)η(x) v , -. / ≈0

(42)

η(x)

v+σ(x)

φ(x) = 1

2(v + σ(x))e

iη(x)/v and thus

Aµ→ Aµ+ 1 ev∂µη, L =) 12(∂µσ)2− 1 2(2λv 2σ2) * −14FµνFµν+ 1 2e 2v2A µAµ + + ve2σ(AµAµ) + 1 2e 2σ2(A µAµ) − λvσ3− 1 4λσ 4 ! +' v 2√λ 2 ( U(1) Aµ • µ2 < 0 • σ(x)

(43)

• U(1) σAA σσAA σ gσAA= e2v= m2A v gσσAA = e 2= m2A v2 . σ(x) λv 1 4λ SU (2)L× U(1)Y SU (2)L Y = 1 Φ = ' φ+ φ0 ( φ+= (φ1+ iφ2)/√2 φ0 = (φ3+ iφ4)/ √ 2 φ0 = 1 √ 2 ' 0 v ( σ(x) ηi(x) Φ = √1 2 ' 0 v + σ(x) ( eηηηtv

(44)

ti = 12τi SU(2)L T φ0→ φ′0 = φ0eiαQ = 1 √ 2 ' 0 v ( eiατ3−Y ·12 φ0 ≈ ' 1 + iα'1 0 0 0 (( φ0= φ0. SU (2)L × U(1)Y U (1)Q SU (2)L× U(1)Y W± Z σ(x) H mγ = 0, mW± = gv 2 , mZ= v0g2+ g′2 2 . gHV V = e2v = m2V v gHHV V = e 2= m2V v2 V = W, Z. Lmass,f = λe ) (¯νe,¯e)L ' φ+ φ0 ( eR+ ¯eR(φ+, φ0) ' νe e (* , λe Lmass,f = −me(¯eLeR+ ¯eReL) − me v (¯eLeR+ ¯eReL)h,

(45)

me= λev √ 2. Φ1= ' φ+1 φ01 ( Φ2 = ' φ+2 φ02 ( φ0,1= 1 √ 2 ' 0 v1 ( , φ0,2 = 1 √ 2 ' 0 v2 ( . tan β = v1 v2 . W± Z • A0 • H± • h0 H0

(46)

m2A0 = m212 sin β cos β− 1 2(v1+ v2) 2(2λ 5+ λ6tan−1β+ λ7) m2H± = m2A0+ 1 2(v1+ v2) 2 5− λ4), m12 λi M2= m2A0 + 1 s2β −sβcβ −sβcβ c2β 2 + (v1+ v2)2 1 λ1c2β+ 2λ6sβcβ+ λ5s2β (λ3+ λ4)sβcβ+ λ6c2β+ λ7s2β −(λ3+ λ4)sβcβ+ λ6c2β+ λ7sβ2 λ2s2β+ 2λ7sβcβ+ λ5c2β 2 sβ = sin β cβ = cos β m2h0,H0 = 1 2 ' M211+ M222± 3 (M2 11− M222)2+ 4(M212)2 ( α sin 2α = 2M 2 12 0 (M211− M222)2+ 4(M212)2 cos 2α = M 2 11− M212 0 (M2 11− M222)2+ 4(M212)2 • α • tan β • mA0 mh0 mH0 mH± mW = g 0 v2 1 + v22 2 , mZ= 0 (v2 1 + v22)(g2+ g′2) 2 , Mγ= 0

(47)

α β

sin(β − α) cos(β − α)

Z sin(β − α) cos(β − α)

cos α/sinβ sin α/ sin β cot β sin α/cosβ cos α/ cos β tan β sin α/ cos β cos α/ cos β tan β

α β Λ ΛP ΛGU T ∼ 1014− 1016GeV m0H = √2λv Λ

(48)

m2H= (m0H)2+ 3Λ 2 8π2v2[m 2 H+ 2m2W+ m2Z− 4m2t] ΛGU T ΛP Λ

(49)

|B > |fα> Qα|fα >= |B > Qα|B >= |fα > ΛGU T ≈ 1016GeV • • R= (−1)3(B−L)+s

(50)

m2A0 = m212(tan β + cot β) m2H± = m2A0 + m2W. m2h0,H0 = 1 2 ' m2A0 + m2Z± 3 (m2 A0+ m2Z)2+ (2mZmA0cos 2β)2 ( , cos 2α = − cos 2βm 2 A0 − m2Z m2H0 − m2h0 sin 2α = − sin 2βm 2 H0 + m2h0 m2 H0 − m2h0 mA tan β mh0 ≤ mZ|cos2β| ≤ mZ Z∗ e− e+ H Z H Z Z

(51)

e+em H ≈ √s Z σHZ(e+e−→ ZH) = G2Fm4Z 96πs (g 2 V ee+ gAe2 )λ 1/2 2b λ2b+ 12m2Z/s (1 − m2 Z/s)2 . √s g V e gAe Z λ2b = (1 − m2H/s − m2Z/s)2− 4m2Hm2Z/s2 √ s ≈ mZ+√2mH 1/s Z ZH

(GeV)

s

200 250 300 350 400 450 500

(fb)

σ

0 50 100 150 200 250 MH=120 GeV =150 GeV H M =180 GeV H M

(GeV)

H

M

100 120 140 160 180 200

(fb)

σ

0 100 200 300 400 =230 GeV s =250 GeV s =350 GeV s =500 GeV s σ √ s mH WW ZZ σ∼ m−2V log(s/mH) V = W, Z mH/√s ≪ 1 ZZ 100 !

(52)

mH ! 1000 GeV WW √s >500 GeV WW ZZ Z JP = 0+ dσHZ(e+e−→ ZH) d cos θ ∼ λ 2 2bsin2θ+ 8m2Z/s , θ e+e− s≫ m2Z Z ∼ sin2θ θ JP = 0− Z (1 + cos2θ) mH mH mH≈ 100 GeV

(53)

θ

cos

-1

-0.5

0

0.5

1

norm. a.u.

0.2

0.3

0.4

0.5

0.6

=230 GeV s =250 GeV s =350 GeV s =500 GeV s =120 GeV H M e+e−→ HZ cosθ mH = 120 GeV sin2θ Zs ≫ mZ Γ(H → f ¯f) = g 2 Hf f 4π NC 2 MH ' 1 −4m 2 f MH2 (3/2 , NC NC = 1 NC = 3 H V V V = W Z Γ(H → V V ) = GFm 3 H 16√2πδV √ 1 − 4x (1 − 4x + 12x2) , x = M 2 V MH2 δW = 2 δZ = 1 mH

(54)

W Z e+e− → Z→ hZ(HZ) e+e−→ Z→ hA(HA) σhZ= sin2(β − α)σHZSM σHZ= cos2(β − α)σHZSM σhA= cos2(β − α)¯λσSMHZ σHA= sin2(β − α)¯λσSMHZ ¯ λ

(55)

dσ d cos θ ∼ + λ22bsin2θ+ 8m2Z/s e+e−→ Z→ hZ(HZ) , sin2θ e+e→ Z→ hA(HA). WLWL √ s → ∞ Λ W √ s → ∞ W mH≤ 1.2 TeV Z

(56)

mH≤ 1 TeV λ λφ4 λ µ2r λ(µ2r) = λ(v 2) 1 −3λ(v8π22)log µ2 r v2 , λ(v2) = m2H/2v2 m2H= v 2 1 2λ(µ2 r)+ 3 8π2log( µ2 r v2) . λ(Λ) < ∞ m2H v 2 3 8π2log(Λ 2 v2) . Λ Λ mt = 175 GeV

(57)

λ λ Λ = 1019GeV 130 ≤ mH≤ 190 αs W W GF mW mt

(58)

80.3

80.4

80.5

150

175

200

m

H

[GeV]

114

300

1000

m

t

[GeV]

m

W

[GeV

]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

August 2009 mt mW GF mH= 87+35−26GeV mh >114.4 GeV 150 ! mH!180 GeV H → WW mH x · σSM σSM 163 < mH< 166 GeV

(59)

0 1 2 3 4 5 6 7 0 20 40 60 80 100 120

m

Hrec

(GeV/c

2

)

Events / 3 GeV/c

2

LEP

√s– = 200-209 GeV

Tight

Data Background Signal (115 GeV/c2) Data 18 Backgd 14 Signal 2.9 all > 109 GeV/c2 4 1.2 2.2 mrecH e+e1 10 100 110 120 130 140 150 160 170 180 190 200 1 10 mH(GeV/c2) 95% CL Limit/SM

Tevatron Run II Preliminary, L=2.0-5.4 fb

Expected Observed

±1σ Expected ±2σ Expected

LEP Exclusion Tevatron

Exclusion

SM=1

November 6, 2009

(60)

e+e−

e+e

(61)
(62)

m E ∆E Turn ∼ γ4 r γ = E m.

(63)

r 16 · 26.7 = 427.2 km L L ∼ ηP√w s × ' δE εy,N (1/2 × HD η Pw δE HD HD ≈ 2 εy,N • • 2×1034cm−2s−1 500 fb−1 •

(64)

• 1010

(65)

• •

(66)

1031cm2s1 ∆T ∞ ∞ e− e+ W Z

(67)
(68)

Ejet σEjet/Ejet ≈ 4% • b c • • • π z • z σrφ= σrz = 5 ⊕ 10/(psin 3 2θ) µm • cos θ • z

(69)

δ(1/PT) ∼ 2 × 10−5GeV−1 PT P • X0 λI ∆E E = 15%/ 0 E [GeV] • λI 1×1 cm2 3 × 3 cm2 •

(70)

• B R σEjet/Ejet • rms90 σEjet Ejet = 21 pE/GeV ⊕0.7 ⊕ 0.004E ⊕ 2.1 „ R 1825 mm «−1.0„ B 3.5 T «−0.3„ E 100 GeV «0.3 %. R •

(71)

B Field/Tesla 2 2.5 3 3.5 4 4.5 5 [%] jet /E 90 rms 2.5 3 3.5 4 4.5 = 1825 mm ECAL r a) 45 GeV Jets 100 GeV Jets 180 GeV Jets 250 GeV Jets

ECAL Inner Radius/mm 1200 1400 1600 1800 2000 [%] jet /E 90 rms 2.5 3 3.5 4 4.5 B = 3.5 Tesla b) 45 GeV Jets 100 GeV Jets 180 GeV Jets 250 GeV Jets rms90 rms90

ECAL Cell Size/cm

0 1 2 3 [%] jet /E 90 rms 3 3.5 4 4.5 5 a) 45 GeV Jets 100 GeV Jets 180 GeV Jets 250 GeV Jets

HCAL Cell Size/cm

0 2 4 6 8 10 [%] jet /E 90 rms 3 3.5 4 4.5 5 b) 45 GeV Jets 100 GeV Jets 180 GeV Jets 250 GeV Jets rms90 rms90 e+e−

(72)

• •

X0 = 3.5 mm RM= 9 mm

(73)

cm2

cm2

X0 X0

(74)

• 135oC 0o 10o 20o 30o 45o 45o 45o • inch2 525 µm 5MΩ · m

(75)

3000 m2 pn • 6 × 6 • 3 × 2 3 × 1

(76)
(77)
(78)

(GeV) beam E 5 10 15 20 25 30 35 40 45 (MIPs) mean E 2000 4000 6000 8000 10000 12000 14000 16000 / ndf 2 χ 17.64 / 32 Prob 0.9812 p0 −96.25 ± 11.13 p1 266.5 ± 0.4802 / ndf 2 χ 17.64 / 32 Prob 0.9812 α 96.25 ± 11.13 β 266.5 ± 0.4802 CALICE 2006 data (GeV) beam E 5 10 15 20 25 30 35 40 45 (%) meas )/E beam −E meas (E −5 −4 −3 −2 −1 0 1 2 3 4 5 CALICE 2006 data Monte Carlo (GeV) beam E 1/ 0.15 0.2 0.25 0.3 0.35 0.4 ( % ) meas ) / E meas (E σ 2 3 4 5 6 7 8 9 χ2 / ndf 1.835 / 6 p0 p1 ± / ndf CALICE 2006 data 2 Monte Carlo χ 30.69 / 32 s 16.53 ± 0.14 c 1.07 ± 0.07

σ(Emeas)/Emeas 1/√Ebeam

s/√E ⊕ c ± σ(Emeas) Emeas = 1 16.53 ± 0.14(stat) ± 0.4(syst) 0

E(GeV) ⊕ (1.07 ± 0.07(stat) ± 0.1(syst)) 2

(79)

ˆ x yˆ zˆ

φ θ

φ= atan(ˆy/ˆz), θ = atan(ˆx/ˆz).

(106 ± 2)/√E ⊕ (4 ± 1) mrad

(100 ± 2)/√E ⊕ (14 ± 1) mrad .

φ

x θ y

(80)

Pad ID

0 2000 4000 6000 8000 10000

Residual Pedestal (ADC) -3

-2 -1 0 1 2 3

Residual Pedestal (ADC)

-2 -1 0 1 2 Entries/(0.05 ADC) 0 200 400 600 y −0.058 ± 0.003 0.281 ± 0.002 Pad ID 0 2000 4000 6000 8000 10000 Noise (ADC) 4 5 6 7 8 Noise (ADC) 5 6 7 8 Entries/(0.1 ADC) 0 200 400 600 800 1000 1200 1400 y 5.930 ± 0.003 0.330 ± 0.002 −0.058 ± 0.003 ADC Counts 0.281 ± 0.002 ADC Counts 5.930 ± 0.003 ADCCounts 0.330 ± 0.002 ADC Counts 47.61 ± 0.02 ADC Counts 0.77%

(81)

Hit Energy (50 ADC counts)

0 1 2 3 4 5

Entries/(2.5 ADC counts)

0 20 40 60 80 100 46.57 ± 0.04 7.26 ± 0.73 5.930 ± 0.003 ADC Counts Pad ID 0 2000 4000 6000 8000 Landau MPV (ADC) 30 35 40 45 50 55 60 Landau MPV (ADC) 30 35 40 45 50 55 60 Entries/(0.3 ADC) 0 100 200 300 400 500 y 47.61±0.02 2.06 ± 0.01 108

(82)

(ADC) FNAL MPV 40 45 50 55 (ADC) CERN Aug06 MPV 40 45 50 55 0 5 10 15 20 25 (ADC) FNAL MPV 40 45 50 55 (ADC) CERN Oct06 MPV 40 45 50 55 0 5 10 15 20 25 30 (80.30 ± 0.44)% (83.76 ± 0.37)% (80.30 ± 0.44)% (83.76 ± 0.37)%

1.21±0.01 ADC Counts 0.67±0.01 ADC Counts

(83)

Pad ID 0 1000 2000 3000 4000 5000 6000 (ADC) FNAL -MPV CERN Aug06 MPV-10 -5 0 5 10 (ADC) FNAL -MPV CERN Aug06 MPV -10 -5 0 5 10 Entries/(0.02 ADC) 0 100 200 300 400 0.67 ± 0.02 1.21 ± 0.01 Pad ID 0 1000 2000 3000 4000 5000 6000 (ADC) FNAL -MPV CERN Oct06 MPV-10 -5 0 5 10 (ADC) FNAL -MPV CERN Oct06 MPV -10 -5 0 5 10 Entries/(0.02 ADC) 0 100 200 300 400 500 1.42 ± 0.01 1.08 ± 0.01

(84)

(85)

σ2long= 4 hitsEi· zi2 Etot − ' 4 hitsEi· zi Etot (2 σ2trans= 4 hitsEi· (x2i + y2i) Etot − ' 4 hitsEi· 3 x2i + y2 i Etot (2 xi, yi zi Ei Etot • 5.5 × 5.5 mm2 • X0 •

(86)
(87)

1560 × 545 × 186 mm3 X0 X0 X0 18 × 18 cm2 5.5 × 5.5 mm2 2 × 2 16 × 16 18 × 18 cm2 n × dW[mm] 10 × 1.4 + 10 × 2.8 + 10 × 4.2 20 × 2.1 + 9 × 4.2 X0 24 23 mm3 380 × 380 × 200 1560 × 545 × 186

(88)

1200 µm

(89)

200oC

(90)
(91)

8oC

1.5oC

(92)
(93)

oC

32 × 32 16 × 16

325 µm

(94)

1 10 2 10 pad index 0 2 4 6 8 10 12 14 16 18 pad index 0 2 4 6 8 10 12 14 16 18

(95)

• • • •

(96)
(97)
(98)

e+e

1.6 × 2.3 mm2 1 × 1 cm2

3000 µm2

(99)
(100)
(101)
(102)

[MIP] tot E 0 2000 4000 6000 8000 10000 12000 14000 /(3 0 MI P) e v e n ts N 1 10 2 10 3 10 4 10 Total Energy lay N 0 5 10 15 20 25 )[MI P] la y (1 /n )(d E/ N 0 100 200 300 400 500 600 700

Longitudinal Shower Profile

I 2 4 6 8 10 12 14 16 18 J 2 4 6 8 10 12 14 16 18 Layer 2 I 2 4 6 8 10 12 14 16 18 J 2 4 6 8 10 12 14 16 18 Layer 14 I, J

(103)

Scanpoint Chip ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 ADC Counts -60 -40 -20 0 20 40 60 ev. n/N -7 10 -6 10 -5 10 -4 10 -3 10

(104)

Scanpoint 0.5 1 1.52 2.5 33.5 4 4.5 55.5

Mean Signal [ADC Counts]

-1.5 -1 -0.5 0 0.5 1 1.5

Scan 1: Mean in Signal Events

Scanpoint 0.5 11.5 22.5 3 3.5 44.5 5 5.5

Mean Pedestal [ADC Counts]

-1.5 -1 -0.5 0 0.5 1 1.5

Scan 1: Mean in Pedestal Events

Scanpoint 0.5 1 1.5 2 2.53 3.54 4.5 55.5 )/MIP Ped -Mean Sig (Mean -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 Scanpoint 0.5 1 1.52 2.5 33.5 4 4.5 55.5

RMS Signal [ADC Counts]

4 4.5 5 5.5 6 6.5 7 Chip_1 Chip_2 Chip_3 Chip_4

Scan 1: RMS in Signal Events

Scanpoint 0.5 11.5 22.5 3 3.5 44.5 5 5.5

RMS Pedestal [ADC Counts]

4 4.5 5 5.5 6 6.5 7

Scan 1: RMS in Pedestal Events

Scanpoint 0.5 1 1.5 2 2.53 3.54 4.5 55.5 )/MIP Ped -RMS Sig (RMS -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 Scanpoint 0.5 1 1.52 2.5 33.5 4 4.5 55.5

Mean Signal [ADC Counts]

-1.5 -1 -0.5 0 0.5 1 1.5

Scan 2: Mean in Signal Events

Scanpoint 0.5 11.5 22.5 3 3.5 44.5 5 5.5

Mean Pedestal [ADC Counts]

-1.5 -1 -0.5 0 0.5 1 1.5

Scan 2: Mean in Pedestal Events

Scanpoint 0.5 1 1.5 2 2.53 3.54 4.5 55.5 )/MIP Ped -Mean Sig (Mean -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 Scanpoint 0.5 1 1.52 2.5 33.5 4 4.5 55.5

RMS Signal [ADC Counts]

4 4.5 5 5.5 6 6.5 7 Chip_1 Chip_2 Chip_3 Chip_4

Scan 2: RMS in Signal Events

Scanpoint 0.5 11.5 22.5 3 3.5 44.5 5 5.5

RMS Pedestal [ADC Counts]

4 4.5 5 5.5 6 6.5 7

Scan 2: RMS in Pedestal Events

Scanpoint 0.5 1 1.5 2 2.53 3.54 4.5 55.5 )/MIP Ped -RMS Sig (RMS -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

(105)

Scanpoint 0.5 11.5 22.5 3 3.5 44.5 5 5.5

Mean Signal [ADC Counts]

-1.5 -1 -0.5 0 0.5 1 1.5

Scan 3: Mean in Signal Events

Scanpoint 0.5 1 1.52 2.5 33.5 4 4.5 55.5

Mean Pedestal [ADC Counts]

-1.5 -1 -0.5 0 0.5 1 1.5

Scan 3: Mean in Pedestal Events

Scanpoint 0.5 1 1.5 22.5 33.5 44.5 5 5.5 )/MIP Ped -Mean Sig (Mean -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 Scanpoint 0.5 11.5 22.5 3 3.5 44.5 5 5.5

RMS Signal [ADC Counts]

4 4.5 5 5.5 6 6.5 7 Chip_1 Chip_2 Chip_3 Chip_4

Scan 3: RMS in Signal Events

Scanpoint 0.5 1 1.52 2.5 33.5 4 4.5 55.5

RMS Pedestal [ADC Counts]

4 4.5 5 5.5 6 6.5 7

Scan 3: RMS in Pedestal Events

Scanpoint 0.5 1 1.5 22.5 33.5 44.5 5 5.5 )/MIP Ped -RMS Sig (RMS -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 Scanpoint 0.5 11.5 22.5 3 3.5 44.5 5 5.5

Mean Signal [ADC Counts]

-1.5 -1 -0.5 0 0.5 1 1.5

Scan 4: Mean in Signal Events

Scanpoint 0.5 1 1.52 2.5 33.5 4 4.5 55.5

Mean Pedestal [ADC Counts]

-1.5 -1 -0.5 0 0.5 1 1.5

Scan 4: Mean in Pedestal Events

Scanpoint 0.5 1 1.5 22.5 33.5 44.5 5 5.5 )/MIP Ped -Mean Sig (Mean -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 Scanpoint 0.5 11.5 22.5 3 3.5 44.5 5 5.5

RMS Signal [ADC Counts]

4 4.5 5 5.5 6 6.5 7 Chip_1 Chip_2 Chip_3 Chip_4

Scan 4: RMS in Signal Events

Scanpoint 0.5 1 1.52 2.5 33.5 4 4.5 55.5

RMS Pedestal [ADC Counts]

4 4.5 5 5.5 6 6.5 7

Scan 4: RMS in Pedestal Events

Scanpoint 0.5 1 1.5 22.5 33.5 44.5 5 5.5 )/MIP Ped -RMS Sig (RMS -0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01

(106)

SU(2)L× U(1)Y mH = 120 GeV √ s = 250 GeV Z e+e→ HZ Z → µ+µ− Z → e+eZ µµX eeX

(107)

e−Le+R Pe− = −80% Pe+ = +30% e−Re+L Pe− = +80% Pe+ = −30% L = 10 ab−1 fb−1 µµX µµ τ τ µµνν µµf f eeX ee τ τ eeνν eef f e−Le+R Z

(108)

µµX µµ τ τ µµνν µµf f eeX ee τ τ eeνν eef f e−Re+L Z Mrecoil Mrecoil2 = s + MZ2− 2EZ√s MZ Z EZ Z 15 < P < 90 GeV EECAL Etotal Ptrack µ e EECAL/Etotal < 0.5 > 0.6 Etotal/Ptrack < 0.3 > 0.9

(109)

Efficiency = Ntrue∩iden Ntrue Purity = Ntrue∩iden Niden Ntrue Niden Ntrue∩iden P >15 GeV Z Z Z Z → µµ Z → ee P >15 GeV Z ∆P/P2 ∆P θ cos -1 -0.5 0 0.5 1 (1/GeV) 2 P/P ∆ 0 0.0002 0.0004 0.0006 0.0008 0.001 cut 2 P/P ∆ θ vs. cos 2 P/P ∆ P (GeV) 0 20 40 60 80 100 (1/GeV) 2 P/P ∆ 0 0.0002 0.0004 0.0006 0.0008 0.001 parameterization 2 P/P ∆ cut 2 P/P ∆ |<0.78 θ vs. P, for |cos 2 P/P ∆ ∆P/P2 cos θ ∆P/P2 ∆P/P2 cos θ P | cos θ| < 0.78 ∆P/P2

(110)

θ cos -1 -0.5 0 0.5 1 (1/GeV) 2 P/P ∆ 0 0.0002 0.0004 0.0006 0.0008 0.001 cut 2 P/P ∆ θ vs. cos 2 P/P ∆ P (GeV) 0 20 40 60 80 100 (1/GeV) 2 P/P ∆ 0 0.0002 0.0004 0.0006 0.0008 0.001 parameterization 2 P/P ∆ cut 2 P/P ∆ |<0.78 θ vs. P, for |cos 2 P/P ∆ ∆P/P2 cos θ ∆P/P2 | cos θ| ∆P/P2 P • | cos θ| < 0.78 ∆P/P2 P

δ(1/P ) = ∆P/P2 = a⊕b/P = c(P ); with a = 2.5×10−5GeV−1and b = 8×10−4.

δ(1/P ) > 2c(P ) • | cos θ| > 0.78 ∆P/P2> 5 × 10−4GeV−1 Z Z • Mdl Z

(111)

Mrecoil 80 < Mdl <100 GeV 115 < Mrecoil<150 GeV • e+e− Z∗ acop acop = |φ+ − φ−| φ± 0.2 < acop < 3 • PT dl PT dl > 20 GeV

• |cosθmissing| = |4 Pz,miss|/|4 Pmiss|

e+e− → ℓ+γ |cosθ missing| < 0.99 e+e− → µ+µ(e+e) PT γ PT dl Z∗ ∆PT bal.= PT dl−PT γ ∆PT bal.> 10 GeV

(112)

(GeV) γ T P 0 20 40 60 80 100 (GeV) Tdl P 20 30 40 50 60 70 80 µ µ of ISR Photon, γ T vs. P Tdl P (GeV) γ T P 0 20 40 60 80 100 (GeV) Tdl P 20 30 40 50 60 70 80 X µ µ → of ISR Photon, ZH γ T vs. P Tdl P PT dl PT γ e+e− → µ+µ− µµX (GeV) Tbal. P ∆ -100 -50 0 50 100 Nevts 1 10 2 10 3 10 4 10 Tbal. P ∆ X µ µ µ µ ∆PT bal. e+e− → µ+µ− µµX e+e− → µ+µγ(e+eγ) Z Z µµX |∆θ2tk| = 0 |∆θ2tk| > 0.01

(113)

| (rad)

2tk

θ

|

0 0.02 0.04 0.06 0.08 0.1

norm. a.u.

-2 10 -1 10 1

X

µ

µ

µ

µ

∆θ2tk ∆θ Nadd.T K = 2 µµX µµ e+e−→ ZZ/γγ e+e→ W+W− Z W Z W Mdl PT dl acol = acos(Pℓ+P−/|P+||P−|) 115 < Mrecoil< 150 GeV

(114)

dl

θ

cos

-1

-0.5

0

0.5

1

norm. a.u.

-2

10

-1

10

X µ µ µ µ τ τ ν ν µ µ ff µ µ dl

θ

cos

-1

-0.5

0

0.5

1

norm. a.u.

-2

10

-1

10

eeX ee τ τ ν ν ee eeff cosθdl µ+µ−X e+e−X τ τ µµ ee τ τ

(115)

mH σHZ eeX ZZ e−Le+R e−Re+L mH= 120 GeV W eeX W mH σHZ e−Re+L µ+µ−X ± ± L = 250 fb−1 e+eX ± ± ± ± e−Le+R µ+µ−X ± ± L = 250 fb−1 e+e−X ± ± ± ± mH σHZ mH σHZ e−Re+L µ+µ−X ± ± L = 250 fb−1 e+e−X ± ± ± ± e−Le+R µ+µ−X ± ± L = 250 fb−1 e+eX ± ± ± ± mH σHZ

(116)

(GeV)

recoil

M

120

130

140

150

Eve

n

ts

/

(0

.2

)

0

20

40

60

80

100

120

140

Sig+Bkg Sig

(GeV)

recoil

M

120

130

140

150

Eve

n

ts

/

(0

.2

)

0

20

40

60

80

Sig+Bkg Sig µµX eeX e−Le+R

(117)

(GeV)

recoil

M

120

130

140

150

Eve

n

ts

/

(0

.2

)

0

20

40

60

80

Sig+Bkg Sig

(GeV)

recoil

M

120

130

140

150

Eve

n

ts

/

(0

.2

)

10

20

30

40

50

Sig+Bkg Sig µµX eeX e−Re+L

(118)

eeX µµX µµX eeX W eeX µµX µµX eeX eeX Z Z mH σHZ e−Re+L ± ± e−Le+R ± ± e− Re+L ± ± e−Le+R ± ± mH σHZ e+eX

(119)

(GeV)

recoil

M

120

130

140

150

Events / (0.2)

0

20

40

60

80

100

Sig+Bkg

Sig

Fit to Sig+Bkg

Fit to Bkg

(GeV)

recoil

M

120

130

140

150

Events / (0.2)

0

20

40

60

Sig+Bkg

Sig

Fit to Sig+Bkg

Fit to Bkg

eeX e−Le+R e−Re+L

(120)

(GeV) recoil M 120 130 140 150 norm. a.u. 0 0.1 0.2 0.3 0.4 0.5 Generator Level Reconstructed Data (GeV) recoil M 120 130 140 150 norm. a.u. 0 0.1 0.2 0.3 0.4 0.5 Generator Level Reconstructed Data µµX eeX

∆Mtot. ∆Mmac. ∆Mdec.

µµX eeX ∆Mmac. ∆Mdet. µµX µµX eeX √s = 250 GeV fb−1 σHZ Z 115 < mH<150 GeV

(121)

σ ∼ gHZZ2 gHZZ HZZ µµX eeX σ HZ √s= 230 GeV Z

(122)

5 × 5 mm2

X0

(123)

• • 17%/√E (100 mrad)/√E • • • 25 µW/channel •

(124)
(125)
(126)
(127)

√ s 1010 nb tb Iave frep β∗ x β∗ y σ∗ x σ∗ y σz µ γε∗ x · γε∗ y · Dx Dy Υave κ= 2/(3Υave) δBS nγ HD Lgeo 10 34 cm−2s−1 L 1034 cm−2s−1 1 ∼ ∼

(128)

(129)
(130)
(131)
(132)

e+e−→ f ¯f Z

s

= 540 GeV

¯ pp

(133)

GeV/c2

Z0 → e+epp¯

(134)

ep Q2 αs

Q2 αs

αs(mZ)

¯ pp

(135)
(136)
(137)
(138)
(139)

e+e

ee→ ZH

e+e−→ hZ → hµµ

HZ

(140)

e+e→ ZH

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to