• Aucun résultat trouvé

Invariant multidimensional matrices

N/A
N/A
Protected

Academic year: 2021

Partager "Invariant multidimensional matrices"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: hal-00001032

https://hal.archives-ouvertes.fr/hal-00001032

Preprint submitted on 14 Jan 2004

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Invariant multidimensional matrices

Jean Vallès

To cite this version:

(2)

ccsd-00001032 (version 1) : 14 Jan 2004

Invariant multidimensional matrices

Jean Vall`es

“On se persuade mieux, pour l’ordinaire , par les raisons qu’on a soi-mˆeme trouv´ees que par celles qui sont venues dans l’esprit des autres”(Pascal).

Abstract : In [AO] the authors study Steiner bundles via their unstable hyperplanes and proved that (see [AO], Tmm 5.9) :

A rank n Steiner bundle on Pn

which is SL(2, C) invariant is a Schwarzenberger bundle.

In this note we give a very short proof of this result based on Clebsch-Gordon problem for SL(2, C)-modules.

1

Introduction

Let A, B, and C three vector spaces over C and φ : A ⊗ B → C∗

a linear surjective map. We consider the sheaf Sφon P(A) × P(B) defined by,

0 −−−−→ Sφ −−−−→ C ⊗ OP(A)×P(B)

tφ

−−−−→ OP(A)×P(B)(1, 1)

with fibers Sφ(a ⊗ b) = {c ∈ C | φ(a ⊗ b)(c) = 0}.

Remark 1. If dimCC < dimCA + dimCB − 1 then ker(φ) meets the set of decomposable

tensors, so there exist a ∈ A , a 6= 0 and b ∈ B, b 6= 0 such that φ(a ⊗ b) = 0.

Remark 2. When Sφ is a vector bundle it gives two “associated” Steiner bundles SA on

P(A) and SB on P(B) after projections (see [DK], prop. 3.20). We denote by (P(A) × P(B) × P(C))∨

the variety of hyperplanes tangent to the Segre P(A) × P(B) × P(C) and by ({a} × {b} × P(C))the set of hyperplanes in P(A ⊗ B ⊗ C)

containing {a} × {b} × P(C).

The next proposition is a reformulation of many results from, [GKZ] (see for instance Thm 3.1’ page 458, prop 1.1 page 445), [AO] (see thm page 1) and [DO] (see cor.3.3).

Proposition 1.1. Let A, B, and C three vector spaces over C with dimCA = n + 1,

dimCB = m + 1 and dimCC ≥ n + m + 1 and φ : A ⊗ B → C∗ a surjective linear map.

Then the following propositions are equivalent : 1) Sφ is a vector bundle over P(A) × P(B).

2) φ(a ⊗ b) 6= 0 for all a ∈ A, a 6= 0 and b ∈ B, b 6= 0.

3) φ /∈ ({a} × {b} × P(C))∨ for all a ∈ A, a 6= 0 and b ∈ B, b 6= 0.

4) φ /∈ (P(A) × P(B) × P(C))∨

Remark 3. When dimCC = dimCA + dimCB − 1 the variety (P(A) × P(B) × P(C))∨ is

an hypersurface in P((A ⊗ B ⊗ C)∨

(3)

hyperdeterminant, say Det(Φ) where Φ is the generic tridimensional matrix (see [GKZ], chapter 1 and 14).

Proof. It is clear that 1) 2) and 3) are equivalent. It remains to show that 3) and 4) are equivalent too.

Since ∂(abc) = (∂(a))bc + a(∂(b))c + ab(∂(c)) an hyperplane H is tangent to the Segre in a point (a, b, c) if and only if it contains P(A) × {b} × {c} and {a} × P(B) × {c} and {a} × {b} × P(C). We prove here that the third condition implies the two others. Let H an hyperplane containing {a} × {b} × P(C), we show that there exists c ∈ C such that H contains P(A) × {b} × {c} and {a} × P(B) × {c}. Let φ the trilinear application corresponding to H. Since φ(a⊗b)(C) = 0 we have a dimCC-dimensional family of bilinear

forms vanishing on (a, b). Now finding a bilinear form of the above family (i.e. finding c ∈ C) which verify φ(A⊗b)(c) = 0 and φ(a⊗B)(c) = 0 imposes at most n+m conditions. Since dimCC ≥ n + m + 1, this point c exists. 

2

Invariant tridimensional matrix under

SL

(2, C)-action

In the second part of this note we will consider the boundary case dimCC = dimCA + dimCB − 1

Then, instead of writing φ induces a vector bundle or φ /∈ (P(A) × P(B) × P(C))∨

we will write equivalently Det(φ) 6= 0.

We denote by Sithe irreducible SL(2, C)-representations of degree i and by (xi−kyk)k=0,··· ,i

a basis of Si.

Theorem 2.1. Let A, B and C be three non trivial SL(2, C)-modules with dimension n + 1, m + 1 and n + m + 1 and φ ∈ P(A ⊗ B ⊗ C) an invariant hyperplane under SL(2, C). Then,

Det(φ) 6= 0 ⇔ φ is the multiplication Sn⊗ Sm→ Sn+m

Proof. When φ ∈ P(Sn⊗ Sm⊗ Sn+m) is just the multiplication Sn⊗ Sm → Sn+m it is

well known that it corresponds to Schwarzenberger bundles (see [DK], prop 6.3).

Conversely, let A = ⊕i∈ISi ⊗ Ui, B = ⊕j∈JSj ⊗ Vj where Ui, Vj are trivial SL(2,

C)-representations of dimension ni and mj. Let xi ∈ Si, xj ∈ Sj be two highest weight

vectors and u ∈ Ui, v ∈ Vj. Since Det(φ) 6= 0, φ((xi⊗ u) ⊗ (xj⊗ v)) 6= 0 and by SL(2,

C)-invariance φ((xi⊗ u) ⊗ (xj⊗ v)) = xi+jφ(u ⊗ v) ∈ Si+j⊗ Wi+j. By hypothesis φ(u ⊗ v) 6= 0

for all u ∈ Ui and v ∈ Vj so, by the Remark 1, it implies that dimWi+j ≥ ni+ mj− 1, and

Sni+mj−1

i+j ⊂ C

.

Assume now that B contains at least two distinct irreducible representations. Let i0 and j0

the greatest integers in I and J. We consider the submodule B1 such that B1⊕ S mj0 j0 = B.

Then the restricted map A ⊗ B1 → C∗ is not surjective because the image is concentrated

in the submodule C∗ 1 of C∗ defined by C1∗⊕ S ni0+mj0−1 i0+j0 = C ∗ . Now since dimC(C1) < dimC(A) + dimC(B1) − 1

there exist a ∈ A, b ∈ B1 ⊂ B such that φ(a ⊗ b) = 0. A contradiction with the hypothesis

Det(φ) 6= 0.

(4)

So A = Sni i , B = S mj j and S ni+mj−1 i+j ⊂ C ∗

. Since dimCC = dimCA + dimCB − 1, we have

(i + 1)ni+ (j + 1)mj− 1 = dimCC ≥ (i + j + 1)(ni+ mj− 1) which is possible if and only

if ni = mj = 1 and C = Si+j. 

Corollary 2.2. A rank n Steiner bundle on Pnwhich is SL(2, C) invariant is a

Schwarzen-berger bundle.

Proof. Let S a rank n Steiner bundle on Pn, i.e S appears in an exact sequence

0 −−−−→ S −−−−→ C ⊗ OP(A) −−−−→ B∗⊗ OP(A)(1) −−−−→ 0

where P(A) = Pn, P(B) = Pm and P(C) = Pn+m. If SL(2, C) acts on S the vector spaces

A, B and C are SL(2, C)-modules since A is the basis, B∗= H1S(−1) and C= H0(S).

If S is SL(2, C)-invariant the linear surjective map A ⊗ (H1S(−1))∗

→ H0(S∗

) is SL(2, C)-invariant too. 

Remark. The proofs of the theorem and the proposition, given in this paper, are still valid for more than three vector spaces when the format is the boundary format.

I would like to thank L.Gruson, M.Meulien and N.Perrin for their help.

References

[AO] V. Ancona, G. Ottaviani. Unstable hyperplanes for Steiner bundles and multidi-mensional matrices, Advances in Geometry, 1,No.2, (2001), 165-192.

[DO] C. Dionisi, G. Ottaviani The Binet-Cauchy theorem for the hyperdeterminant of boundary format multidimensional matrices math.AG/0104281,

[DK] I. Dolgachev, M. M. Kapranov Arrangement of hyperplanes and vector bundles on Pn, Duke Math. J. (1993), no. 71, 633–664,

[GKZ] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resul-tants, and multidimensional determinants. Mathematics: Theory & Applications. Birkh¨auser Boston, Inc., Boston, MA, (1994). ISBN: 0-8176-3660-9

[Sch] Schwarzenberger, R.L.E., Vector bundles on the projective plane, Proc. London Math. Soc. 11, (1961), 623-640.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to