• Aucun résultat trouvé

INELASTIC PROPERTIES OF Se BASED GLASSES IN THE VERY LOW FREQUENCY RANGE

N/A
N/A
Protected

Academic year: 2021

Partager "INELASTIC PROPERTIES OF Se BASED GLASSES IN THE VERY LOW FREQUENCY RANGE"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00221131

https://hal.archives-ouvertes.fr/jpa-00221131

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

INELASTIC PROPERTIES OF Se BASED GLASSES

IN THE VERY LOW FREQUENCY RANGE

S. Etienne, J. Cavaille, F. Fouquet, J. Perez

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Co ZZoque C5, suppZ&ment au n O 1 0 , M e 42, octobre 1982 page C5-575

INELASTIC PROPERTIES OF

Se BASED GLASSES IN

THE VERY LOW FREQUENCY

RANGE

S. Etienne, J.Y. Cavaille, F. Fouquet and J. Perez

Groupe dtEtudes de Me'taZZurgie Physique e t Physique des Mat&riaux, E.R.A. 463

I n s t i t u t NationaZ des Sciences AppZique'es de Lyon, 69621 ViZZeurbanne C e d ~ x , France

Abstract.- Experimental r e s u l t s avout i n e l a s t i c p r o p e r t i e s o f non c r y s t a l l i n e

--

S? and As-% A l l o y a r e reported. D i f f e r e n t behaviors above and under t h e glass t r a n s i t i o n temperature a r e discussed.

1. I n t r o d u c t i o n . - S t r u c t u r a l r e l a x a t i o n e f f e c t s near the t r a n s i t i o n temperature Tg have a l r e a d y been observed i n the v i t r e o u s selenium by m a n o f micro mechanical mea- surements. These experiments have been made a t constant frequency i n t h e

PIHz,

Hz

and low frequency ranges (1) (2) ( 3 ) . I n o r d e r t o extend the i n v e s t i g a t i o n range o f b o t h temperature and frequency, we have designed an apparatus working i n forced o s c i l l a - t i o n s ( 4 ) ; so, i t has been p o s s i b l e t o study t h e p r o p e r t i e s o f t h e sample a l s o f o r temperatures h i g h e r than Tg. IJe s h a l l present r e s u l t s obtained on one hand i n the low temperature range (T 28OC) where t h e aged glass remains i n an i s o c o n f i g u r a t i o n n a l s t a t e and, on t h e o t h e r hand, i n t h e h i g h temperature range ( T . > Tg) where t h e sample j s i n the metastable e q u i l i b r i u m . The temperature e f f e c t i n each range w i l l be compa- red. The i n f l u e n c e o f cross l i n k i n g between ( S e ) n m ~ l e c u l e s w i l l be c a l l e d t o mind p r e s e n t i n g some r e s u l t s obtained w i t h an As2 Se18 a l l o y .

2. Ex e r i m e n t a l r e s u l t s . - Shear modulus G and i n t e r n a l f r i c t i o n t a n

4

s p e c t r a have been :btained i n isothermal c o n d i t i o n by frequency scanning (10-4 + 1 Hz)

2.1. Non c r y s t a l l i n e selenium

2.1.1. Low temperature range (T < 2 8 9

The m a t e r i a l aged several weeks a t room temperature presents t h e s p e c t r a shown i n t h e f i g u r e 1.

The weak dependence o f Tan versus frequency F suggests a very wide r e l a x a t i o n times d i s t r i b u t i o n . I f the temperature T does n o t exceed 2g°C, t h e m a t e r i a l s t r u c t u r e r e

-

mains constant d u r i n g experiment. Above 2B°C, t h e spectra s h i f t d u r i n g experiment and measurements can be c a r r i e d o u t p r o p e r l y o n l y above Tg.

2.1.2. High temperature range (T>Tg)

S t r u c t u r a l r e l a x a t i o n i s then f a s t enough t o o b t a i n metastable 3 e q u i l i - brium i n a time s h o r t i n comparison w i t h experiment delay. Thus t h e sample s t a t e i s o n l y temperature dependent o f course i f T i s n o t t o o h i g h t o prevent c r y s t a l l i s a t i o n ( 5 ) ) . The s p e c t r a are shown i n f i g u r e 2. A d r a s t i c decrease of G, t o g e t h e r w i t h a maximum o f t a n

Q,

f o l l o w e d by a 'kubbewp1ateau"can be observed. This r e s u l t agrees w i t h t h a t o f Tobolsky e t a1 ( 6 ) where t h i s "rubbery" behavior c o u l d be detected du- r i n g s t r e s s r e l a x a t i o n t e s t .

2.1.3. Vitreous t r a n s i t i o n range

As r e c a l l e d above, t h e p r o p e r t i e s of t h e m a t e r i a l a r e time dependent i n t h i s temperature range. So, t h e isothermal s t r u c t u r a l re1 a x a t i o n can be observed by measurement o f mechanical p r o p e r t y P versus time. This r e l a x a t i o n can t a k e p l a c e under ( B -+ C),above Tg ( D -+ E) ( f i g u r e 3 ) .

(3)

JOURNAL DE PHYSIQUE

Fig.2:High temperature internal friction

F (H.) of pure Se

The k i n e t i c i s self-braked in the former case while s e l f c a t a l y t i c in the l a t t e r . The figure 4 shows the r e s u l t s obtained, P being the shear modulus a t

10-~HZ.

2 . 2 . As2Se18 Alloy

The glass temperature of such an alloy l i e s around 65°C. The r e s u l t s pre- sented in the f i g . 5 are related t o the low temperature rance where the sample, aged during several weeksat room temperature, l i e s in an isoconfigurationnal s t a t e . A broad maximum of tan

4

i s observed near 10°C a t 1 Hz. This r e s u l t i s i n agreement

w i t h

t h a t of Imaoka and Sakamura ( 7 ) , but these authors have performed measurements

only on one decade frequency range. Experiments a r e now in progress t o i n v e s t i s a t e the properties of t h i s material in glass t r a n s i t i o n zone and above.

(4)

F i g . 3 : Schematic thermal h i s t o r y fcr isothermal s t r u c t u r a l r e l a x a t i o n study

I

tempera-

1

time t , T, -ture T

Fig.4:Isothermal variation of shear modulus ~(10-'HZ) versus time t

curve. I n our case, and above Tg, i t i s v e r i f i e d t h a t t h e s h i f t f a c t o r UT i s the same f o r the two p r o p e r t i e s G ' and G''. on t h e f i g u r e 6, Log C%T i s represented versus t h e r e c i p r o c a l temperature (we have added t h e r e s u l t s given by t h e same k i n d o f t r e a t - ment on t h e curves o f t h e f i g u r e 1 ) . I t can be seen t h a t simple A r r h e n i u s ' l a w i s n o t able t o y i e l d the r e s u l t s f o r both h i g h and low temperature ranges. This f a c t i s now w e l l known i n the case o f glass forming m a t e r i a l ( 8 ) . So, we have t r i e d t o d e s c r i b e our r e s u l t s assuming on one hand wLF law f o r t h e metastable e q u i l i b r i u m s t a t e (Log CXT = C i ( T

-

To)

/

(C +.T

-

To) w i t h C 1 = 6,5 = 6,5 ; C2 = 20,l K ; To = 309 K) and on t h e o t h e r hand ~ r r i e n ~ u s

'

law f o r the i s o c o n f i g u r a t i o n n a l s t a t e . The apparent a c t i v a t i o n energy i s 93 Kcal/mole and 42 Kcal/mole f o r t h e h i g h and low temperature range r e s p e c t i v e l y .

I n the temperature and frequency range where pure Se sample presents an i n t e r n a l f r i c t i o n anomaly (1) ( 7 ) , As2Se18 sample presents a peak. A r r h e n i u s ' p l o t corresponding t o t h i s peak ( f i g . 7 ) i n d i c a t e s an a c t i v a t i o n energy : 15 Kcal/mole and ro = 6.10-11s. Our value o f t h e a c t i v a t i o n energy agrees w e l l w i t h t h a t o f r e f . 7 b u t t h e use o f a wide frequency range leads us t o more r e l i a b l e values, e s p e c i a l l y f o r T,.

(5)

C5-578 JOURNAL DE PHYSIQUE

t

-4

t

Fig.5 : Low temperature internal f r i c t i o n Fig.6 : Log of s h i f t f a c t o r CfT f o r dynamic of aged As2Se18

as

a function modulus of pure

Se

f o r metastable

of temperature T equilibrium s t a t e (*) and isocon-

figurationnal s t a t e

(a)

Arrhenius'pl o t f o r low temperature internal f r i c t i o n peak of A s ~ S e l ~

(6)

a s p e c i f i c chemical p r o p e r t y o f glassy selenium i n s t e a d o f a common behavior o f a l l glass forming systems. On t h e o t h e r hand, our a n a l y s i s i s t o be compared, a t l e a s t q u a l i t a t i v e l y , t o t h a t o f SPAEPETJ (10) a p p l i e d t o m e t a l l i c glasses.

The problem now t o compare t h e damping phenomenon r e l a t e d t o anomaly a t low temperature o f pure Se (1,7) ( o r peak i n t h e case o f As-Se a l l o y ) t o recove- r a b l e s t r a i n observed d u r i n g creep experiments performed a t room temperature ( 2 ) I n o t h e r words, i f we assume ( i ) t h a t deformation mechanisms occur by c r e a t i o n and a n n i h i l a t i o n of shear microdomains under s t r e s s

(6

and a mechanisms l e a d i n g respec- t i v e l y t o recoverable and permanent deformation ( 1 1 ) ) and ( i i ) t h a t anomaly ( o r peak) corresponds t o B r e l a x a t i o n , a wide times d i s t r i b u t i o n must be evocated. Another assumption may be t h a t t h e anomaly ( o r peak) i s a consequence o f w e l l d e f i n e d and l o c a l i s e d atomic displacements ( l i k e s i d e group r o t a t i o n i n organic polymers o r c a t i o n i c l o c a l movement i n oxide glasses). Another question i s connected t o the va- l u e s o f a c t i v a t i o n energies : on one hand, t h i s value i s much lower f o r t h e peak ( 1 6 Kcallmole) than f o r low temperature i n t e r n a l f r i c t i o n b a c k ~ r o u n g (42 Kcal/mole)

,

which seems t o favour t h e second assumption ; on t h e o t h e r hand these values are n o t y e t c l e a r 1 y understood.

Numerical computations are i n prosress i n order t o t e s t t h e f i r s t assump- t i o n . Furthermore, t h e i n v e s t i g a t i o n performed on As-Se a l l o y where secondary r e l a - x a t i o n i s c l e a r l y resolved w i l l be u s e f u l t o c l a r i f y these p o i n t s .

REFERENCES

1. S. ETIENNE, J . PEREZ, Revue Physique AppliquGe, 12 (1977) 837 2. S. ETIENNE, J. PEREZ, Revue Physique AppliquGe, 14, (1979) 607

3. S. ETIENNE, G. GUENIN, J. PEREZ, J . Phys. D : P.ppl. Phys., 12 (1979) 2189

4. S. ETIENNE, J.Y. CAVAILLE, J. PEREZ, bl. SALVIA, Paper t o be presented a t t h i s conference

5. J. CORNET, D. ROSSIER, Proceed 5 t h I n t e r . Conf. Amorphous and l i q u i d semiconduc- t o r s , Ed. Stuke J. and Brening b!., 1 (1973) 267

6. A, EISENBERG, TOBOLSKY A.V., 3. Polym. S c i . 61 (1962) 433 7.

F!.

IIIAOKA, H. SAKAMURA, Glass Tech. 15 (1974) 105

8. J.D. FERRY, V i s c o e l a s t i c p r o p e r t i e s o f polymers, John !!iley and Sons, I n c . New-York, (1970) 298

9. R.B. STEPHENS, The v i s c o s i t y and s t r u c t u r a l r e l a x a t i o n r a t e o f evaporated s e l e - nium o f f i c e o f Naval Research (1977) Technical r e p o r t n o 1

10. F. SPAEPEN, J. non c r y s t . Solids, 31 (1978) 207

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to