• Aucun résultat trouvé

Matching next-to-leading order predictions to parton showers in supersymmetric QCD

N/A
N/A
Protected

Academic year: 2021

Partager "Matching next-to-leading order predictions to parton showers in supersymmetric QCD"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01272072

https://hal.sorbonne-universite.fr/hal-01272072

Submitted on 10 Feb 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Matching next-to-leading order predictions to parton

showers in supersymmetric QCD

Céline Degrande, Benjamin Fuks, Valentin Hirschi, J. Proudom, Hua-Sheng

Shao

To cite this version:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Matching

next-to-leading

order

predictions

to

parton

showers

in

supersymmetric

QCD

Céline Degrande

a

,

Benjamin Fuks

b

,

c

,

,

Valentin Hirschi

d

,

Josselin Proudom

e

,

Hua-Sheng Shao

f

aInstituteforParticlePhysicsPhenomenology,DepartmentofPhysics, DurhamUniversity,DurhamDH13LE,UnitedKingdom bSorbonneUniversités,UPMCUniv. Paris06,UMR7589,LPTHE,F-75005Paris,France

cCNRS,UMR7589,LPTHE,F-75005Paris,France

dSLAC,NationalAcceleratorLaboratory,2575SandHillRoad,MenloPark,CA94025-7090,USA

eLaboratoiredePhysiqueSubatomiqueetdeCosmologie,UniversitéGrenoble-Alpes,CNRS/IN2P3,53AvenuedesMartyrs,F-38026GrenobleCedex,France fCERN,PH-TH,CH-1211Geneva23,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received12October2015

Receivedinrevisedform13January2016 Accepted31January2016

Availableonline3February2016 Editor:G.F.Giudice

Wepresentafullyautomatedframeworkbasedonthe FeynRules and MadGraph5_aMC@NLO programs thatallowsforaccuratesimulationsofsupersymmetricQCDprocessesattheLHC.Startingdirectlyfroma modelLagrangianthatfeaturessquarkandgluinointeractions,eventgenerationisachievedatthe next-to-leadingorderinQCD,matchingshort-distanceeventstopartonshowersandincludingthesubsequent decayoftheproducedsupersymmetricparticles.Asanapplication,westudytheimpactofhigher-order correctionsingluinopair-productioninasimplifiedbenchmarkscenarioinspiredbycurrentgluinoLHC searches.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The LHC has been designed with the aim of exploring the electroweaksymmetry breaking mechanismandto possiblyshed light on phenomena beyond the Standard Model.During its first run,both the ATLASandCMSCollaborations haveextensively in-vestigated manydifferent channelsin orderto get hintsfor new physics.However,nostrikingsignal hasbeenfoundsothat limits havebeensetonpopularmodels,suchastheMinimal Supersym-metricStandardModel (MSSM)[1,2],oron simplifiedmodels for newphysics [3,4].Allthesesearcheswillnevertheless bepursued during the next LHC runs, benefiting from larger statistics and higher center-of-mass energy. In this work, we focus on MSSM-inspiredsimplifiednewphysicsscenariosinwhichgluinopairscan becopiouslyproducedattheLHC.Asinmanyrelatedexperimental searches[5–8],weconsiderthecasewherebothproducedgluinos decayintoapairofjetsandaninvisible neutralino,andthen re-visitthephenomenologyofsuchmodels.

Experimental gluino analyses are currently based on Monte Carlosimulations of the signalswhere leading-order (LO) matrix

*

Correspondingauthorat:LPTHE- CNRS- UPMC,Box126,T13-14fourthfloor, 4placeJussieu,75252ParisCedex05,France.

E-mailaddress:fuks@lpthe.jussieu.fr(B. Fuks).

elements of different partonic multiplicities are matched to par-ton showers and merged. The predictions are then normalized to resummed total rates combined with the next-to-leading or-der(NLO)result[9–13].Moresophisticateddifferentialtheoretical predictions are howeveralways helpful forsettingmore accurate exclusion limits,possibly refining thesearch strategies,and mea-suring the model free parameters in caseof a discovery [14]. In this context, it has been recently demonstrated that the Mad-Graph5_aMC@NLO framework[15]canprovideageneralplatform for computing(differential) observableswithin manybeyond the StandardModeltheories[16].Thisapproachreliesinparticularon the useof the FeynRules [17] and NLOCT [18] packagesfor (au-tomatically) generatinga UFO library[19] containing thevertices andtheneededcountertermsforNLOcomputations.

Withinthis framework, we matchforthe firsttime NLO QCD matrix-element-based predictions to parton showers for gluino pair-production. Virtualcontributions are evaluated following the Ossola–Papadopoulos–Pittau (OPP) formalism as implemented in MadLoop [20–22] and combined with real emission contribu-tions by means of the FKS subtraction method as embedded in MadFKS [23,24]; these two modules being fully incorporated in MadGraph5_aMC@NLO. The matching to parton showers is then achievedbyemployingtheMC@NLOmethod[25].Afteraccounting

http://dx.doi.org/10.1016/j.physletb.2016.01.067

(3)

for(LO)gluinodecays,we studytheimpactofboththeNLO con-tributionsandthepartonshowersinthecontextofLHCphysics. 2. Theoreticalframework

Our study of gluino pair-production and decay is based on an MSSM-inspired simplified model. We complement the Stan-dardModelwiththreegenerationsofnon-mixingleft-handedand right-handedsquarkfieldsq

˜

L,R ofmassmq˜L,R andwithaMajorana fermionic gluino field

˜

g of mass mg˜. The dynamics of the new fieldsisdescribedbythefollowingLagrangian,

L

SQCD

=

Dμq

˜

LDμq

˜

L

+

Dμq

˜

RDμq

˜

R

+

i 2

¯˜

gD

/

˜

g

m2q˜ Lq

˜

Lq

˜

L

m 2 ˜ qRq

˜

Rq

˜

R

1 2mg˜

¯˜

g

˜

g

+

2gs



− ˜

qLT

¯˜

g PLq



+



q P

¯

Lg

˜



Tq

˜

R

+

h.c.



gs2 2



˜

qRTq

˜

R

− ˜

qLTq

˜

L



˜

qRTq

˜

R

− ˜

qLTq

˜

L



,

thatcontainsallinteractionsallowedbyQCDgaugeinvarianceand supersymmetry, as well as squark and gluino kinetic and mass terms.In ournotation, T stands forthefundamental representa-tionmatricesofSU

(

3

)

, PL ( PR)fortheleft-handed(right-handed)

chiralityprojector and gs is the strong couplingconstant. Flavor

andcolorindicesareleftunderstoodforbrevity.

Inaddition,weenable the(possibly three-body)decaysofthe coloredsuperpartnersbyincluding(s)quarkcouplingstoa gauge-singletMajoranafermion

χ

ofmass mχ thatisidentified witha bino,

L

decay

=

i 2

χ

¯

/

χ

1 2

χ χ

¯

+

2g



− ˜

qLYq



¯

χ

PLq



+



q P

¯

L

χ



Yqq

˜

R

+

h.c.



.

InthisLagrangian, Yq denotesthe hypercharge quantumnumber

ofthe(s)quarksandgthehyperchargecoupling.

At the NLO in QCD, gluino pair-production receives contribu-tionsfromrealemissiondiagramsaswellasfromtheinterferences oftree-leveldiagramswithvirtualone-loop diagramsthat exhibit ultraviolet divergences. These must be absorbed through a suit-ablerenormalizationoftheparametersandofthefieldsappearing in

L

SQCD. To this aim,we replace all (non-)fermionic bare fields



(



) andbareparameters y by thecorrespondingrenormalized quantities,





1

+

1 2

δ

Z



, 



1

+

1 2

δ

Z L PL

+

1 2

δ

Z R PR



,

y

y

+ δ

y

,

wherethe renormalizationconstants

δ

Z and

δ

y aretruncated at thefirstorderinthestrongcoupling

α

s.

The wave-function renormalization constants of the massless quarks(

δ

ZqL,R),ofthetopquark(

δ

ZtL,R),ofthegluon(

δ

Zg)andthe

topmassrenormalizationconstant(

δ

mt)aregiven,whenadopting

theon-shellrenormalizationscheme,by

δ

Zg

= −

g2 s 24

π

2



1 3

+

B0

(

0

,

m 2 t

,

m2t

)

+

2m2tB0

(

0

,

mt2

,

m2t

)

nc 3

+

ncB0

(

0

,

m 2 ˜ g

,

m2g˜

)

+

2ncmgB0

(

0

,

mg

,

m2g˜

)

+

˜ q



1 6

+

1 4B0

(

0

,

m 2 ˜ q

,

m 2 ˜ q

)

m 2 ˜ qB0

(

0

,

m2q˜

,

m 2 ˜ q

)



,

δ

ZqL,R

=

g 2 sCF 8

π

2 B1

(

0

;

m 2 ˜ g

,

m2q˜L,R

),

δ

ZtL,R

=

g 2 sCF 16

π

2



1

+

2B1

(

m2t

;

m2g˜

,

m 2 ˜ tL,R

)

+

2B1

(

m2t

;

m2t

,

0

)

+

8m2tB0

(

mt2

;

m2t

,

0

)

+

4m2tB1

(

m2t

;

m2t

,

0

)

+

2m2t

i=L,R B1

(

m2t

;

m2g˜

,

m2˜t i

)

,

δ

mt

= −

g2 sCFmt 16

π

2



1

+

4B0

(

mt2

;

m2t

,

0

)

+

2B1

(

m2t

;

mt2

,

0

)

+

i=L,R B1

(

m2t

;

m2g˜

,

m 2 ˜ ti

)

,

where the B0,1 (and A0, for further references) functions and

their derivatives stand for the standard two-point (one-point) Passarino–Veltmanloop-integrals[26].Moreover,nc

=

3 andCF

=

(

n2

c

1

)/(

2nc

)

denoterespectively the number ofcolors and the

quadratic Casimirinvariant associated withthefundamental rep-resentation of SU

(

3

)

. The gluino wave-function and mass renor-malizationconstants

δ

ZL,R˜g and

δ

mg˜ aregivenby

δ

Zg˜

=

g2s 16

π

2



nc

+

2ncB1

(

m2˜g

;

m2g˜

,

0

)

+

8ncm2˜gB0

(

m2g˜

;

m2˜g

,

0

)

+

4ncm2˜gB1

(

m2g˜

;

m2g˜

,

0

)

+

˜ qqL,q˜R

B1

(

m2˜g

;

mq2

,

mq2˜

)

+

2mgB1

(

m2˜g

;

m2q

,

m2q˜

)

,

δ

mg˜

=

g 2 smg˜ 16

π

2



nc

4ncB0

(

m2˜g

;

m2g˜

,

0

)

2ncB1

(

mg2˜

;

m2g˜

,

0

)

˜ qqL,q˜R B1

(

m2g˜

;

m2q

,

m2q˜

)

,

while the squarkwave-function(

δ

Zq˜) andmass (

δ

mq2˜)

renormal-izationconstantsread,

δ

Zq˜

=

g 2 sCF 8

π

2



B0

(

m2q˜

;

m2˜g

,

m2q

)

+

B0

(

m2q˜

;

m2q˜

,

0

)

+ (

m2˜g

m2q˜

+

mq2

)

B0

(

m2q˜

;

m2g˜

,

m2q

)

+

2m2q˜B0

(

m2q˜

;

m2q˜

,

0

)

,

δ

m2q˜

=

g 2 sCF 8

π

2



A0

(

m2q˜

)

A0

(

m2g˜

)

2m2q˜B0

(

mq2˜

;

m2q˜

,

0

)

+ (

m2q˜

m2g˜

m2q

)

B0

(

mq2˜

;

m2˜g

,

m2q

)

A0

(

m2q

)

,

with

(

−)

L

1 and

(

−)

R

≡ −

1, andwith mq

=

0 fortop squarks

only.Asaresultofthestructureofthegluino–squark–quark inter-actions, squark mixing effects proportional to the corresponding quark masses are generated at the one-loop level and must be accountedforinthe renormalizationprocedure.Inoursimplified setup,weconsidernf

=

5 flavorsofmasslessquarkssothatthese

effectsare onlyrelevantforthe sectorofthe topsquarks. Inthis case,matrixrenormalizationisinorder,

˜

tL

˜

tR



˜

tL

˜

tR



+

1 2

δ

Z˜t L

δ

Z˜t,LR

δ

Z˜t,RL

δ

Z˜t R



˜

tL

˜

tR



,

(4)

bystopcouplingstotheHiggssectorthatgenerateanoff-diagonal masscounterterm,

δ

L

off

= −δ

m2˜t,LR

tL

˜

tR

+ ˜

tR

˜

tL

) .

These Higgs couplings beingabsent in our simplified model, we therefore introduce

δL

off explicitly. The off-diagonal stop

wave-function (

δ

Z˜t,LR

= δ

Zt,˜RL) andmass(

δ

m2˜

t,LR) renormalization

con-stantsarethenfoundtobe

δ

Zt,˜LR

=

g 2 sCFm˜gmt 4

π

2

(

m2 ˜ tR

m 2 ˜ tL

)

i=L,R

(

−)

iB0

(

m2˜t i

;

m 2 t

,

m2˜g

),

δ

m2˜ t,LR

=

g2 sCFm˜gmt 8

π

2

i=L,R B0

(

m2˜t i

;

m 2 t

,

m2˜g

),

where

δ

Zt,˜LR hasbeen symmetrized. In thisway, it incorporates therenormalization ofthestop mixingangle(taken vanishingin ourmodel)whichdoesnotneedtobeexplicitlyintroduced[27].

Inordertoensurethattherunningof

α

ssolelyoriginatesfrom

gluonsand nf active flavors of light quarks, we renormalizethe

strongcouplingby subtractingatzero-momentumtransfer,inthe gluonself-energy,allmassiveparticlecontributions.Thisgives

δ

α

s

α

s

=

α

s 2

π

¯



n f 3

11nc 6

+

α

s 6

π



1

¯

log mt2

μ

2 R

+

α

snc 6

π



1

¯

log m2˜g

μ

2 R

+

α

s 24

π

˜ q



1

¯

log m2q˜

μ

2 R

.

The ultraviolet-divergent parts of

δ

α

s

/

α

s are written in terms of

thequantity 1 ¯

=

1

γ

E

+

log 4πwhere

γ

EistheEuler–Mascheroni

constantand

isconnectedtothenumberofspace–time dimen-sions D

=

4

2 .

Finally, the artificial breaking of supersymmetry by the mis-matchofthetwogluinoandthe(D

2)transversegluondegrees offreedom mustbe compensated by finitecounterterms. Impos-ingthatthedefinitionofthestrongcouplinggs isidenticaltothe

StandardModel one,only quark–squark–gluinoverticesand four-scalarinteractionshavetobeshifted[28],

L

SCT

=

2gs

α

s 3

π



− ˜

qLTa

¯˜

gaPLq



+



q P

¯

Lg

˜

a



Taq

˜

R

+

h.c.



+

g2s 2

α

s 4

π



˜

qR

{

Ta

,

Tb

qR

+ ˜

qL

{

Ta

,

Tb

qL



×



q

˜

R

{

Ta

,

Tb

qR

+ ˜

qL

{

Ta

,

Tb

qL



g2s 2

α

s 4

π



˜

qRTaq

˜

R

− ˜

qLTaq

˜

L



˜

qRTaq

˜

R

− ˜

qLTaq

˜

L



,

wherewehaveintroducedadjointcolorindicesforclarity.

Inourphenomenologicalstudy,loop-calculationsareperformed numericallyinfourdimensionsbymeansofthe MadLoop package andthereforerequirethe extractionofrationalparts that are re-latedtothe

-piecesoftheloop-integraldenominators(R1,which

are automatically reconstructed within the OPP reduction proce-dure) and numerators (R2). For any renormalizable theory, the

number of R2 terms is finite and they can be seen as

counter-termsderivedfromthebareLagrangian[29].Inthecontextofthe

L

SQCD Lagrangian,all necessary R2 counterterms canbe found in

Ref.[30].

Thesetupdescribedabovehasbeenimplementedinthe Feyn-Rules package and we have made use of the NLOCT program to automatically calculate all the ultraviolet and R2

countert-ermsof the model. The specificity of the renormalization ofthe

Table 1

LOand NLOQCD inclusivecrosssectionsfor gluinopair-productionat theLHC, runningatacenter-of-massenergyof√s=13 TeV.Theresultsareshowntogether withtheassociatedscaleandPDFrelativeuncertainties.

mg˜[GeV] σLO[pb] σNLO[pb] 200 2104+3021..3%9%+ 14.0% −14.0% 3183+ 10.8% −11.6%+ 1.8% −1.8% 500 15.46+3424..7%1%+ 19.5% −19.5% 24.90+ 12.5% −13.4%+ 3.7% −3.7% 750 1.206+3524..9%6%+ 23.5% −23.5% 2.009+ 13.5% −14.1%+ 5.5% −5.5% 1000 1.608·10−1+36.3% −24.8%+ 26.4% −26.4% 2.743·10−1+ 14.4% −14.8%+ 7.3% −7.3% 1500 6.264·10−3+36.2% −24.7%+ 29.4% −29.4% 1.056·10− 2+16.1% −15.8%+ 11.3% −11.3% 2000 4.217·10−4+35.6% −24.5%+ 29.8% −29.8% 6.327·10− 4+17.7% −16.6%+ 17.8% −17.8% stop sector has been implemented via a new option of NLOCT,

SupersymmetryScheme->"OS"

, that allows to treat all scalar fieldsthatmixattheloop-levelasdescribedabove.Wehave vali-datedtheoutputagainst ouranalyticalcalculations, andthese re-sultsrepresentthefirstvalidationof NLOCT inthecontextof com-putations involving massive Majoranacolored particles. We have finally generated a UFOversion of themodel that canbe loaded into MadGraph5_aMC@NLO and which we have made publicly available on

http://feynrules.irmp.ucl.ac.be/wiki/

NLOModels

.Wehavefurthervalidatedthemodel,togetherwith the numerical treatment of the loop-diagrams by MadLoop, by comparing MadGraph5_aMC@NLO predictionstothoseofthecode Prospino [31],usingafullydegeneratemassspectrumduetothe limitationsofthelatter.

3. LHCphenomenology

InTable 1,wecompute gluinopair-productiontotalcross sec-tions for proton–proton collisions at a center-of-mass energy of

s

=

13 TeV andfordifferent gluinomasses. Squarks are decou-pled(m˜tL

=

16 TeV,m˜tR

=

17 TeV andmq˜L

=

mq˜R

=

15 TeV)sothat any resonant squark contribution appearing in the real-emission topologiesisoff-shellandthereforesuppressed.Thelatter produc-tion modescan be seenasthe associatedproduction ofa gluino andasquarkthat subsequentlydecaysintoagluinoandaquark. IncludingthesecontributionsaspartsoftheNLOQCDcorrections forgluinopair-productionwouldhenceresultinadouble-counting when considering together all superpartner production processes inclusively. Moreover, these resonant channels require a special treatment in the fully-automated MadGraph5_aMC@NLO frame-work, that isleft to future work [32]. Our choice forthe squark spectrumcorrespondstotheonemadebyATLASandCMS Collab-orationsintheirrespectivegluinosearches[5–8].

Ourresults areevaluated both attheLOandNLO accuracyin QCD and presented together with scale and parton distribution (PDF) uncertainties. Forthe central values, we set the renormal-ization andfactorizationscales to half thesum ofthe transverse massofallfinalstate particlesandusetheNNPDF 3.0setof par-tondistributions[33]accessedviatheLHAPDF 6library[34].Scale uncertainties arederivedby varyingbothscales independentlyby factors1

/

2,1 and2,andthePDFuncertaintieshavebeenextracted from the crosssection values spanned by all NNPDF distribution replicasfollowing theNNPDF recommendations [35].We observe a significant enhancement of the crosssection of about50% due togenuineNLOcontributions,aswellasasizablereductionofthe uncertainties. In particular, theapparent drastic reduction of the PDF uncertainties isrelatedto thepoor qualityofthe LONNPDF fitwhencomparedtotheNLOfit[33].

(5)
(6)

analyticallycalculatedthosedecaymatrixelementsandintegrated them over the phase space, after checking our results with the MadSpin [36] and MadWidth [37] programs. These latter two programs havebeenused inthecomputation ofthe NLO predic-tions matched to parton showers. Due to the three-body nature ofthe gluino decays,spin correlationsare here omittedas Mad-Spincanonlyhandlethemfortwo-bodydecays.Wetheninterface the partonic events obtained in this way to a parton showering andhadronization descriptionas providedby the Pythia 8 pack-age [38], and use the anti-kT jet reconstruction algorithm [39]

witharadiusparametersetto0.4,asimplementedin FastJet[40], toreconstructallfinalstate parton-levelandhadron-leveljetsfor fixed-order and parton-shower-matched calculations respectively. Finally,the phenomenological analysisofthe generated eventsis performedwith MadAnalysis 5[41].

Key differential distributions particularly sensitive to both NLO and shower effects are presented in Fig. 1. We show the transverse-momentum (pT) spectra of the first five leading jets

(firstfivesubfigures)fortwobenchmarkscenariosfeaturingeither alight (mg˜

=

1 TeV)oraheavy(m˜g

=

2 TeV) gluino,aswell asa

ratherlight bino(mχ

=

50 GeV). Wecomparefixed-order predic-tions (dashed) to results matched to partonshowers (solid) and consider bothLO (blue)and NLO (red) accuracyin QCD. We ob-serve that most of the differential K -factors (i.e., the bin-by-bin ratios of the NLO result to the LO one) both with and without parton-showermatchingstronglydependonthejet pT inthe

con-sidered pT range.TheNLO effectsthereforenotonlyincreasethe

overall normalization of the distributions, but also distort their shapes.The K -factorisindeedgreateratlow pT thanathighpT,

sothatthetraditionalprocedureofusingLOpredictionsscaledby inclusive K -factors cannot be used foran accurate gluino signal description.

Fig. 1alsounderlinestheeffectsofmatchingLOandNLO ma-trixelementstopartonshowers.Sincemostparton-leveljets orig-inatefromthe decayofvery massivegluinos, thefixed-order pT

distributions peakatlarge pT values.In addition,thelow-pT

re-gionofthesespectraisdepleted,withtheexception ofthefourth andfifthjet pT spectrawhereradiationeffectsarenon-negligible.

As a result of the matching to parton showers, the fixed-order NLOdistributions aredistortedandsoftened.Whilethechangeis milder in the large-pT tails whose shapes are controlled by the

hardmatrixelement,thelow-pT regionsaremostlysensitiveto

ef-fectsduetomultipleemissionsandhencebecomepopulated.The partonshower emissionsfromhard partonsare indeedoftennot reclusteredbackwiththejetthey areissued from,hence distort-ingthejetpT spectra.Forthisreason,resummationeffectsbecome

significantbelowthepeakofthevarious pT distributions.This

ef-fect is also illustrated on the last subfigure of Fig. 1, where we showthepT spectrumofthegluinopairinthesmallpT range.We

haveverifiedthat thematched resultsagreewiththefixed-order onesforverylargepT valuesoftheorderofthegluinomass.

4. Conclusions

WehaveperformedthefirstcalculationofNLO supersymmet-ric QCD corrections to gluino pair-production matched to parton showersand havestudied the impact ofboth the NLO contribu-tionsandofthepartonshowers. Wehaveshownthat observable effectscouldbeinducedonquantitiestypicallyusedtoobtain ex-clusion limitsand that more accurate calculationsare crucial for extractingmodelparametersincaseofadiscovery.

Ourcalculationhasbeenperformedfullyautomaticallyandwe haveappliedittothecaseofasimplifiedmodelsimilartooneof thoseusedby theATLAS andCMSCollaborationsfortheir respec-tivegluinosearches.Inaddition,wehavepubliclyreleasedtheUFO

modelassociatedwithourcomputation,thatissufficientlygeneral to bereadilyusedtoexplore thephenomenologyassociatedwith anysupersymmetricQCDprocess.

Finally, our results also show that all technical obstacles for automating thematching of fixed-ordercalculations forinclusive supersymmetric particleproductionatthe NLO inQCD toparton showershavebeencleared,uptotheambiguityissueofthe dou-blecountingarisinginrealemissionresonantcontributions[32]. Acknowledgements

We are grateful to R. Frederix, S. Frixione, F. Maltoni and O. Mattelaerforenlighteningdiscussions.Thisworkhasbeen sup-ported in part by the ERC grant 291377 LHCtheory:Theoretical

predictionsandanalysesofLHCphysics:advancingtheprecision

fron-tier, theResearch ExecutiveAgencyofthe European Unionunder

GrantAgreementPITN-GA-2012-315877(MCNet)andthe Theory-LHC-France initiative of the CNRS (INP/IN2P3). C.D. isa Durham InternationalJuniorResearchFellow,V.H. issupported bytheSNF grantPBELP2146525andJ.P. byaPhDgrantoftheInvestissements

d’avenir, LabexENIGMASS.

References

[1]H.P.Nilles,Phys.Rep.110(1984)1.

[2]H.E.Haber,G.L.Kane,Phys.Rep.117(1985)75.

[3]J.Alwall,P.Schuster,N.Toro,Phys.Rev.D79(2009)075020.

[4]D.Alves,etal.,LHCNewPhysicsWorkingGroup,J.Phys.G39(2012)105005.

[5]G.Aad,etal.,ATLASCollaboration,J.HighEnergyPhys.09(2014)176.

[6]G.Aad,etal.,ATLASCollaboration,arXiv:1507.05525[hep-ex].

[7]S.Chatrchyan,etal.,CMSCollaboration,J.HighEnergyPhys.06(2014)055.

[8]V.Khachatryan,etal.,CMSCollaboration,J.HighEnergyPhys.05(2015)078.

[9]W.Beenakker,R.Hopker,M.Spira,P.M.Zerwas,Nucl.Phys.B492(1997)51.

[10]A.Kulesza,L.Motyka,Phys.Rev.Lett.102(2009)111802.

[11]A.Kulesza,L.Motyka,Phys.Rev.D80(2009)095004.

[12]W.Beenakker,S.Brensing,M.Kramer,A.Kulesza,E.Laenen,I.Niessen,J.High EnergyPhys.12(2009)041.

[13]D.Gonçalves-Netto,D.López-Val,K.Mawatari,T.Plehn,I.Wigmore,Phys.Rev. D87(2013)014002.

[14]H.K.Dreiner,M.Kramer,J.M.Lindert,B.O’Leary,J.HighEnergyPhys.04(2010) 109.

[15]J.Alwall,R.Frederix,S.Frixione,V.Hirschi,F.Maltoni,etal.,J.HighEnergy Phys.1407(2014)079.

[16]C.Degrande,B.Fuks,V.Hirschi,J.Proudom,H.-S.Shao,Phys.Rev.D91(2015) 094005.

[17]A.Alloul,N.D.Christensen,C.Degrande,C.Duhr,B.Fuks,Comput.Phys. Com-mun.185(2014)2250.

[18]C.Degrande,arXiv:1406.3030[hep-ph].

[19]C.Degrande,C.Duhr,B.Fuks,D.Grellscheid,O.Mattelaer,etal.,Comput.Phys. Commun.183(2012)1201.

[20]G.Ossola,C.G.Papadopoulos,R.Pittau,Nucl.Phys.B763(2007)147.

[21]G.Ossola,C.G.Papadopoulos,R.Pittau,J.HighEnergyPhys.03(2008)042.

[22]V.Hirschi,R.Frederix,S.Frixione,M.V.Garzelli,F.Maltoni,etal.,J.HighEnergy Phys.1105(2011)044.

[23]S.Frixione,Z.Kunszt,A.Signer,Nucl.Phys.B467(1996)399.

[24]R.Frederix,S.Frixione,F.Maltoni,T.Stelzer,J.HighEnergyPhys.10(2009) 003.

[25]S.Frixione,B.R.Webber,J.HighEnergyPhys.0206(2002)029.

[26]G.Passarino,M.Veltman,Nucl.Phys.B160(1979)151.

[27]H.Eberl,M.Kincel,W.Majerotto,Y.Yamada,Phys.Rev.D64(2001)115013.

[28]S.P.Martin,M.T.Vaughn,Phys.Lett.B318(1993)331.

[29]G.Ossola,C.G.Papadopoulos,R.Pittau,J.HighEnergyPhys.0805(2008)004.

[30]H.-S.Shao,Y.-J.Zhang,J.HighEnergyPhys.06(2012)112.

[31]W.Beenakker,M.Kramer,T.Plehn,M.Spira,P.Zerwas,Nucl.Phys.B515(1998) 3.

[32] C.Degrande,B.Fuks,D.Goncalves-Netto,V.Hirschi,D.Lopez-Val,K.Mawatari, D.Pagani,J.Proudom,H.-S.Shao,M.Zaro,inpreparation.

[33]R.D.Ball,etal.,NNPDFCollaboration,J.HighEnergyPhys.04(2015)040.

[34]A.Buckley,J.Ferrando,S.Lloyd,K.Nordström,B.Page,M.Rüfenacht,M. Schön-herr,G.Watt,Eur.Phys.J.C75(2015)132.

[35]F.Demartin,S. Forte, E.Mariani, J. Rojo,A.Vicini, Phys. Rev.D 82(2010) 014002.

[36]P.Artoisenet,R.Frederix,O.Mattelaer,R.Rietkerk,J.HighEnergyPhys.1303 (2013)015.

(7)

[38]T.Sjöstrand,S. Ask,J.R.Christiansen,R.Corke,N. Desai,P.Ilten, S.Mrenna, S. Prestel,C.O. Rasmussen,P.Z. Skands,Comput.Phys. Commun.191(2015) 159.

[39]M.Cacciari,G.P.Salam,G.Soyez,J.HighEnergyPhys.0804(2008)063.

[40]M.Cacciari,G.P.Salam,G.Soyez,Eur.Phys.J.C72(2012)1896.

Références

Documents relatifs

The subject of this work is the interplay between nuclear physics and QCD and examples of what each field can bring to the other. Its motivations have been twofold. The first aim is

(We did not study the uncer- tainty due to parton distribution functions, but it is ex- pected to be small as well.) Our study used the Frixione isolation criterion to compute

In contrast, for the three- and four-jet cases, both the NLO and ME þ PS predictions agree with the data, within the experimental uncertainties, whether or not we account for the

Key words and phrases: Matching, λ-calculus, developments, superdevelopments, higher-order matching, second-order matching, patterns ` a la Miller, higher-order rewriting..

Finally, this study highlights the potential benefits of a custom exoskeleton interface design through the reduction of distal mass and the increase of

Yu Title Page Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Printer-friendly Version..

Des LEDs à base des composites polymère/nanocristaux font l’objet de recherches poussées ces dernières années. Les nanocristaux semi-conducteurs luminescents ont été

The new next-to-next-to-leading order pQCD calculations (NNLO) for jet production cross sections in neutral-current DIS are exploited for a determination of the strong coupling