• Aucun résultat trouvé

COMPETITION BETWEEN AMORPHOUS OR INTERMETALLIC PHASE FORMATION DURING BALL-MILLING

N/A
N/A
Protected

Academic year: 2021

Partager "COMPETITION BETWEEN AMORPHOUS OR INTERMETALLIC PHASE FORMATION DURING BALL-MILLING"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00230786

https://hal.archives-ouvertes.fr/jpa-00230786

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COMPETITION BETWEEN AMORPHOUS OR INTERMETALLIC PHASE FORMATION DURING

BALL-MILLING

M. Morris, D. Morris

To cite this version:

M. Morris, D. Morris. COMPETITION BETWEEN AMORPHOUS OR INTERMETALLIC PHASE

FORMATION DURING BALL-MILLING. Journal de Physique Colloques, 1990, 51 (C4), pp.C4-211-

C4-217. �10.1051/jphyscol:1990426�. �jpa-00230786�

(2)

COLLOQJE DE PHYSIQUE

Colloque C4, supplBment au n014, Tome 51, 15 juillet 1990

COMPETITION BETWEEN AMORPHOUS OR INTERMETALLIC PHASE FORMATION DURING BALL-MILLING

M.A. MORRIS and D.G. MORRIS

Institute of Structural Metallurgy, University of Neuchstel, Avenue de Bellevaux 51, CH-2000 Neuchdtel, Switzerland

Abstract

-

I n the present work a number o f a l l o y s based on C r and Nb w i t h S i and B have been prepared by b a l l - m i l l i n g and t h e phases obtained which may be e i t h e r disordered solutions, i n t e r m e t a l l i c compounds or amorphous phases, examined. The r e l a t i o n s h i p between t h e complexity o f t h e c r y s t a l l o g r a p h i c s t r u c t u r e o f t h e compounds and t h e phases obtained has been discussed.

1

-

INTRODUCTION

The usual c r i t e r i a f o r s o l i d s t a t e amorphization (1) assumes a l a r g e n e g a t i v e heat o f m i x i n g o f the elements and a much f a s t e r d i f f u s i v i t y o f one element w i t h respect t o t h e other. I n t h i s way t h e amorphization process i s considered t o be favoured by a d r i v i n g f o r c e t o mix t h e elements w i t h suppression o f the i n t e r m e t a l l i c f o r m a t i o n due t o lack o f d i f f u s i o n o f one o f t h e elements which prevents n u c l e a t i o n . Much work has been done on many a l l o y systems ( 2 ) t o produce amorphous phases from elemental powders w i t h some s t u d i e s s t a r t i n g from i n t e r m e t a l l i c compounds. Not much more has been done s t a r t i n g from elemental powders t o produce amorphous phases through i n t e r m e d i a t e compound formation.

Recent work on a Cr-Nb system ( 3 ) has shown t h a t d e s t a b i l i z a t i o n o f compounds i n t o t h e o r i g i n a l elements can occur by b a l l - m i l l i n g .

I n order t o e x p l o r e t h e e f f e c t o f compound d e s t a b i l i s a t i o n by s t r u c t u r a l d i s o r d e r caused by m i l l i n g which e v e n t u a l l y leads t o amorphous phase formation, a number o f a l l o y systems have been prepared by b a l l - m i l l i n g and t h e m i c r o s t r u c t u r e s o f t h e powders obtained have been s t u d i e d and compared.

2

-

EXPERIMENTAL TECHNIQUES

The d i f f e r e n t systems chosen f o r t h i s comparative study were CrB, CrB2, CrnNb, CrSi2, NbB, NbB2 and NbSiZ. The corresponding weighed amounts o f t h e elemental powders f o r each composition were mechanically a l l o y e d i n a p l a n e t a r y b a l l - m i l l P u l v e r i s e t t e 7 w i t h a weight r a t i o b a l l s t o powder o f f o u r . The c o n t a i n e r s were loaded under an argon atmosphere and o n l y opened a t t h e end o f each r u n when t h e m i l l i n g p e r i o d was completed.

For each set o f powders the m i l l i n g process was c a r r i e d o u t f o r d i f f e r e n t periods o f time ranging between 5 t o 80 hours. Complete m i c r o s t r u c t u r a l a n a l y s i s o f a l l t h e powders was performed by X-ray d i f f r a c t i o n , SEM and TEM observations together w i t h EDS chemical analysis.

3

-

RESULTS AND DISCUSSION

The X-ray spectra obtained from t h e m i l l e d powders are shown i n F i g s 1 and 2 f o r t h e Borides, S i l i c i d e s and Cr2Nb r e s p e c t i v e l y . The i n t e r e s t i n g f e a t u r e s are t h e e a r l y f o r m a t i o n of t h e Borides i n t h e case o f NbB and NbB2 w h i l s t i n t h e CrB and CrBp system t h e Borides do not form w i t h o n l y the Cr peaks being observed. Since t h e Boron ,peaks o f Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990426

(3)

C4-212 COLLOQUE DE PHYSIQUE

t h e elemental pre-mi l l e d powders were w e l l i d e n t i f i e d as t h e rhodbohedral phase, t h e i r disappearance from t h e m i l l e d powders suggest t h a t t h i s element has amorphised and o n l y c o n t r i b u t e s t o t h e much h i g h e r background observed. The decrease i n peak h e i g h t and broadening o f these peaks w i t h i n c r e a s i n g m i l l i n g t i m e i s c h a r a c t e r i s t i c o f a decrease i n c r y s t a l l i t e s i z e ( 2 ) . Also w i t h i n c r e a s i n g m i l l i n g t i m e t h e increase i n background observed c l o s e t o t h e main peaks provides evidence o f amorphisation. T h i s e f f e c t i s most pronounced a f t e r 60 hours m i l l i n g i n t h e CrB2 and NbB systems. I n t h e case o f t h e S i l i c i d e s , t h e NbSi2 system shows t h e formation o f t h e compound a f t e r o n l y 5 h o f m i l l i n g and i t s presence up t o 40 h m i l l i n g time, w h i l s t a f t e r 60 h m i l l i n g t h e quasi-disappearance o f t h e main peaks suggests t h e presence o f an amorphous phase. The CrSi2 system, however, behaves i n a r a t h e r d i f f e r e n t way: t h e format i o n o f the S i l i c i d e occurs much more s l o w l y and i s o n l y completed a f t e r 40 hours. Only a decrease i n peak h e i g h t and broadening was observed w i t h f u r t h e r m i l l i n g up t o 60 hours.

The Cr2Nb system i s a more p a r t i c u l a r case as observed from t h e appearance o f an i n t e r m e t a l l i c phase a f t e r 15 hours m i l l i n g , i t s disappearance and reappearance o f t h e Cr and Nb peaks a f t e r 25 hours m i l l i n g and the presence of an amorphous phase a f t e r 60 hours m i l l i n g . (see F i g 2).

SEM observations o f t h e powders by atomic number c o n t r a s t shows t h a t i n t h e case o f t h e Boride systems, t h e r e i s n o t a layered s t r u c t u r e present, i n s t e a d m i x i n g o f t h e elements appears t o occur l o c a l l y from t h e o u t s i d e o f t h e p a r t i c l e s w i t h t h e Boron p a r t i c l e s becoming smaller and b e t t e r d i s t r i b u t e d as a f u n c t i o n o f time (see F i g 4). This process i s continuous i n t h e case o f t h e CrB and CrBz systems where t h e compounds d i d n o t form, behaving as though s o l i d s o l u t i o n s o f t h e two elements were f i n a l l y obtained.

A t the same t i m e t h e powders appear more f r a g i l e and become smaller as they f r a c t u r e thoroughly a f t e r 60 h and 80 h m i l l i n g time. I n t h e case o f t h e NbB and NbB2 'systems, as soon as t h e Boride peaks are detected, t h e powder p a r t i c l e s appear very smalf and t o t a l l y mixed ( n e i t h e r Boron nor Nb c o n t r a s t i s seen) even though t h e same Boron d i s t r i b u t i o n was observed i n t h e e a r l y stages o f m i x i n g (see F i g 4). The s i z e o f t h e powders reaching 50-100 nm a f t e r 60 h and 80 h m i l l i n g i n d i c a t e d t h e e x t e n t o f f r a c t u r e o c c u r r i n g i n t h e f r a g i l e Borides present. The S i l i c i d e powders present much t h e same aspect as t h e Boride powders described, b u t t h e Cr2Nb system has a d i f f e r e n t l a y e r e d s t r u c t u r e w i t h i n t h e powders (see F i g 3 ) . As already described elsewhere (3) chemical a n a l y s i s o f t h e l a y e r s shows t h a t t h e g l o b a l composition necessary f o r i n t e r m e t a l l i c formation i s reached a f t e r 25 hours m i l l i n g even though the presence o f the elemental C r and Nb peaks are observed.

The same homogeneity o f g l o b a l composition i s observed a f t e r 60 h m i l l i n g even though t h e d i f f e r e n t l a y e r s present s l i g h t l y higher concentrations o f Chromium and Niobium (see F i g 5 ) . At t h i s stage t h e presence o f an amorphous phase i s detected by X-ray d i f f r a c t i o n , suggesting once more t h a t t h e amorphous phase forms from a m i x t u r e o f s o l i d s o l u t i o n s o f t h e two elements.

The presence o f amorphous phases i n these powders was f u r t h e r i n v e s t i g a t e d by TEM observations made d i r e c t l y on t h e powders ( t h e i r small sizes, 50-200 nm, made t h i s p o s s i b l e w i t h o u t any t h i n n i n g being necessary). As seen i n F i g s 3 and 5, a l l t h e powders i n v e s t i g a t e d show t h e presence o f some c r y s t a l l i n e p a r t i c l e s embedded i n an amorphous m a t r i x a f t e r 60 hours o f m i l l i n g . This i s i n complete agreement w i t h t h e X-ray s p e c t r a observed. Amorphization i s not complete unless a completely rounded background i s observed, t h e presence o f any c r y s t a l 1 i t e s w i l l a l l o w some sharpness t o be observed i n t h e peaks o f the spectrum. The powders t h a t had a smaller number o f c r y s t a l l i t e s were those from t h e CrB2, NbSi2 and Cr2Nb systems i n agreement w i t h t h e most rounded X-ray s p e c t r a observed a f t e r 60 hours m i l l i n g . Also measurements o f c r y s t a l l i t e sizes made from t h e w i d t h a t h a l f maximum o f t h e peaks u s i n g t h e Scherrer f o r m u l a show t h a t both t h e CrB2

(4)

CrB

M A

Cr

n

40 HOURS

60 HOURS

20 HOURS

5 HOURS

-.-W ~ ~

60 HOURS

S

60 HOURS

100

F i g 1. X-ray spectra from MA powders a f t e r d i f f e r e n t m i l l i n g periods. Note t h e formation o f NbB and NbSi2 compounds and t h e lack o f formation o f CrB and CrB2.

(5)

C4-214 COLLOQUE DE PHYSIQUE

Cr2Nb

M A

CDS CPS

400

-

5 HOURS 400

-

Cr 25 HOURS

300

-

200

-

Cr,Nb

400

- 1

15 HOURS CPS

400 300

-

Cr 60 HOURS

200

-

Nb

l00

-

J

100

9r

34

F i g 2. X-ray s p e c t r a from m i l l e d elemental powders o f composition Cr2Nb.

F i g 3. a) and b) NbSi2 Ma powders. c ) and d) Cr2Nb powders a f t e r m i l l i n g f o r 60 hours i n a l l cases. Note t h e layered s t r u c t u r e s i n t h e Cr2Nb system. Amorphous m a t r i x w i t h some c r y s t a l l i t e s are observed i n both types o f powders by TEM.

(6)

F i g 4. Observed m i l l e d powders by atomic number c o n t r a s t i n t h e

SEM.

Note t h e Boron d i s t r i b u t i o n i n a)and b ) f o r t h e CrB system and t h e much smaller powder s i z e a f t e r NbB2 formation occurs.

F i g 5. TEM observations o f a) CrB2 and b) NbB powders a f t e r 60 hours m i l l i n g . Note t h e d i f f u s e r i n g s c h a r a c t e r i s t i c of t h e amorphous m a t r i x and t h e c r y s t a l l i t e s observed i n Dark F i e l d .

(7)

C4-216 COLLOQUE DE PHYSIQUE

and NbSi2 systems have t h e smallest values at 3 nm, t h i s being c o n s i s t e n t w i t h a more complete amorphization process observed.

D e t a i l e d comparison o f t h e amorphization paths f o l l o w e d by these systems shows t h a t i n some cases t h e formation o f a more s t a b l e compound occurs f i r s t (as i n t h e case o f NbB, NbB2 and NbSiz w i t h t h e h i g h e s t n e g a t i v e enthalpy o f compound f o r m a t i o n between -250 and -140 KJ/mol) f u r t h e r m i l l i n g r e s u l t i n g i n t h e formation o f an amorphous phase c o n t a i n i n g c r y s t a l l i t e s o f the remaining compound. However i n t h e case o f t h e CrB, CrB2 and Cr2Nb systems t h e amorphization process occurs d i r e c t l y from t h e m i x i n g o f t h e elements w i t h no intermediate compound being present a t t h e t i m e o f amorphization. Whichever t h e path f o l lowed, t h e amorphizat i o n process seems t o be a continuous one w i t h i n c r e a s i n g volume f r a c t i o n o f amorphous phase as a f u n c t i o n o f m i l l i n g time.

Another p o i n t t o discuss i s t h e general aspect o f t h e powders. Only t h e Cr2Nb powders present t h e layered s t r u c t u r e c h a r a c t e r i s t i c o f c o l d welding caused by g l o b a l p l a s t i c i t y . I n a l l other cases m i x i n g o f the elements occurred a f t e r f r a c t u r i n g , w i t h l o c a l d i T f u s i o n from t h e o u t s i d e towards t h e i n s i d e o f t h e powders b u t no l o c a l p l a s t i c i t y producing welding. For t h i s reason i n these most f r a g i l e powders, t h e energy produced by t h e impact w i t h the b a l l s w i l l not be s t o r e d i n t h e powders b u t instead w i l l be spent i n the c r e a t i o n o f the new f r a c t u r e surfaces. This i s most e v i d e n t i n t h e case where t h e e a r l y f o r m a t i n g o f t h e very f r a g i l e Borides or S i l i c i d e s produce m i l l e d powders which are t e n times smaller than those i n t h e Cr2Nb system. Also i n t h e case o f t h e systems where compound formation occurs, t h e chemical composition o f t h e powders has reached t h e g l o b a l value, t h e r e f o r e any f u r t h e r m i l l i n g should o n l y r e s u l t i n l o c a l chemical d i s o r d e r which w i l l d e s t a b i l i z e t h e compound. I n t h i s way t h e amorphization process by b a l l - m i l l i n g can be seen as a continuous increase i n t h e volume f r a c t i o n o f zones w i t h l o c a l d i s o r d e r o f t h e c r y s t a l l o g r a p h i c s t r u c t u r e s . With i n c r e a s i n g m i l l i n g time t h e complex c r y s t a l l o g r a p h i c s t r u c t u r e s w i l l f i n a l l y disappear g i v i n g way t o t h e amorphous phase. We can say t h a t t h i s d e s t r u c t i o n o f t h e chemical order corresponds t o t h e increase i n enthalpy and entropy o f t h e powders by the impact w i t h t h e b a l l s . This increase i n enthalpy and entropy w i l l be h i g h e s t i n t h e systems where more p l a s t i c i t y and welding o f t h e powders i s observed (i.e.

i n t h e case o f t h e l a y e r e d s t r u c t u r e s ) t h e r e f o r e t h e chemical i n s t a b i l i t y w i l l be more pronounced. The f a c t t h a t no compound formation occurs i n t h e case o f t h e CrB and CrB2 systems w i t h heats o f formation o f -75 and -94 kJ/mol r e s p e c t i v e l y w h i l s t t h e d i r e c t format i o n o f t h e amorphous phase from t h e elements takes p1 ace, suggests t h a t chemical d i s o r d e r o c c u r r i n g from t h e e a r l y stages o f m i l l i n g prevents compound formation i n t h e case of c e r t a i n complex s t r u c t u r e s . This means t h a t n u c l e a t i o n o f t h e compound i s not p o s s i b l e because e i t h e r t h e c r i t i c a l a c t i v a t i o n energy necessary f o r n u c l e a t i o n i s t o o h i g h or t h e c r i t i c a l nucleus s i z e i s never reached. This i s i l l u s t r a t e d by t h e f a c t t h a t t h e compound CrSi2 forms a f t e r m i l l i n g times between 10 t o 40 hours even though i t s enthalpy o f formation, AHf = -8OKJlmo1, i s intermediate t o those o f CrB and &B2.

I t could be p o s s i b l e t o a t t r i b u t e t h e d i f f e r e n t n u c l e a t i o n a b i l i t y t o t h e d i f f e r e n t d i f f u s i v i t y o f Boron compared t o t h a t o f S i l i c o n ( s i n c e a l l t h r e e are^ l i n e compounds). On t h e other hand such an argument cannot be h e l d r e s p o n s i b l e f o r t h e slower n u c l e a t i o n o f NbB2 which i s not a l i n e compound (15 hours) compared t o NbB ( 5 hours) which i s a l i n e compound and has a less negative enthalpy o f formation. Also t h e case o f Cr2Nb where t h e complex cubic Laves phase cannot form by m i l l i n g even though t h e range o f compositions a t which t h i s compound should form i s reached ( 3 ) suggests t h a t it i s n o t t h e d i f f e r e n t d i f f u s i v i t y o f Chromium and Niobium which prevents n u c l e a t i o n o f the compound b u t r a t h e r t h e complexity o f t h e s t r u c t u r e . C r y s t a l s t r u c t u r e plays an important r o l e i n t h e process o f n u c l e a t i o n since it i s r e l a t e d t o t h e i n t e r f a c e energy o f t h e nucleus and t h e r e f o r e t h e c r i t i c a l energy f o r compound n u c l e a t i o n . I n t h e case o f more complex s t r u c t u r e s t h i s i n t e r f a c e energy w i l l increase more q u i c k l y w i t h increased s t r u c t u r a l d i s o r d e r o f t h e

(8)

m a t r i x due t o m i l l i n g . I n some cases t h i s increased i n t e r f a c e energy can be compensated b y t h e i n c r e a s e i n volume energy produced by t h e excess o f d e f e c t s . As an example we observe t h e n u c l e a t i o n o f NbB2 w i t h a hexagonal s t r u c t u r e (C32) and AHf = -250 KJ/mol a f t e r 15 hours m i l l i n g , b u t i n t h e CrB2 case w i t h t h e same c r y s t a l s t r u c t u r e b u t AHf = -94 KJ/mol, t h e compound never forms. I n a s i m i l a r way- we can e x p l a i n t h e f a s t e r f o r m a t i o n of NbB than NbB2 ( o f s i m i l a r hHf) on t h e assumption t h a t t h e i n t e r f a c e energy o f t h e NbB s t r u c t u r e i s lower.

Since s u f f i c i e n t l y l o n g m i l l i n g times f i n a l l y lead t o t h e f o r m a t i o n o f amorphous phases t h i s i n d i c a t e s t h a t t h e f r e e energy o f t h e system can be lowered i n t h i s way d u r i n g m i l l i n g whichever p a t h i s f o l l o w e d . I f we c o n s i d e r t h e s m a l l e r c r y s t a l l i t e s i z e s measured f r o m t h e X-ray spectra, t h e systems NbSi2 and CrB2 are c o n s i s t e n t w i t h a more complete amorphization process. Only t h e more o r l e s s d i f f u s e r i n g s and t h e n a n o c r y s t a l s observed w i t h i n t h e powders by TEM g i v e a f u l l u n d e r s t a n d i n g o f t h e e x t e n t t o which an amorphous phase can c o e x i s t w i t h e i t h e r t h e compound o r t h e s o l i d s o l u t i o n o f t h e elements r e s p e c t i v e l y . T h i s i n d i c a t e s t h a t t h e a m o r p h i z a t i o n process does n o t occur u n i f o r m l y t h r o u g h o u t t h e sample but r a t h e r must depend on t h e l o c a l s t r u c t u r a l d i s o r d e r c r e a t e d as t h e impact w i t h t h e b a l l i n c r e a s e s t h e energy l o c a l l y .

I f t h e amorphous phases form i n o r d e r t o reduce t h e f r e e energy o f t h e systems i t must be a d m i t t e d t h a t t h e h i g h energy s t a t e s corresponding t o a d i s o r d e r e d s o l i d s o l u t i o n o f t h e elements ( i n some cases) o r t o a d i s o r d e r e d d e s t a b i l i z e d compound ( i n o t h e r s ) must be e q u i v a l e n t . Indeed t h e c r y s t a l l i t e s i z e s observed b y TEM i n t h e powders NbSi2 o r CrBz are s i m i l a r , i n d i c a t i n g t h a t t h e amorphous phase i s formed a f t e r b r e a k i n g down t h e c r y s t a l l i t e s i z e t o t h e same e x t e n t i n t h e compound or s o l i d s o l u t i o n cases, r e s p e c t i v e l y .

4

-

CONCLUSIONS

Amorphous phases are formed i n a l l t h e systems s t u d i e d which compete w i t h n a n o c r y s t a l l i n e s t r u c t u r e s o f e i t h e r t h e i n t e r m e d i a t e compound o r t h e s o l i d s o l u t i o n o f t h e element. I t seems t h a t i n these cases, t h e major aspect h i n d e r i n g compound f o r m a t i o n i s r e l a t e d t o t h e c o m p l e x i t y o f t h e c r y s t a l s t r u c t u r e s and n o t t o t h e d i f f e r e n t d i f f u s i v i t y o f t h e two elements.

REFERENCES

/ l / Johnson, W.L., Progress i n Mat.Science,

E,

(1986), 81.

/2/ Weeber, A.W. and Bakker H., Physica B,

153

(1988), 93 /3/ M o r r i s , M.A., Journal o f Mat. Science, i n press (1990) /4/ P o l i t i s , C., Physica V,

135

(1985), 286.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to