• Aucun résultat trouvé

THE CRYSTALLINE LATTICE STABILITY AND MARTENSITE NUCLEATION MECHANISM IN ALLOYED STEEL

N/A
N/A
Protected

Academic year: 2021

Partager "THE CRYSTALLINE LATTICE STABILITY AND MARTENSITE NUCLEATION MECHANISM IN ALLOYED STEEL"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00221950

https://hal.archives-ouvertes.fr/jpa-00221950

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE CRYSTALLINE LATTICE STABILITY AND MARTENSITE NUCLEATION MECHANISM IN

ALLOYED STEEL

Yu. Petrov

To cite this version:

Yu. Petrov. THE CRYSTALLINE LATTICE STABILITY AND MARTENSITE NUCLEATION MECHANISM IN ALLOYED STEEL. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-91-C4- 95. �10.1051/jphyscol:1982406�. �jpa-00221950�

(2)

JOURNAL PH DE YS IQ UE

Colloque C .l, supple'ment au

no Tome 12,

43 de'cembre , 2982

page C4 -9 1

THE CRYSTALLINE LA

TT IC E ST AB IL IT Y AND MARTENSITE NUCLEATION

MECHANISM

IN ALLOYED STEEL

Yu.N. Petrov institute The of Metal

Physics oJ the Ukrainian Academy

of Sciences, Kiev,

U.

S.

S R. .

(Revised text accepted 14

September 1982)

ct A

.- In this

work t he e ff ec t of t he s ta ck in

g chromium-manga- and manganese in ) SFE ( e rgy % ?en f %

ne se a us te ni te on th e cr ys ta ll og ra ph ic mechanism

of me- te is us Th a ed oy ll of a ! considered. S F& is he by t formation determined nucleus te is si en rt chanism ma ni

te thermodynamical and al ur ct ru st s it by determined as parameters.

1ntroductioq.- Ma rt en si ti c nu cl ea ti on

s i

di re ct ly r el at ed t o

th e cr ys ta ll in e la tt ic e st ab il it y in re al iron-base al

lo ys whe-

re a cooperative c

ry st al li ne l at ti ce rearrarqement ta

ke s pl ac e

wi th ou t

changes of aqy

so li d so lu ti on composition.

T w o mechanisms of m

ar te ns it ic t ra ns fo rm at io n ar e consi-

dered t o be p os si bl e in th e al lo ye d st ee ls w it h di ff er en t sta-

bi li ti es of th e au st en it e cr ys ta ll in e la tt ic e expressed quanti-

ta ti ve ly i n terms of

th e

/I/. SFE

The experimental in

ve st ig a-

ti on have extended on

id ea s about t

he s ta bi li ty of th e cr ys ta l-

li ne l at ti ce of al lo ye d au st en it e.

I n th e iron-base

al lo ys a

temperature dependence of

SFE fo r au st en it e was found to

depend n ot only upon t

he a us te ni te composition bu

t al so upon

th e st ru ct ur al s ta / te /. 2-4

It wa s li ke wi se shown th

at cooling

re su lt s no t only i

a n

sp li tt in g of t he p er fe ct d is lo ca ti on s in to

pa rt ia l ones b ut a ls o to an in cr ea in se th ei r mo bi li / ty

/.

ti 5 ca lo is d ng yi ud st r fo techniques on ti lu so high re of use The

on

st ru ct ur e re ve al ed s ta ck in g fa ul ts i n au st en it e even w it h re la -

ti ve h ig h

in SFE

fo ,

r example,

iron-nickel al lo ys /6/.

st A

ru c-

tu ra l se ns it iv it y of

in SFE

a us te ni te , es pe ci al ly i n al lo ys con-

ta in in g such elements as

carbon which show

a tendency to

segre-

ga ti on on th e st ru ct ur al i mp er fe ct io ns was al so r ev ea le /7/. d

was n SFE

ot s pe ci fi ca ll y

included

in th e heterogeneous

theory based on t

he concept

"

of pr ee xi st in g

"

nu cl ei /8/,

but

is it

in cl ud ed in r ec en t models of

ma rt en si te n uc le at io n /9-14/.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982406

(3)

aq EJS

a pe L q wtu za aa p 3n 67

q actrueasn8 TaTqrnF

aqa j o no p?

so d

-moo aq 3 pe bq

nr sa p so u sr m sm oe m n o~

m~

oj su e;

c~ ora?sne$

aqa - m ct

pakoqs aaoq'8 qq

ua hr 3 sa ps ax -pr~nam~.xadira eq

z

'a

%T su ar Sm eswqd-,p aqrl

amnToh so 3 0 1 3

am

$o xa c?

ma

~

uo r?

.~

;c oj su 8.n aq?.

fi o~

eq noK3emaoj eq

3 za m/pm sn

01

(aq.E?.s 03 2

a%?ueasna a sn d so 3 m/pm )

G z

mo zs e%mueasne jo

aq 36s

q n ?

06 *s;raq%o a eq es a se Tn sa r/ /g m h q Z pen-p~cfxa a 6q cre 3dnaq-e -sa;coap

pamxox n ? s3 axe

~8 j Su

~y oE sS ap t&

p w a3

~s na gS em -3 m p 39-3.

-sna aq a qm 30 d emos a?

ao 'e

~d se pq u or ae ms oj sm

,

za

64

ip

:p ah

-aasqo uo em

~3 ar nz os sm a oy?.rsna%;rem aq%

smsrcreqDam q 3 0

ao

g L

q

oa paTooo Ta

ea s 374.3~ 5tr60-ujq%*ctfi

81-ad actmactsns 30

ni /91/

KT

-~

8$

ue m~

za dx a n~

oq

sv

s

*Taa%s p aL 0- i~

~ aq a e$R$s 20

pm 3o ng s aq a

Lq p aa oa jp ms ST

pq oa m n ot a8 m.

1o

~s ue g a 7r su e3 m

8Q;t

-(q~*Bw pemaoj e )

m sqTn.ej %

~q ow qs p m e$

~s na ct se m a se qd

3

-

m/pm

z

uq

sse7: 3

a3 ST

~u aa sn

~ aq a eJceqM

x t7 re an amrl8aeamerl

'000

9Z

*a x

%r sn as

3

m- 'zm/pm

o z

rrey3 s sa T

a?.va?.sns ST gag . TO

3n oq e am38rradma?. u

o

~

~

~ s o

s a3ycreq t azom s 3 mq 02 6zm/pm p , m- am ma 3r 'e (q -ep

110?78m.~Ojap e

*( 3~

~I -B T,

~ )

pe aa es qo s .~

u o r q

~ o j

~ a ,

70-R

m/pm

0~ -3

azom 3 ,g 98

s s aq?ue3sns S T

as ew Sm -m np o.

xq

o gs er ~~ 'a 09 $E 3 aq ep of mz qE o~ ai~n!$8aaamel. U 3 0

z

aq?. naqM

n8

ny eq

q aouapnadap a JO

q8 md ma a re y$

na ss a aq a pe Lq sr z

-eaoamq:, sm em

sfa eq oe m no yq mx oj sm q or 3r su eq m sn or ma e q3

LOTV qq pq ab 6 1- z&

*g

~ GI-eg nr

' /

< I nr / urnow

SBM

-O

sv

W

O?

~W IZ OJ SW

or ~

$r sn e$

m no eq3 gss a$

Fe

%s nn Wa 3 0

JW

(4)

l e v e l i n t h e p r e m a r t e n s i t e s t a t e .

Cx~st&&g&a~hic mechanisms of m a r t e n s i t e n u c l e i form&ion i n

-

t e n i t e w i t h v a r i o u s SEE.- In a l l o y e d s t e e l s undergoing t h e marten-

s i t i c transformation, t h e a u s t e n i t e SFE is a thermodynamical s t r u c -

t u r a l parameter /II/. For r e l a t i v e l y h i g h SEE t h e f i r s t Gcansforma-

t i o n d i s l o c a t i o n loop forming t h e n u c l e u s occurs as a r e s u l t of a

p e r f e c t d i s l o c a t i o n which forms p a r t of t h e Frank n e m o r k ( Fig.&)

s p l i t t i n g i n t o s e s s i l e p a r t i a l s w i t h Burgers v e c t o r s 2 4 3 (111)

and a/6 (110) and g l i s s i l e p a s t i a l Schockley d i s l o c a t i o n s of

a / 6 (112) type ( 2ig.2b). I n t h i s case, howevar, t h e s p l i t t i n g i s

Pin.2 : Scheme showing a formation mechanism of d i s l o c a t i o n

t r a n s f o r m a t i o n loop a t

7

-, &

'

l a t t i c e rearrengement:

a ) Frank's d i s l o c a t i o n network i n a u s t e n i t e ,

b) c ) a formation mechanism of t h e p o l e 2a/3 (111) d i s -

l o c a t i o n and t r a n s f ormational a / I 8

<

I12

>

d i s l o c a t i o n , d ) t r a n s i t i o n mechanism of d i s l o c a t i o n t r a n s f o r m a t i o n a l

loop from i n i t i a l (111) p l a n e of a u s t e n i t e i n t o neigh-

b o w i n g one.

small and t a k e s p l a c e i n t h e d i s l o c a t i o n core only. Because of t h e

h i g h SF'%: a s p l i t t i n g of t h e s e s s i l e a/6 (110) t y p e d i s l o c a t i o n s

i n t o transformation d i s l o c a t i o n of a / I 8 (112) t y p e w i t h small Bur-

g e r s v e c t o r i s e n e r g e t i c a l l y f a v o u r a b l e ( Fig.2b). I n t h i s c a s e the

(5)

.IOURNAL DE PHYSIQUE

i n c r e a s e d s u r f a c e energy of t h e nucleus f o r a transformation dis-

l o c a t i o n loop i s compensated by a lower e l a s t i c energy.

The transformation d i s l o c a t i o n may move through t h e (111)

p l a n e under t h e a c t i o n of t h e c r y s t a l transformation s l x e s s . If t h e

transformation d i s l o c a t i o n c r o s s e s a s e s s i l e one of 2a/3 (1x1)

type, this a c t s a s a p o l e d i s l o c a t i o n and a d i s l o c a t i o n jog i s f o r -

med allowing p a r t of t h e transformation d i s l o c a t i o n t o e n t e r a

neighbouring c l o s e p a c k e d p l a n e ( F i g . 2 ~ ) . This process provides

f o r t h e transformation l o o p s i n (111) a u s t e n i t e p l a n e s t o be f o r -

med i n s e r i e s t h u s producing an ABBBAB packing sequence. A s t h e

r e s u l t of t h i s p r o c e s s a nucleus of B.C.C. m a r t e n s i t e i s formed.

For a u s t e a i t e w i t h low SFE p a r t i a l Schockley d i s l o c a t i o n s

w i t h Burgers v e c t o r a / 6 < I I 2 ) a r e formed and a r e s e p a r a t e d i n t h e close-packed plane a t considerable d i s t a n c e s . An i n t e r a c t i o n bet-

ween this type of d i s l o c a t i o n and a p o l e of type 2a/3 (111) r e -

s u l t s i n t h e formation of H.C.P. m a r t e n s i t e analogous t o t h e t r a n s -

formation mechanism i n c o b a l t /I?/.

The c r y s t a l l o g r a p h i c mechanism of m a r t e n s i t e formation i n

a l l o y e d a u s - t e n i t e i s determined by the SPE of i t s c x y s t a l l i n e lati-

t i c e i n p r e m a r t e n s i t e s t a t e involving thermodynamical parameters and its a u s t e n i t e s t r u c t u r e . Thus t h e importance of t h e a u s t e n i t e c r y s t a l l i n e l a t t i c e s t a b i l i t y i n t h e m a r t e n s i t e n u c l e a t i o n mechani- s m i s evident.

Ref erenceg.

I. DLLY P.M., Bcta Wet., (1965) 635.

2. LATANISION R.M., EUFF B.W., Met.Trans.

2

(1971) 505.

3 . LBCR0ISE;Y P., TIiOhlAS B., Phys.St.501.

2

(1970) K217.

4. GHlDNXV V.N., PXTROV Yu.N., RYZHKOV Yu.T., Ukrainsky Fizicheslry

Zhurnal

a

(1974) 579.

5. VOLOdhVICH P.Yu., GRIDNEV V.N., PSTROV Yu.N., Bizika metallov i

metalloved.,

2

(1372) 788.

6. ADZXV V.M., PUTROV Yu.N., Fizika metallov i metalloved.,

48

(1979) 1271.

(6)

7. PE;TROV Yu.N., Metallofizika 2 (1980) 102.

8. KAUPMAN L., COHEN M., Progress i n Metal Physics V I I (1958) 165,

London, Pergamon.

9. B T R O V Yu.N., Metallofizika iss. SL) (1974) 51.

10. l?El?ROV Yu.N., Metallofizika iss.55 (1974) 11.

11. PETROV Yu.N., Defects and diffusionless transformation i n steel, Kiev, "Naukova dumka" (1978) 262 p.

12. OLSON G.B., C O m M.

,

Met.Tran8.A.

a

(1976) 1905.

13. OLSON G.B., COHXD M.

,

blet.'I?rans.A,

a

(1976) 1915.

14. OLSON G.B., COHEN M., Met.Tran8.A.

a

(19761 1879-

15. GRIINROV G.N., PETROV Yu.N., RIZHKOV Yu.T., Pizika metallov i metalloved.,

48

(1979) 660.

16. VOLOSEVICH P.Yu., GRIDNEV V.N., PbTROV Yu.N., Pizika metallov i metalloved., (1975) 554.

17. SXEGER A., Z.Metallkunde (1953) 247.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to