• Aucun résultat trouvé

New inequalities in fractional integrals

N/A
N/A
Protected

Academic year: 2021

Partager "New inequalities in fractional integrals"

Copied!
5
0
0

Texte intégral

(1)

International Journal of Nonlinear Science Vol.9(2010) No.4,pp.493-497

New Inequalities in Fractional Integrals

Zoubir Dahmani

Zoubir DAHMANI Laboratory of Pure and Applied Mathematics,

Department of Mathematics,Faculty of SESNV,University of Mostaganem, Algeria

(Received 9 June 2009, accepted 18 October 2009)

Abstract: In this paper, we use the Riemann-Liouville fractional integral to present recent results on frac-tional integral inequalities. By considering the extended Chebyshev funcfrac-tional in the case of synchronous functions, we establish two main results. The first one deals with some inequalities using one fractional pa-rameter. The second result concerns others inequalities using two fractional parameters.

Keywords:Chebyshev inequality; Fractional integral inequalities; Riemann-Liouville fractional integral

1

Introduction

Let us consider the functional

𝑇 (𝑓, 𝑔, 𝑝, 𝑞) :=𝑏 𝑎 𝑞(𝑥)𝑑𝑥𝑏 𝑎 𝑝(𝑥)𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 +𝑏 𝑎 𝑝(𝑥)𝑑𝑥𝑏 𝑎 𝑞(𝑥)𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 (∫𝑎𝑏𝑞(𝑥)𝑓 (𝑥) 𝑑𝑥) (∫𝑎𝑏𝑝(𝑥)𝑔 (𝑥) 𝑑𝑥)(∫𝑎𝑏𝑝(𝑥)𝑓 (𝑥) 𝑑𝑥) (∫𝑎𝑏𝑞(𝑥)𝑔 (𝑥) 𝑑𝑥), (1)

where𝑓 and 𝑔 are two integrable functions on [𝑎, 𝑏] and 𝑝, 𝑞 are positive integrable functions on [𝑎, 𝑏]. If 𝑓 and 𝑔 are synchronous on[𝑎, 𝑏] ( i.e. (𝑓(𝑥) − 𝑓(𝑦))(𝑔(𝑥) − 𝑔(𝑦)) ≥ 0, for any 𝑥, 𝑦 ∈ [𝑎, 𝑏] ), then 𝑇 (𝑓, 𝑔, 𝑝, 𝑞) ≥ 0 ( see [6, 8] ). The sign of this inequality is reversed if𝑓 and 𝑔 are asynchronous on [𝑎, 𝑏] ( i.e. (𝑓(𝑥) − 𝑓(𝑦))(𝑔(𝑥) − 𝑔(𝑦)) ≤ 0, for any𝑥, 𝑦 ∈ [𝑎, 𝑏] ). For 𝑝(𝑥) = 𝑞(𝑥), 𝑥 ∈ [𝑎, 𝑏], we get the Chebyshev inequality [3]. In [9], Ostrowski established the following generalization of the Chebyshev inequality:

If 𝑓 and 𝑔 are two differentiable functions, synchronous on [𝑎, 𝑏], 𝑝 is a positive integrable function on [𝑎, 𝑏] and

∣𝑓′(𝑥)∣ ≥ 𝑚, ∣𝑔(𝑥)∣ ≥ 𝑟, for 𝑥 ∈ [𝑎, 𝑏], then

𝑇 (𝑓, 𝑔, 𝑝) := 𝑇 (𝑓, 𝑔, 𝑝, 𝑝) ≥ 𝑚𝑟𝑇 (𝑥 − 𝑎, 𝑥 − 𝑎; 𝑝) ≥ 0. (2)

If𝑓 and 𝑔 are asynchronous on [𝑎, 𝑏], then

𝑇 (𝑓, 𝑔, 𝑝) ≤ 𝑚𝑟𝑇 (𝑥 − 𝑎, 𝑏 − 𝑥; 𝑝) ≤ 0.

If𝑓 and 𝑔 are two differentiable functions on [𝑎, 𝑏], 𝑝 is a positive integrable function on [𝑎, 𝑏] and ∣𝑓′(𝑥)∣ ≤ 𝑀,

∣𝑔′(𝑥)∣ ≤ 𝑅, for 𝑥 ∈ [𝑎, 𝑏], then

∣𝑇 (𝑓, 𝑔, 𝑝)∣ ≤ 𝑀𝑅𝑇 (𝑥 − 𝑎, 𝑥 − 𝑎; 𝑝) ≤ 0. (3)

Many researchers have given considerable attention to the functional𝑇 (𝑓, 𝑔, 𝑝) and a number of extensions, general-izations and variants have appeared in the literature, see [1, 2, 4, 7] and the references given therein.

The main purpose of this paper is to use the Riemann-Liouville fractional integral to establish some new fractional integral inequalities using the extended Chebyshev functional (1).

E-mail address: zzdahmani@yahoo.fr

Copyright c⃝World Academic Press, World Academic Union IJNS.2009.06.30/378

(2)

2

Description of the Fractional Calculus

In the following, we will give the necessary notation and basic definitions. More details, one can consult [5,10].

Definition 1 A real valued function𝑓(𝑡), 𝑡 > 0 is said to be in the space 𝐶𝜇, 𝜇 ∈ ℝ if there exists a real number 𝑝 > 𝜇

such that𝑓(𝑡) = 𝑡𝑝𝑓1(𝑡), where 𝑓1(𝑡) ∈ 𝐶([0, ∞)).

Definition 2 A function𝑓(𝑡), 𝑡 > 0 is said to be in the space 𝐶𝜇𝑛, 𝑛 ∈ ℝ, if 𝑓(𝑛)∈ 𝐶𝜇.

Definition 3 The Riemann-Liouville fractional integral operator of order𝛼 ≥ 0, for a function 𝑓 ∈ 𝐶𝜇, (𝜇 ≥ −1) is

defined as 𝐽𝛼𝑓(𝑡) = 1 Γ(𝛼)𝑡 0(𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏; 𝛼 > 0, 𝑡 > 0, 𝐽0𝑓(𝑡) = 𝑓(𝑡), (4) whereΓ(𝛼) :=0∞𝑒−𝑢𝑢𝛼−1𝑑𝑢.

For the convenience of establishing the results, we give the semigroup property:

𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛼+𝛽𝑓(𝑡); 𝛼 ≥ 0, 𝛽 ≥ 0, (5)

which implies the commutative property

𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛽𝐽𝛼𝑓(𝑡). (6)

For the expression (4), when𝑓(𝑡) = 𝑡𝜇we get another expression that will be used later:

𝐽𝛼𝑡𝜇 = Γ(𝜇 + 1)

Γ(𝛼 + 𝜇 + 1)𝑡𝛼+𝜇; 𝛼 > 0, 𝜇 > −1, 𝑡 > 0. (7) Remark 1 In what follows we shall consider the real valued functions defined on the space𝐶𝜇, (𝜇 ≥ −1).

3

Main Results

Theorem 2 Let𝑓 and 𝑔 be two synchronous functions on [0, ∞) and let 𝑟, 𝑝, 𝑞 : [0, ∞) → [0, ∞). Then for all 𝑡 > 0, 𝛼 > 0, we have:

2𝐽𝛼𝑟(𝑡)[𝐽𝛼𝑝(𝑡)𝐽𝛼(𝑞𝑓𝑔)(𝑡) + 𝐽𝛼𝑞(𝑡)𝐽𝛼(𝑝𝑓𝑔)(𝑡)]+ 2𝐽𝛼𝑝(𝑡)𝐽𝛼(𝑞)(𝑡))𝐽𝛼(𝑟𝑓𝑔)(𝑡) ≥

𝐽𝛼𝑟(𝑡)[𝐽𝛼(𝑝𝑓)(𝑡)𝐽𝛼(𝑞𝑔)(𝑡) + 𝐽𝛼(𝑞𝑓)(𝑡)𝐽𝛼(𝑝𝑔)(𝑡)]+ 𝐽𝛼𝑝(𝑡)[𝐽𝛼(𝑟𝑓)(𝑡)𝐽𝛼(𝑞𝑔)(𝑡)+

𝐽𝛼(𝑞𝑓)(𝑡)𝐽𝛼(𝑟𝑔)(𝑡)]+ 𝐽𝛼𝑞(𝑡)[𝐽𝛼(𝑟𝑓)(𝑡)𝐽𝛼(𝑝𝑔)(𝑡) + 𝐽𝛼(𝑝𝑓)(𝑡)𝐽𝛼(𝑟𝑔)(𝑡)].

(8)

Lemma 3 Let𝑓 and 𝑔 be two synchronous functions on [0, ∞) and let 𝑣, 𝑤 : [0, ∞) → [0, ∞). Then for all 𝑡 > 0, 𝛼 > 0,

we have:

𝐽𝛼𝑣(𝑡)𝐽𝛼(𝑤𝑓𝑔)(𝑡) + 𝐽𝛼𝑤(𝑡)𝐽𝛼(𝑣𝑓𝑔)(𝑡) ≥ 𝐽𝛼(𝑣𝑓)(𝑡)𝐽𝛼(𝑤𝑔)(𝑡) + 𝐽𝛼(𝑤𝑓)(𝑡)𝐽𝛼(𝑣𝑔)(𝑡). (9)

Proof.Since the functions𝑓 and 𝑔 are synchronous on [0, ∞), then for all 𝜏 ≥ 0, 𝜌 ≥ 0, we have (

𝑓(𝜏) − 𝑓(𝜌))(𝑔(𝜏) − 𝑔(𝜌))≥ 0. (10)

Therefore

𝑓(𝜏)𝑔(𝜏) + 𝑓(𝜌)𝑔(𝜌) ≥ 𝑓(𝜏)𝑔(𝜌) + 𝑓(𝜌)𝑔(𝜏). (11)

(3)

(𝑡 − 𝜏)𝛼−1 Γ(𝛼) 𝑣(𝜏)𝑓(𝜏)𝑔(𝜏) + (𝑡 − 𝜏)𝛼−1 Γ(𝛼) 𝑣(𝜏)𝑓(𝜌)𝑔(𝜌) ≥ (𝑡−𝜏)𝛼−1 Γ(𝛼) 𝑣(𝜏)𝑓(𝜏)𝑔(𝜌) +(𝑡−𝜏) 𝛼−1 Γ(𝛼) 𝑣(𝜏)𝑓(𝜌)𝑔(𝜏). (12)

Integrating (12) over(0, 𝑡), we obtain: 1 Γ(𝛼)𝑡 0(𝑡 − 𝜏) 𝛼−1𝑣(𝜏)𝑓(𝜏)𝑔(𝜏)𝑑𝜏 + 1 Γ(𝛼)𝑡 0 (𝑡 − 𝜏) 𝛼−1𝑣(𝜏)𝑓(𝜌)𝑔(𝜌)𝑑𝜏 ≥ 1 Γ(𝛼)𝑡 0(𝑡 − 𝜏)𝛼−1𝑣(𝜏)𝑓(𝜏)𝑔(𝜌)𝑑𝜏 +Γ(𝛼)1 ∫𝑡 0(𝑡 − 𝜏)𝛼−1𝑣(𝜏)𝑓(𝜌)𝑔(𝜏)𝑑𝜏. (13) Consequently 𝐽𝛼(𝑣𝑓𝑔)(𝑡) + 𝑓 (𝜌) 𝑔 (𝜌) 1 Γ (𝛼)𝑡 0 (𝑡 − 𝜏) 𝛼−1𝑣(𝜏)𝑑𝜏 ≥ 𝑔(𝜌) Γ(𝛼)𝑡 0(𝑡 − 𝜏)𝛼−1𝑣(𝜏)𝑓 (𝜏) 𝑑𝜏 +Γ(𝛼)𝑓(𝜌)𝑡 0(𝑡 − 𝜏)𝛼−1𝑣(𝜏)𝑔 (𝜏) 𝑑𝜏. (14) So we have 𝐽𝛼(𝑣𝑓𝑔)(𝑡) + 𝑓 (𝜌) 𝑔 (𝜌) 𝐽𝛼(𝑣)(𝑡) ≥ 𝑔 (𝜌) 𝐽𝛼(𝑣𝑓)(𝑡) + 𝑓 (𝜌) 𝐽𝛼(𝑣𝑔)(𝑡). (15)

Now multiplying both sides of (15) by(𝑡−𝜌)Γ(𝛼)𝛼−1𝑤(𝜌), 𝜌 ∈ (0, 𝑡), we obtain: (𝑡 − 𝜌)𝛼−1 Γ (𝛼) 𝑤(𝜌)𝐽𝛼(𝑣𝑓𝑔)(𝑡) + (𝑡 − 𝜌)𝛼−1 Γ (𝛼) 𝑤(𝜌)𝑓 (𝜌) 𝑔 (𝜌) 𝐽𝛼(𝑣)(𝑡) ≥ (𝑡−𝜌)𝛼−1 Γ(𝛼) 𝑤(𝜌)𝑔 (𝜌) 𝐽𝛼(𝑣𝑓)(𝑡) +(𝑡−𝜌) 𝛼−1 Γ(𝛼) 𝑤(𝜌)𝑓 (𝜌) 𝐽𝛼(𝑣𝑔)(𝑡). (16)

Integrating (16) over(0, 𝑡), we get:

𝐽𝛼(𝑣𝑓𝑔)(𝑡)𝑡 0 (𝑡 − 𝜌)𝛼−1 Γ(𝛼) 𝑤(𝜌)𝑑𝜌 + 𝐽𝛼(𝑣)(𝑡) Γ(𝛼)𝑡 0 𝑤(𝜌)𝑓(𝜌)𝑔(𝜌)(𝑡 − 𝜌) 𝛼−1𝑑𝜌 ≥ 𝐽𝛼(𝑣𝑓)(𝑡) Γ(𝛼)𝑡 0(𝑡 − 𝜌)𝛼−1𝑤(𝜌)𝑔(𝜌)𝑑𝜌 +𝐽 𝛼(𝑣𝑔)(𝑡) Γ(𝛼)𝑡 0(𝑡 − 𝜌)𝛼−1𝑤(𝜌)𝑓(𝜌)𝑑𝜌. (17) Therefore 𝐽𝛼(𝑤)(𝑡)𝐽𝛼(𝑣𝑓𝑔)(𝑡) + 𝐽𝛼(𝑣)(𝑡)𝐽𝛼(𝑤𝑓𝑔)(𝑡) ≥ 𝐽𝛼(𝑣𝑓)(𝑡)𝐽𝛼(𝑤𝑔)(𝑡) + 𝐽𝛼(𝑤𝑓)(𝑡)𝐽𝛼(𝑣𝑔)(𝑡), (18)

and this ends the proof of Lemma 3. Proof of Theorem 2:

Proof.Putting𝑣 = 𝑝, 𝑤 = 𝑞 and using Lemma 3, we can write:

𝐽𝛼(𝑝)(𝑡)𝐽𝛼(𝑞𝑓𝑔)(𝑡) + 𝐽𝛼(𝑞)(𝑡)𝐽𝛼(𝑝𝑓𝑔)(𝑡) ≥ 𝐽𝛼(𝑝𝑓)(𝑡)𝐽𝛼(𝑞𝑔)(𝑡) + 𝐽𝛼(𝑞𝑓)(𝑡)𝐽𝛼(𝑝𝑔)(𝑡). (19)

Multiplying both sides of (19) by𝐽𝛼(𝑟)(𝑡), we obtain:

𝐽𝛼(𝑟)(𝑡)[𝐽𝛼(𝑝)(𝑡)𝐽𝛼(𝑞𝑓𝑔)(𝑡) + 𝐽𝛼(𝑞)(𝑡)𝐽𝛼(𝑝𝑓𝑔)(𝑡)]

𝐽𝛼(𝑟)(𝑡)[𝐽𝛼(𝑝𝑓)(𝑡)𝐽𝛼(𝑞𝑔)(𝑡) + 𝐽𝛼(𝑞𝑓)(𝑡)𝐽𝛼(𝑝𝑔)(𝑡)]. (20)

Putting𝑣 = 𝑟, 𝑤 = 𝑞 and using again Lemma 3, we get:

𝐽𝛼(𝑟)(𝑡)𝐽𝛼(𝑞𝑓𝑔)(𝑡) + 𝐽𝛼(𝑞)(𝑡)𝐽𝛼(𝑟𝑓𝑔)(𝑡) ≥ 𝐽𝛼(𝑟𝑓)(𝑡)𝐽𝛼(𝑞𝑔)(𝑡) + 𝐽𝛼(𝑞𝑓)(𝑡)𝐽𝛼(𝑟𝑔)(𝑡). (21)

Multiplying both sides of (21) by𝐽𝛼(𝑝)(𝑡), we get:

𝐽𝛼(𝑝)(𝑡)[𝐽𝛼(𝑟)(𝑡)𝐽𝛼(𝑞𝑓𝑔)(𝑡) + 𝐽𝛼(𝑞)(𝑡)𝐽𝛼(𝑟𝑓𝑔)(𝑡)]

(4)

With the same arguments as before, we can obtain:

𝐽𝛼(𝑞)(𝑡)[𝐽𝛼(𝑟)(𝑡)𝐽𝛼(𝑝𝑓𝑔)(𝑡) + 𝐽𝛼(𝑝)(𝑡)𝐽𝛼(𝑟𝑓𝑔)(𝑡)]

𝐽𝛼(𝑞)(𝑡)[𝐽𝛼(𝑟𝑓)(𝑡)𝐽𝛼(𝑝𝑔)(𝑡) + 𝐽𝛼(𝑝𝑓)(𝑡)𝐽𝛼(𝑟𝑔)(𝑡)]. (23)

The required inequality (8) follows on adding the inequalities (20,22,23). Our second result is:

Theorem 4 Let𝑓 and 𝑔 be two synchronous functions on [0, ∞) and let 𝑟, 𝑝, 𝑞 : [0, ∞) → [0, ∞). Then for all 𝑡 > 0, 𝛼 > 0, 𝛽 > 0, we have: 𝐽𝛼𝑟(𝑡)[𝐽𝛼𝑞(𝑡)𝐽𝛽(𝑝𝑓𝑔)(𝑡) + 2𝐽𝛼𝑝(𝑡)𝐽𝛽(𝑞𝑓𝑔)(𝑡) + 𝐽𝛽𝑞(𝑡)𝐽𝛼(𝑝𝑓𝑔)(𝑡)]+ [ 𝐽𝛼𝑝(𝑡)𝐽𝛽(𝑞)(𝑡)) + 𝐽𝛽𝑝(𝑡)𝐽𝛼(𝑞)(𝑡)]𝐽𝛼(𝑟𝑓𝑔)(𝑡) ≥ 𝐽𝛼𝑟(𝑡)[𝐽𝛼(𝑝𝑓)(𝑡)𝐽𝛽(𝑞𝑔)(𝑡) + 𝐽𝛽(𝑞𝑓)(𝑡)𝐽𝛼(𝑝𝑔)(𝑡)]+ 𝐽𝛼𝑝(𝑡)[𝐽𝛼(𝑟𝑓)(𝑡)𝐽𝛽(𝑞𝑔)(𝑡) + 𝐽𝛽(𝑞𝑓)(𝑡)𝐽𝛼(𝑟𝑔)(𝑡)]+ 𝐽𝛼𝑞(𝑡)[𝐽𝛼(𝑟𝑓)(𝑡)𝐽𝛽(𝑝𝑔)(𝑡) + 𝐽𝛽(𝑝𝑓)(𝑡)𝐽𝛼(𝑟𝑔)(𝑡)]. (24)

Remark 5 Applying Lemma 3 for𝛼 = 𝛽, we obtain Theorem 2 and for 𝛼 = 𝛽 = 1, 𝑝(𝑥) = 𝑞(𝑥) = 𝑟(𝑥) = 1, for any

𝑥 ∈ [0, ∞[, we obtain the Chebyshev inequality on [0, 𝑡], (see [3]).

To prove Theorem 4, we need the following lemma:

Lemma 6 Let𝑓 and 𝑔 be two synchronous functions on [0, ∞] and let 𝑣, 𝑤 : [0, ∞] → [0, ∞]. Then for all 𝑡 > 0, 𝛼 > 0,

we have:

𝐽𝛼𝑣(𝑡)𝐽𝛽(𝑤𝑓𝑔)(𝑡) + 𝐽𝛽𝑤(𝑡)𝐽𝛼(𝑣𝑓𝑔)(𝑡) ≥ 𝐽𝛼(𝑣𝑓)(𝑡)𝐽𝛽(𝑤𝑔)(𝑡) + 𝐽𝛽(𝑤𝑓)(𝑡)𝐽𝛼(𝑣𝑔)(𝑡) (25)

Proof of Lemma 6:

Proof.Multiplying both sides of (15) by(𝑡−𝜌)Γ(𝛽)𝛽−1𝑤(𝜌), 𝜌 ∈ (0, 𝑡), we obtain: (𝑡 − 𝜌)𝛽−1 Γ (𝛽) 𝑤(𝜌)𝐽𝛼(𝑣𝑓𝑔) (𝑡) + 𝐽𝛼(𝑣) (𝑡) (𝑡 − 𝜌)𝛽−1 Γ (𝛽) 𝑤(𝜌)𝑓 (𝜌) 𝑔 (𝜌) ≥ (𝑡−𝜌)𝛽−1 Γ(𝛽) 𝑤(𝜌)𝑔 (𝜌) 𝐽𝛼(𝑣𝑓) (𝑡) +(𝑡−𝜌) 𝛽−1 Γ(𝛽) 𝑤(𝜌)𝑓 (𝜌) 𝐽𝛼(𝑣𝑔) (𝑡) . (26)

Integrating (26) over(0, 𝑡), we obtain

𝐽𝛼(𝑣𝑓𝑔)(𝑡)𝑡 0 (𝑡 − 𝜌)𝛽−1 Γ (𝛽) 𝑤(𝜌)𝑑𝜌 + 𝐽𝛼𝑣(𝑡) Γ (𝛽)𝑡 0 𝑤(𝜌)𝑓 (𝜌) 𝑔 (𝜌) (𝑡 − 𝜌) 𝛽−1𝑑𝜌 ≥ 𝐽𝛼(𝑣𝑓)(𝑡) Γ(𝛽)𝑡 0(𝑡 − 𝜌)𝛽−1𝑤(𝜌)𝑔 (𝜌) 𝑑𝜌 +𝐽 𝛼(𝑣𝑔)(𝑡) Γ(𝛽)𝑡 0(𝑡 − 𝜌)𝛽−1𝑤(𝜌)𝑓 (𝜌) 𝑑𝜌. (27)

Lemma 6 is thus proved. Proof of Theorem 4:

Proof.Using Lemma 6 with𝑣 = 𝑝, 𝑤 = 𝑞, we can write:

𝐽𝛼(𝑝)(𝑡)𝐽𝛽(𝑞𝑓𝑔)(𝑡) + 𝐽𝛽(𝑞)(𝑡)𝐽𝛼(𝑝𝑓𝑔)(𝑡) ≥ 𝐽𝛼(𝑝𝑓)(𝑡)𝐽𝛽(𝑞𝑔)(𝑡) + 𝐽𝛽(𝑞𝑓)(𝑡)𝐽𝛼(𝑝𝑔)(𝑡). (28)

Multiplying both sides of (28) by𝐽𝛼(𝑟)(𝑡), we obtain:

𝐽𝛼(𝑟)(𝑡)[𝐽𝛼(𝑝)(𝑡)𝐽𝛽(𝑞𝑓𝑔)(𝑡) + 𝐽𝛽(𝑞)(𝑡)𝐽𝛼(𝑝𝑓𝑔)(𝑡)]

𝐽𝛼(𝑟)(𝑡)[𝐽𝛼(𝑝𝑓)(𝑡)𝐽𝛽(𝑞𝑔)(𝑡) + 𝐽𝛽(𝑞𝑓)(𝑡)𝐽𝛼(𝑝𝑔)(𝑡)]. (29)

Using Lemma 6 with𝑣 = 𝑟, 𝑤 = 𝑞 and then multiplying both sides of (29)by 𝐽𝛼(𝑝)(𝑡), we obtain:

𝐽𝛼(𝑝)(𝑡)[𝐽𝛼(𝑟)(𝑡)𝐽𝛽(𝑞𝑓𝑔)(𝑡) + 𝐽𝛽(𝑞)(𝑡)𝐽𝛼(𝑟𝑓𝑔)(𝑡)]

(5)

With the same arguments, we can get:

𝐽𝛼(𝑞)(𝑡)[𝐽𝛼(𝑟)(𝑡)𝐽𝛽(𝑝𝑓𝑔)(𝑡) + 𝐽𝛽(𝑝)(𝑡)𝐽𝛼(𝑟𝑓𝑔)(𝑡)]

𝐽𝛼(𝑞)(𝑡)[𝐽𝛼(𝑟𝑓)(𝑡)𝐽𝛽(𝑝𝑔)(𝑡) + 𝐽𝛽(𝑝𝑓)(𝑡)𝐽𝛼(𝑟𝑔)(𝑡)]. (31)

The inequality (24) follows on adding the inequalities (29,30,31). Remark 7 The inequalities (8) and (24) are reversed in the following cases:

𝑎. The functions 𝑓 and 𝑔 asynchronous on [0, ∞). 𝑏. The functions 𝑟, 𝑝, 𝑞 are negative on [0, ∞).

𝑐. Two of the functions 𝑟, 𝑝, 𝑞 are positive and the third one is negative on [0, ∞).

References

[1] M Biernacki: Sur une ingalite entre les integrales due Tchebysheff , Ann. Univ. Marie Curie-Sklodowska, 1(1951)(5):23-29.

[2] H Burkill, L Mirsky: Comments on Chebysheff’s inequality, Period. Math. Hungar. 6( 1975):3-16.

[3] P L Chebyshev: Sur les expressions approximatives des integrales dfinies par les autres prises entre les memes limite.

Proc. Math. Soc. Charkov. 2(1882):93-98.

[4] I Gavrea: On Chebyshev type inequalities involving functions whose derivatives belog to 𝐿𝑝 spaces via isotanic functional. J. Inequal. Pure and Appl. Math. 7(2006)(4):121-128.

[5] R Gorenflo, F Mainardi: Fractional calculus: integral and differential equations of fractional order. Springer Verlag,

Wien. 1997.

[6] J C Kuang: Applied inequalities. Shandong Sciences and T echnologie Press. (Chinese)2004.

[7] S Marinkovic, P Rajkovic, M Stankovic: The inequalities for some types q-integrals. Comput. Math. Appl.

56(2008):2490-2498.

[8] D S Mitrinovic: Analytic inequalities. Springer Verlag. Berlin. 1970.

[9] A M Ostrowski: On an integral inequality. Aequations Math. 4(1970):358-373. [10] I Podlubni: Fractional Differential Equations. Academic Press, San Diego. 1999.

Références

Documents relatifs

Mots clés — Arlequin method, Multi model, Structural dynamics, Explicit time integration, Stability..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

IW U i,t = f (deterrence i,t , policy i , production i,t , social i,t , weather i,t , N i,t , C) (2.3) Where i represents a municipality in which irrigators used water for produc-

D’autre part, je démontre ce que l’organisation industrielle peut apporter au champ de l’économie de la culture, non seulement dans le cadre de l’analyse des politiques

Mertens et al., “Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates,” in 2016

The comparison of ratios between europium 2+ and 3+ species in salts of di fferent origins by means of core level photoemission and X-ray absorption matches the di fferences observed

Due to high pressure technology and for a maximum reproducibility of cleaning step, we have chosen to develop an automatic way using supercritical carbon dioxide circulation alone or

Shift operation can be implemented in the proposed memory circuit by adding latches in the array periphery in order to implement a conventional CMOS shifter