• Aucun résultat trouvé

en fr

N/A
N/A
Protected

Academic year: 2021

Partager "en fr "

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-01312392

https://hal.sorbonne-universite.fr/hal-01312392

Submitted on 6 May 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0

International License

Dislocations in a quantum crystal: Solid helium: A

model and an exception

Sébastien Balibar, John Beamish, Andrew Fefferman, Ariel Haziot, Xavier

Rojas, Fabien Souris

To cite this version:

Sébastien Balibar, John Beamish, Andrew Fefferman, Ariel Haziot, Xavier Rojas, et al.. Dislocations

in a quantum crystal: Solid helium: A model and an exception. Comptes Rendus Physique, Centre

Mersenne, 2016, Condensed matter physics in the 21st century: The legacy of Jacques Friedel, 17

(3-4), pp.264-275. �10.1016/j.crhy.2015.12.015�. �hal-01312392�

(2)

Condensed matter physics in the 21st century: The legacy of Jacques Friedel

Dislocations

in

a

quantum

crystal

Solid

helium:

A

model

and

an

exception

Dislocations dans un cristal quantique

L’hélium solide: un modèle et une exception

Sébastien Balibar

a

,

,

John Beamish

b

,

Andrew Fefferman

c

,

Ariel Haziot

d

,

Xavier Rojas

e

,

Fabien Souris

b

aLaboratoirePierre-Aigrain,Départementdephysique,Écolenormalesupérieure,associéauCNRSetauxUniversitésPierre-et-Marie-Curieet

Paris-Diderot,24,rueLhomond,75231 Pariscedex 05,France

bDepartmentofPhysics,UniversityofAlberta,Edmonton,T6G 2E1,Canada cUniversitéGrenobleAlpes,InstitutNéel,BP 166,38042 Grenoblecedex 9,France dDepartmentofPhysics,PennsylvaniaStateUniversity,UniversityPark,PA 16802,USA eDepartmentofPhysics,RoyalHolloway,UniversityofLondon,Egham,Surrey TW20 0EX,UK

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Availableonline17December2015

Keywords: Dislocations Elasticity Plasticity Quantumcrystals Helium Mots-clés : Dislocations Élasticité Plasticité Crystauxquantiques Hélium

Solidheliumisparadoxical:itisbothamodelandanexception.Itisamodelforcrystal propertiesmainlybecauseofitsextremepuritywhichmakesuniversalphenomenasimpler and easier to identify. It is also exceptionalbecause the large quantum fluctuations of atomsaroundthenodesintheircrystallatticeallowthesephenomenatooccuratverylow temperaturewithalargeamplitude.AsnoticedbyJacquesFriedelin2013,theproperties ofhelium 4 crystals illustrate how the motionof dislocations may reduce their shear elasticmodulus,asit doesinallhexagonalclosepacked(hcp)crystalsincludingmetals. But thismotion takes place withoutany dissipation in the limit of T=0 and in the absenceofimpurities,whichisnowexceptionaland leadstoanelasticanomalyatlow temperature,whichwascalled“giantplasticity”byHaziotet al.in2013.Morerecently,we havediscovered that,in helium-4crystals,helium-3impurities arenot necessarilyfixed pinningcentersfordislocations.Evenatrelativelylargevelocities,dislocationsareableto movedressedwithimpuritiessomehowasanecklaceofatomicpearlsthroughtheperiodic lattice.Thisillustrateswhatisreallyquantuminthesecrystals:itismainlythedynamics oftheirdislocationsandthebehaviorofimpurities.

©2015Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

r

é

s

u

m

é

L’héliumsolide est paradoxal : c’est àla foisun cristal modèle etuneexception. C’est un modèle pour l’étude des propriétés cristallinesà cause de son extrême pureté, qui rendcertainsphénomènesuniversels plussimplesetplusfaciles àidentifier.C’est aussi unsystèmeexceptionnel,carlesfluctuationsquantiquesdesesatomesautourdesnœuds

*

Correspondingauthor.

E-mailaddress:sebastien.balibar@lpa.ens.fr(S. Balibar).

http://dx.doi.org/10.1016/j.crhy.2015.12.015

1631-0705/©2015Académiedessciences.PublishedbyElsevierMassonSAS.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

duréseau cristallin permettentàcesphénomènesd’avoirlieuàtrèsbassetempérature, avecuneamplitudeparticulièrementgrande.Commel’avait remarquéJacquesFriedelen 2013,lespropriétésdescristauxd’hélium4illustrentlamanièredontlemouvementdes dislocations peutréduireleur moduleélastiquede cisaillementtransverse, commedans toutcristalhexagonalcompact(hcp),ycompriscertainsmétaux.Maiscemouvementalieu sansdissipationlorsquelatempératuretendverszéro etenl’absencetotaled’impuretés, cequiest exceptionneletconduitàuneanomalieélastiquequiaété appelée« plasticité géante » parHaziotetal.en 2013.Plusrécemment,nousavonsdécouvertque,dansces cristaux d’hélium 4, les impuretés d’hélium 3 ne sont pas nécessairement des points d’ancragefixespourlesdislocations.Mêmeàrelativementgrandevitesse,lesdislocations sontcapablesdesedéplacerhabilléesd’hélium3,commeuncollierdeperlesatomiquesà traversleréseaupériodique.Celaillustrecequiestvraimentquantiquedanscescristaux : il s’agit principalementde la dynamiquede leursdislocationset ducomportement des impuretés.

©2015Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. MeetingJacquesFriedel

Sébastien Balibarwishesto dedicatethisreview articletothememoryofProfessorJacquesFriedel,withthefollowing personaltestimony:

“ThefirsttimeImentionedourstudyofdislocationmotioninheliumcrystalstoJacquesFriedel,hesaidsomethinglike “all thathasalreadybeenmeasured inhexagonal metals”.Afterafewminutes ofsurprise, Ifeltquitehappywiththat.It meantthatourcrystalscouldbeofgeneralinterestfarbeyondthelittlefieldofquantumsolids.So,Iinsistedandstarted showingsomedetailsofwhatweweremeasuring.TogetherwithmyvisitorJohnBeamish(Edmonton,Alberta,Canada)and agroupofbrightstudentsandpostdocswhoworkedonthissubjectwithmeatthe‘Laboratoiredephysiquestatistiquede l’ENS’andareco-authorsofthisreview,wewereprogressivelydiscoveringaseriesofratherspectacularpropertiesofthese dislocations, andIsucceededincapturingJacques Friedel’sattention. From2011to thevery lastmoments ofhislife, we exchangedcommentsandideas onthemotionofdislocationsincrystals.Everymeetingwasan opportunitytostrengthen ourgrowingfriendship.Thesediscussionshavebeenextraordinaryusefultome.IamextremelygratefultoJacquesFriedel forhisinterest inourwork. Itisa greathonor andagreatpleasure forme to summarizeour resultsonthemechanical propertiesofheliumcrystalsinhismemory.”

2. Quantum,ultrapure,visible

Whyissolid helium-4consideredasaquantumcrystal?Above25 barandbelow1.4 K,4Hecrystallizes inahexagonal closepacked(hcp)structurewherethe atomshavelarge quantumfluctuations.Thisis dueto theHeisenberguncertainty relationbetweenmomentumandposition.Ifanatom ofmassm anddiameterd is confinedbyits neighborsinaregion of typical size a, it acquires a fluctuating momentum p

= ¯

h

/(

a

d

)

and consequently a quantum kinetic energy Eq of orderh

¯

2

/

[

2m

(

a

d

)

2

]

. Eq islargeinthe caseof4Hebecauseits massis lowandthehard cored

=

2

.

6 Å iscomparable tothelatticespacinga

=

3

.

7 Å.Thisroughargumentleads to Eq

15 K,whichiscomparabletothedepthoftheHe–He interatomicpotentialV

11 K[1].V isduetoavanderWaalsinteractionwhichisrathersmallbecauseofthelowvalueof thepolarizabilityofHeatoms.ThelargevalueofquantumfluctuationshadalreadybeennoticedbyF.Londonin1936[2].It hasbeenrecentlycalculatedbyE.J.Rugelesetal.[3]whofoundthattheprecisemagnitudeofthekineticenergyassociated withquantumfluctuationsvariesfrom10to20 Kintheliquid,andfrom30to40 Kinthesolid,dependingondensity.

The large quantumfluctuationshave aseries ofconsequences. Firstof all, 4He remains liquiddown to T

=

0,witha largemolarvolume(28 cm3/mol).In4Hegas,thenaturalconcentrationofthelightisotope3Heisbetween300and25 ppb, depending on its precise origin, forexample Texasor Qatar wells[4].4He gas can be purifieddown to the 10−12 level. 3He impuritiescould even be totallyremoved from4He crystalsby usingan adapted zone meltingmethod[5].Since all chemicalimpuritiescan befilteredout,4Hecrystalsarethepurestcrystalsonecanstudy.But,aswe shallseebelow,the elasticpropertiesof4Hecrystalsareextremelysensitivetotinytracesof3Heimpurities.

3Hehavingasmallermass,itsmolar volumeintheliquidstateisevenlarger:37 cm3/mol.4Hecrystallizesonlyabove 25 bar(3Heabove 30to35 bar, butthe crystalsunderconsiderationinthepresentreview are4Hecrystals). Thereisno triplepointinthephasediagramwheretheliquid,thegasandthesolid phasewouldmeetasinusualmaterials.Helium crystalsarealwaysgrownfromtheir liquidphase.Thesolid-vaporinterfacedoesnotexist.Furthermore,aroundthenodes oftheircrystallinestructure,theatomsfluctuatemorethaninordinaryclassicalcrystals.Forexample,the“Lindemann cri-terion”saysthat,inmostclassicalcrystalsontheirmeltingcurve,theamplitudeofthethermalfluctuationsistypically10% oftheinteratomicdistance[6].In4Hecrystals,BurnsandIsaacs[7]measureditandfoundarootmeansquaredisplacement of26%.Inotherwords,theHeatomsareweaklylocalizedintheirnetwork.

(4)

Fig. 1. Thegrowthshapeofheliumcrystalsshowsevidencefortheirhexagonalstructure.Thispicturewastakenin1994at0.1 Kintheiropticalrefrigerator byS.Balibar,E.RolleyandC.Guthman.Fromtheanglebetweenthebasalfacetandthe6prismaticones,theorientationofthesix-foldsymmetryaxisc

canbedetermined.Thiscrystalis1 cmwide.Thecolorsareobtainedbyilluminatingitwithwhitelightdispersedthroughaprism[8].

Fig. 2. Theexperimentalcellthatwasusedtomeasurethemechanicalpropertiesof4HecrystalsatENSin2013–2014.Singlecrystalsaregrownfromthe bottomupinsidethe0.7-mmslitbetweentwoverticaltransducersinthecenterofthecell.Thecrystalorientationwasobtainedfromphotographsofthe growthshapeinthebottompart.

Giventhesepeculiarities,someauthorsconsideredthatquantumfluctuationscoulddestroythesurfaceorderleading to theexistence offacetsonthecrystalshape.Thiswasprovedwrong [8].Inrealitytheexistenceoffacetsisa consequence of the existence of a periodic potential due to the crystalline structure, which localizesthe crystal surfaces nearcrystal planes at low enough temperature. This potential is reduced by quantum fluctuations butnot to zero.The existence of facetshasproved essential inallourstudies because,thanksto thewindows ofourrefrigerator,we coulddetermine the crystalorientationfromphotographsoftheirgrowthshapesuchasshowninFig. 1 [9].

Some other authors proposed that 4He crystals could be superfluid, not only liquid 4He. A coexistence of crystalline orderinrealspaceandsuperfluidorderinmomentumspaceiscalled“supersolidity”andisdefinitely paradoxicalbutnot impossible.AnexperimentbyKimandChan[10,11]hadraisedalotofinterestforthisquestionin2004.Theyhadobserved an anomaly ina “torsionaloscillator”(TO)filledwithsolid 4He,whichthey interpretedasaconsequenceofsupersolidity appearingbelow0.1 K.However,theresonanceperiodofaTOisproportionaltothesquarerootofamomentumofinertia

I divided by an elasticconstant K .Supersoliditywould indeedimplyan anomalous reductionin I,butan increase in K

couldhavethesameeffect.DayandBeamish[12]showedin2007that4Hecrystalshadalargershearmodulusbelow0.1 K than above.Afterseveralyears ofstudies, itwasshownby severalgroups[13–15] that,inmostexperimentstherotation anomalyobservedinTOswasduetoachangeinelasticshearmodulus,nottoanysuperfluidflowreducingthemomentum ofinertia.Thediscoveryofsupersoliditywouldhavebeenamajorevent,butourcarefulstudyofthemechanicalproperties of 4Hecrystals ledusto thediscovery ofa “giantplasticity”[16],which isnot lessspectacularnorlessinteresting. This plasticityisthesubjectofthepresentreview.

3. Agiantplasticity

Tomeasuretheshearmodulusofvarious4Hecrystals,weusedsuccessiveexperimentalcells.Thelastone isshownin Fig. 2.Itismadeofaroughlyhexagonalholeinacopperplatethatisattachedtoadilutionrefrigerator,whosetemperature canreach15 mKevenwhenitslargewindowsareopenforopticalmeasurements.Thecellisclosedbytwosapphire win-dowssothatanordinarycameracanrecord growthshapesofthecrystalsunderstudy[9,16].Itcontainstwopiezoelectric transducers madefromPZT material witha transverse polarization. Oriented single crystalsof 4He are grown along the verticalslit(0.7 mmthicknessinthiscase)betweenthetwotransducers.Onetransducerproducesaverticaldisplacement (0.95 Å/V), whilethe othermeasures thestress that istransmittedbythe 4Hecrystal. Thesensitivityandthestability of

(5)

Fig. 3. Inatemperaturedomainaround0.2 K,thisultrapurecrystalshowsa“giantplasticity”:itsshearmodulusishighlyreducedwithrespecttoits intrinsicvalue(127 bar),whichisduetotheelasticityofthelatticeonly.Thisplasticityisduetothelargemobilityofdislocationsinthistemperature domain.Atlowertemperature,tracesof3Heimpuritiesstartbindingtothedislocationsandpreventingtheirdisplacement.Athighertemperaturethe motionisdampedbycollisionswiththermalphonons.

thissetuparesuchthatonecouldapplyverysmallstrainsintherangefrom10−10to10−6andmeasurestresses downto 10−9 bar.Thestresstostrainratiogivesanabsolutemeasurementoftheshearmodulusinoneparticulardirectionthanks toacarefulcalibration.Strainsareappliedatafrequencybetween1 Hzand20 kHzsothat,thankstoalock-inamplifier, boththeamplitudeoftheelasticshearmodulusandthedissipationcouldbemeasured.

Fig. 3showsoneparticularrecordingoftheshearmodulusofacrystalthatwasorientedwithitssix-foldsymmetryaxis (thec axisofthehcpstructure)nearlyvertical.InthisparticularcrystalnamedX15byHaziotetal.[16],theconcentration of 3Heimpurities had beenreduced to 4

×

10−10 only. In a temperatureregion around 0.2 K, its shearmodulus is 43% smaller than theintrinsic modulus (127 bar)that is knownfrom soundvelocity measurements at higherfrequency and higher temperature. By intrinsic we mean what is only due to the elasticity of the crystal lattice. But, as explained in all necessary details by Jacques Friedelin his famous book [17], realcrystals contain linear defects called“dislocations” whosemotionmayproduce an additionalstrainunder theactionofan applied stress.It meansa reductionin theshear modulus.Wehavedemonstratedthat,inthecaseof4He,highlymobiledislocationsstronglysoftenthecrystalsbutonlyina temperaturedomainbetweentwootherregionswheretwodifferentmechanismspreventthedislocationlinesfrommoving. Itdependsontheirconcentrationbuttypicallybelow0.1 K,3Heimpuritiesbindtodislocationsandeitherpinorslowdown theirmotion.Asfortheregionabove0.3 K,itisthecollisionswiththermalphonons,whichslowdownthismotion.

Beforeconsideringthiselasticanomalyinmoredetails,letusmakeaquickcomparisonwithclassicalcrystals.Inclassical crystals,dislocationsmoveonlyathighenoughtemperatureandundersufficientlylargestress.Thisisbecausedislocations aredefectlinesmovinginaperiodiclattice,somethingwhichmayonlyhappenbythermalactivationaboveenergybarriers called“Peierl’sbarriers”[17].Applyingastressreducesthesebarriers.Highthermalfluctuationsallowpointdefects(named “kinks”or “jogs”)on thedislocation linesto passabove the barriersandproduce adisplacement ofthe line. Inclassical crystals,the dislocationmotion induces asmall softeningthat is highly dependenton temperatureandstress amplitude, whilein4Heitislargeandindependentoftemperatureifimpuritiesareremoved.Weshalldiscussbelowtherelevanceof theterm“plasticity”whichsomespecialistsinMaterial’sscienceconsidermisleading,butwhichJ.Friedelaccepted[18].

Fig. 3 suggeststhat, atlow temperature, the pinningofdislocations byimpurities is not yetcompleted atthe lowest temperature we could reach. If due to 3He impurities, using naturalhelium with a larger 3He concentration X

3 should displace the pinning to higher temperatureand allow to reach the complete pinning at reachable temperatures.This is indeed what we observed with various crystals of naturalpurity containing X3

=

2

.

5

×

10−8 3He, asshown on Fig. 4. ContrarytotheultrapurecrystalX15ofFig. 3,allthecrystalswithnaturalpurity(X2,X3,X5,X6,X20,X21andapolycrystal) reachedtheirintrinsicshearmodulusbelow60 mK.Thisintrinsicvalueisindicatedwithticsontheverticalaxis.Itstrongly dependsonorientation.NotetheparticularcrystalX3,whosec axiswastiltedby45degreesfromthevertical:itshowsno temperaturedependenceatall,whichallowedustocalibrateourtransducers.

Theelasticitytensorofhexagonalclosepackedcrystalscontains only5elasticcoefficients.Amongthem,thecoefficient

c44 determines thestress that is necessaryto makebasal planes glideagainst each other (see casesb and b on Fig. 5). The coefficient c66 determines the stress thatis necessaryto deformthe hexagonal symmetryin thesebasalplanes (see casea onFig. 5).What happensintheparticularcaseofX3isthattheresponseisindependentofbothc44 andc66.Our measurements showed that the elasticanomaly isa softening from theintrinsic value when dislocationsare pinned (at

(6)

Fig. 4. Themagnitudeofthechangeinshearmodulusishighlysensitivetotheorientationsofcrystalswithrespecttotheverticalshearthatisusedto measurethisshearmodulus.Allcrystalsaremadeoutofnatural4Hegasthatcontains2.5×10−8 3Heimpurities,exceptX15(4×10−10).

Fig. 5. Usualnotationsforstressesandcorrespondingstrainsinhexagonalcrystals.Thecasea (topline),correspondstoadeformationofthehexagonsin thebasalplanes,wheretheappliedstressσ isproportionaltotheelasticcoefficientc66.Thetwocasesb andbbelowcorrespondtotheglidingofbasal planeswithrespecttoeachother,wheretheappliedstressσisproportionaltotheelasticcoefficientc44.Wearegratefultotheanonymousrefereewho allowedustoreproducethisfigure.

low T),andthatthissofteningishighlyanisotropic.Itsuggestedthatitiseitherduetoareductioninc44orinc66,andwe haveshownthatitisc44,notc66.Indeed,fromthecrystalorientationitispossibletoexpressthemeasuredshearmodulus intermsofall theelasticcoefficients.Then wecould eitherextract theT-dependentanomalousvalue ofc44byassuming thatc66andthethreeothersareconstant,ordotheopposite,thatisassumethatc44isconstantandextractaT-dependent value ofc66.Fig. 6showsthattheassumptionofaconstantc66iscorrect,sinceitgivessimilarvaluesforthereductionof

c44(

60%),whiletheoppositeassumptionwithaconstantc44wouldleadtoresultsthatareabsurd(changesinc66bymore than 1000%forX21andby300%forX6).Now,whatistheoriginofthisreduction?It isduetothefactthat dislocations

(7)

Fig. 6. Thesefourcrystalshavedifferentorientations,buttheyshowthesamevariationoftheirelasticcoefficientc44.IthasbeenunderstoodbyHaziotet al.asaconsequenceoftheglidingofdislocationsthatoccursonlyparalleltothebasalplanesofthehcpstructure(seetext).

Fig. 7. Therelativeamplitudeoftheshearmodulusc44for4differentcrystalsat20 mKasafunctionofthestressprojectedonthebasalplane(“resolved”). Atathresholdstressofafewμbar,dislocationsbreakawayfrom3Heimpurities.Thisthresholdislargerwhenincreasingthestressthanwhendecreasing it.Beingfreeofimpurities,thecrystalX4showsareductionofc44by80%,independentofstress.

havepreferential glidingdirections.Areductioninc44meansthatdislocationsglideparalleltothebasalplanes.Thanksto discussionswithJ.FriedelandO.Hardouin-Duparc,we foundareferencebyB.Legrand[19] whoexplainsthat thisisdue tothesplittingofedgedislocationsintotwo“partial” dislocationswitha “stackingfault”inbetween, ifthestacking fault energyissmallenough.Realdislocationsareoftenatomicribbons, notreally1D-lines,inwhichcasetheyglideparallelto theribbonplane.Inmanyhexagonalmetals(Be,Mg,Co,Zn),glidingisalsoparalleltobasalplanes,butinsomeothers(Zr, Ti)itisalongprismaticplanes.Weseethat4Hecrystalsshowphenomenawhichexistinclassicalmaterialsbutperhapsnot asclearly.Indeed,notonlytheamplitudeofthesofteningisverylargein4He(wehaveobservedupto90%reductioninc

44

[20])but,inclassicalcrystalsathightemperature,theglidingofdislocationsisusuallymixedwithmanyotherphenomena. Itappearedalsopossibletoremoveallimpuritiesfrom4Hecrystalsbyamethodthatisreminiscentoftheclassical“zone melting”.Itisbasedon thefactthat impuritiesare usuallymoresolubleintheliquidthan inthesolid,wherethe strain field around eachimpurity costs elastic energy.Inthe caseof4He, thedifference inpotential energybetweentheliquid andthesolidhasbeencalculatedandfoundtobe

1.359 Kper3Heatom[5,22].Asaconsequence,whencoolingdowna crystalinthepresenceofitsliquidphase(rememberthatthereisnotriplepointinthephasediagramof4He),allthe3He impuritiesaretrappedintheliquidphase.Ithelpsshakinggentlythedislocationsby applyinganoscillating stresssothat 3Heimpuritiesdonotbindtodislocationsandarefreetomovetowardstheliquid,asweshallseelater.Fig. 7showsthat

(8)

Fig. 8. Thestress–straindiagramofcrystalX4showalinearbehaviorwithareducedslope(samedataasinFig. 7).Onthecontrary,theplasticityof classicalcrystalsisanon-linearphenomenon[21].

atlowtemperaturewhenimpuritiesareboundtodislocations(crystalsX2,X5andX6),applyinganoscillatingstrainlarger thanafewmicrobarsdetachestheimpuritiessothattheshearmodulusisreduced.ForcrystalX4whereallimpuritieshave beendetached beforecooling,theshearmodulus isreducedby 80%fromitsintrinsicvalue andit staysatthislow value whencyclingtheappliedstress.Fig. 8showsthatthisimpurity freecrystalhasareducedelasticitythatisindependentof stress,contrarytoclassicalcrystalsthatwouldshowtheirintrinsicelasticityatlowstressandareducedoneathighstress, whichistheclassicalnon-linearplasticbehavior.Inthecaseof4Hecrystalstheelasticityisreducedbythehighmobilityof dislocations. Thatiswhywecalledita“giantplasticity”.Butthisplasticityislinear,whichmaybeconfusingforMaterials scientistswhoaremorefamiliarwithclassicalplasticity,whichisalsoduetothemotionofdislocationsbutisanon-linear phenomenon.

4. Thedissipationassociatedwithdislocationmotion

In order to understandthe dislocation motion, we havemeasured the dissipation from thephase shift ofthe crystal responsetoadrivingstrain.Therearetwoseparate domainsintemperature.Athightemperature,i.e.above0.2 K,Granato and Lucke[23] hadpredictedin 1956 that dislocationsshould interact withthermal phonons.These interactions would transfermomentumfromthedislocationstothephonongaswherethecorrespondingenergyshouldthermalize.Thistheory waslaterimprovedbyNinomiya[24].Iftrue,thismechanismshouldleadtoamaximumchange

δ

c44intheshearmodulus

c044thatisgivenby

δ

c44 c044

=

α



L2 1

+

α



L2 (1) andtoadissipation1

/

Q 1 Q

=

α



L2 1

+

α



L2B L 2

ω

T3 (2)

where



isthedensityofdislocationlinesperunitvolume,L isatypicallengthbetweennodesinthedislocationnetwork,

α

=

0

.

019 andB

=

905 s m−2K−3isathermalphonondampingparametercalculated[4]byusingNinomiya’swork[24]. Haziot etal. [26] measured the dissipation 1

/

Q . Fig. 9showsa remarkable agreement withtheory.The initial slope is perfectlyconsistent withthe predicted

ω

T3 behavior. Witha more precisecalculation takingcare ofthe existence of a distribution in lengths L, Feffermanetal. [25] could fit thewhole curve, not only the initialslope. But therough ap-proximationwithasinglelength L alreadyleadsanimportantconclusion.Indeed,fittingourresultswitheqs.(1)and(2), allowstodeterminetwoimportantquantities,thelinedensity



andtheirmeanlength L.Ifdislocationsformedaregular cubic lattice, thesetwo quantitieswouldbe relatedby the simplerelation



L2

=

3. Foranythree dimensionallattice of dislocations,thedensity



hastobeoforder1

/

L2.Wehavefoundthatitisnotthecase.Intheir2013experiment,Haziot etal.[26]founddensities



between104and106 percm2,whichisrathersmall,andlengthsL between100and230 μm, whichisverylarge.Thelattervaluesaremacroscopicand,mostinterestingly,muchlargerthanfora3-dimensionalnetwork ofdislocations.Theproduct



L2rangesfrom17to57.Inanattempttomakeevenbetterqualitycrystals,Sourisetal.[20]

(9)

Fig. 9. Above0.3 K,thedissipation1/Q associatedwiththedislocationoptionisproportionaltoωT3asexpectedifthisdissipationisduetocollisions withthermalphonons[23].Thedeparturefromlinearityhasbeen understoodbyFeffermanetal.asaconsequence ofthedistributionofdislocation lengths[25].

found



L2 valuesupto471!Itmeansthatthedislocationsdonotforma3D-network.Theyavoidcrossingbyforming2D arraysofparallellinescalled“sub-boundaries”,andtheyglidetogetherparalleltothebasalplanesinacooperativeway.

Ascanbefoundoncemoreinhisbook,JacquesFriedelexplainsthatsuchaformationofsub-boundariesimpliesamuch largersoftening (Sourisetal.[20] foundupto 90%)than inthecaseofa 3Dnetwork whereitisoforder10%.Thistype ofcollective motionhadbeenpredictedin1940by W.L. Bragg[33] andobservedin1952 byParker andWashburn[34]. JacquesFriedelshowedin1955that,inaluminumcrystals,dislocationsarealsoarrangedinsub-boundariesandcouldmove enough nearthe meltingtemperaturethatthe shearmodulusishighly reduced[27].Heremarks thatwhen approaching themeltingpointat933 K,thedissipationassociatedwiththedislocationbecomesvery largeandthedislocation motion mixeswithgrainboundarymigration.

Comingback toour4Hecrystals,ourresultscouldbe thoughtofinanalogy withapileofpapersheetsthatisstiff in all directionsexceptparalleltothe sheetswerethe pileisvery soft. Butitisnot exactlythewholeatomicplaneswhich move,it ispartofthemneareach dislocation.Furthermore,thereisa non-negligiblefriction betweenpapersheets orin classicalcrystalssothatthestress/strainrelationisnon-linear,while,asshowninFigs. 7–9,thedissipationassociatedwith theshear motionin4Hetends tozeroatlow temperatureintheabsence ofimpurities.Thisisan evidenceforquantum behavior.Onepossibilityisthatquantumfluctuationsmakethekinkenergyvanishsothatdislocationlinesaretotallyfree tomove inaperiodic latticethat hasnoinfluenceonthem.Anotherpossibilityisthat kinkshavea non-zeroenergybut dislocation linescontainsome kinksforgeometric reasons,butthese“geometric kinks”wouldhavetomove byquantum tunneling throughverysmallPeierl’s barriers,a situationthatwouldbe hard todistinguishexperimentally fromthefirst one.

5. Thebindingofimpuritiestomovingdislocations

Intheabove sectionwe mainlyfocusedon thedissipationabove 0.3 Kwhereithasbeenshownto beaconsequence ofaninteractionwiththermalphonons.Below0.2 K,thedissipationmechanismisdifferent. Whenthe3Heconcentration

X3 isnot negligible,theseimpuritiesprogressivelybindtodislocationsasT decreases.Adefinitedissipationisassociated withthisbinding,asshownbyFig. 10.Whenimpuritiesstartbinding,thedislocationmotiondecreasesandthedissipation increases.Itreachesa peak atsometemperature Tp beforevanishing atlow T whenthe dislocationsarefullyanchored. WestudiedthefrequencydependenceofTp.

Knowing thetypical length anddensityofdislocationsinthe crystalsunderstudy, Haziotetal.[35] coulddetermine theirtypicaldisplacementandthespeedoftheirmiddlepointforagivenstrain.Theresultisshownonthesemi-logplot ofFig. 11 wheretwo differentregimesappear. Athighspeed, thepeak temperatureisindependent ofspeed. Thisisthe expectedregimewhereimpuritiesactaspinningpoints:theycannotmovefastenoughandtheyanchordislocations.Butat lowspeed,morepreciselybelow45 μm/s,theconstantslopedemonstratesathermallyactivatedregimeoffrictionwhere the speed decays exponentially asthe temperature is reducedand more impurities bind.It means that the dislocations move dressed withimpurities attachedto them.Assuming that thefriction is proportional tothe densityofbound 3He, the slopeinthissemi-log plotallows todetermine thebinding energy E3 of 3Heimpurities to thedislocation lines.We foundE3

=

0

.

67 K forthisparticularcrystal.Inamoreprecisestudy[4],wefoundadistributionofbindingenergiesaround

(10)

Fig. 10. Thetemperaturevariationoftheshearmodulus(a)andthedissipationassociatedwithdislocationmotion(b).Recordingsatdifferentfrequencies ofthedrivingstrainshowthatthetransitionfromstiff(atlowT)tosoft(athigherT)dependsonfrequencyinthelow-frequencyrangeonly.

Fig. 11. Knowingthedensityofdislocationlinesandtheirmeanlengthbetweenthenodesintheirnetwork,Haziotetal.[21]couldcalculatethemean dislocationspeedandstudyitsdependenceonthetemperatureTp ofthepeakdissipationinthemiddleofthetransition.Tworegimesappear:below 45 μm/s,3Heimpuritiesmoveattachedtothedislocationswhile,abovethiscriticalspeed,dislocationsarereallypinnedby3Heimpurities(seetext).

(11)

Fig. 12. Semilogplotoftherelaxationtime τ ofdislocationsversustheinversetemperature1/T forcrystalswithdifferentorientationsandimpurity concentrations.SlightvariationsinslopeshowthatthereisanarrowdistributioninthebindingenergyE3of3Heimpuritiestodislocations(seetext).

Fig. 13. ThreerecordingsoftheshearmodulusmeasuredbyFeffermanetal.[25]whiledecreasingthedrivingstrainnear25 mK.Byanalyzingtheshape ofthetransitiontowardtheintrinsicshearmodulusatlowstrain,Feffermandeterminedthewidthofthedistributionoflengthsbetweenthenodesofthe dislocationnetwork.

0.7 K witha typical width of0.1 K. This can be seen onFig. 12 wherethe relaxation time

τ

= (

1

/

ω

)

1

+

α



L2 show slightvariationsinslopefordifferentcrystals.Ourassumptionofadissipationproportionaltotheconcentration X3 of3He impuritieswas verifiedbySourisetal.[4]by comparingthreetypesofcrystalswith X3 respectivelyequalto2

.

5

×

10−8, 3

.

8

×

10−7and2

.

32

×

10−6.

Adistribution ofbinding energies was expectedbecausewe know thatdislocations arerarely purely edgenor purely screw type. Dependingon their orientation inthelattice, they havea mixedcharacter sothat the bindingenergy varies slightlyfrom a value corresponding to a pure screw type to a pure edge type where it should be slightlylarger. As we shallseenow,wehavealsofound someevidencefortheexistenceofthisenergydistributionfromotherfitswiththeory. Indeed,wefoundevidenceforadistributioninthe“networklength”betweennodesinthedislocationnetworkbystudying thestrain dependenceoftheshearmodulus atlow temperature.Ifone appliesalarge oscillatingstrain amplitude(10−6) at0.5 Kandcooldown,thelargeoscillationsofthedislocationlinespreventtheimpuritiesfrombinding.Whenreducing then the strain amplitude, 3He impurities start binding andFefferman etal. [25] showed that the shear modulus starts increasing(seeFig. 12).Iftherewereasinglepinninglength,thereshouldbeaprecisevalueoftheappliedstrainatwhich alldislocationswouldgetpinnedandtheshearmodulusshouldjumptotheintrinsicvalue.Thesmoothtransitiononesees onFig. 13isanevidencethatitisnotthecase.Infacttheshapeofthetransitionfromsoftathighstraintostiffatsmall strainallowedFeffermantodeterminethelengthdistribution.Thisisbecauseshortdislocationsmovelessthanlongones, 3Heimpuritiesbindtotheshortonesbeforelongonesasthedrivingstrainisreduced.Thenetworklengthdistributionwas foundtoberatherbroad,extendingtypicallyfrom30to300 μminthecaseofthisparticularcrystal.

WhentryingthentofitdatasetssimilartothoseshowninFig. 10,thatisrecordingsofthestiffnessandofthe dissipa-tionasafunctionoftemperature,itappearednecessarytoaccountnotonlyforadistributionofnetworklengthsbutalso ofbindingenergiesof3He.Indoingthis,Feffermanetal.[25]foundthatthewidthofthisenergydistributionhadtobeof order0.1 Karound0.7 K,inverygoodagreementwiththestraindependenceinFig. 13.

(12)

is strained so that quantum exchange with4He is at leastperturbed. As forthe mechanism that explains the observed dissipation, we proposed withthe help ofH.J. Maris [4]that it is an emissionof transversewaves along thedislocation lines.

Ourseriesofmeasurementsofstiffnessanddissipationof4Hecrystalsasafunctionoforientation,temperature,driving strain, and3He concentration allowed usto characterize nearly all the staticand dynamic propertiesof the dislocation network.Suchasetofresultsandthewayhowtheywereobtainedisclearly particulartothisquantumcrystal.Thereare afewmorequestionswhichwoulddeservemorestudy.Oneofthemconcernstheexactvalueofthekinkenergy:isitzero ornot?ArelatedoneisthevalueofthePeierl’sbarrierforthemotionofexistingkinks:oncemoreisitzeroornot?

It wouldbe nicealsotodeterminethewidthofsplit dislocation.Itisrelatedtotheenergyofstacking faultswhichis notyetpreciselyknown.

Thecaseofpure3Hecrystalsisobviouslyinteresting.Theyexistintwodifferentstructures:bodycenteredorhexagonal compact.Dislocationpropertiesshould beratherdifferentinthetwo structures.The tunnelingofkinksandofimpurities should be rather differentfromthe 4He casebecause3He atomshave a non-zeronuclear spin that isdisordered except below1 mK,anultralowtemperaturethatwouldmakethestudyofmechanicalpropertiesverydifficult.Furthermore,3He crystalsaremuchmoredifficulttopurifythan4Heones.

Eventually, thereremainssomecontroversyaboutapossiblemassflowalongthedislocation cores.Experimentsatthe MassachusettsUniversity (Amherst)[31]andinEdmonton (Canada)[32]areinprogress,whosesetsofresultsare notyet fullyunderstood.

Acknowledgements

WeacknowledgesupportfromNSERC(Canada)andfromtheEuropeanResearchCouncilgrantAdG247258-SUPERSOLID.

References

[1]R.A.Aziz,A.R.Janzen,M.R.Moldover,Phys.Rev.Lett.74(1995)1586.

[2]F.London,Proc.R.Soc.A153(1936)576.

[3]E.J.Rugeles,S.Ujevic,S.A.Vitiello,arXiv:1503.1163[cond-mat.other],3March2015.

[4]F.Souris,A.D.Fefferman,H.J.Maris,V.Dauvois,P.Jean-Baptiste,J.R.Beamish,S.Balibar,Phys.Rev.B90(2014)180103.

[5]C.Pantalei,X.Rojas,D.O.Edwards,H.J.Maris,S.Balibar,J.LowTemp.Phys.159(2010)452.

[6]F.A.Lindemann,Phys.Z.Sowjetunion11(1910)609.

[7]C.A.Burns,E.D.Isaacs,Phys.Rev.B55(1997)5767.

[8]Forareview,seeS.Balibar,H.Alles,A.Ya.Parshin,Rev.Mod.Phys.77(2005)317.

[9]Forsomemoredetailsontheobservationofheliumcrystals,seealsoS.Sasaki,F.Caupin,S.Balibar,J.LowTemp.Phys.153(2008)43.

[10]E.Kim,M.H.W.Chan,Nature427(2004)225.

[11]E.Kim,M.H.W.Chan,Science305(2004)1941.

[12]J.Day,J.Beamish,Nature450(2007)853.

[13]J.R.Beamish,A.D.Fefferman,A.Haziot,X.Rojas,S.Balibar,Phys.Rev.B85(2012)180501.

[14]H.J.Maris,Phys.Rev.B86(2012)020502.

[15]D.Y.Kim,M.H.W.Chan,Phys.Rev.Lett.109(2012)155301.

[16]A.Haziot,X.Rojas,A.D.Fefferman,J.R.Beamish,S.Balibar,Phys.Rev.Lett.110(2013)035301,anditssupplementalmaterial.

[17]J.Friedel,Dislocations,Pergamon,NewYork,1964.

[18] J.Friedel,privatecommunicationtoS.Balibar,2013. [19]B.Legrand,Philos.Mag.49(1984)171.

[20]F.Souris,A.D.Fefferman,A.Haziot,N.Garroum,J.R.Beamish,S.Balibar,J.LowTemp.Phys.178(2015)149.

[21]A.Haziot,X.Rojas,A.D.Fefferman,J.R.Beamish,S.Balibar,Phys.Rev.Lett.111(2013)119601.

[22]D.O.Edwards,S.Balibar,Phys.Rev.B39(1989)4083.

[23]A.Granato,K.Lucke,J.Appl.Phys.27(1956)583.

[24]T.Ninomiya,J.Phys.Soc.Jpn.36(1974)399; T.Ninomiya,Scr.Metall.Mater.18(1984)669.

[25]A.D.Fefferman,F.Souris,A.Haziot,J.R.Beamish,S.Balibar,Phys.Rev.B89(2014)014105.

[26]A.Haziot,A.D.Fefferman,F.Souris,J.R.Beamish,H.J.Maris,S.Balibar,Phys.Rev.B88(2013)014106.

[27]J.Friedel,C.Boulanger,C.Crussard,ActaMetall.3(1955)380.

[28]A.Allen,M.Richards,J.Schratter,J.LowTemp.Phys.47(1982)289.

[29]N.Sullivan,Appl.Magn.Reson.8(1995)361.

[30]S.S.Kim,C.Huan,L.Yin,J.S.Xia,D.Candela,N.Sullivan,Phys.Rev.B87(2013)224303.

[31]SeeaseriesofarticlesfromM.W.Ray,R.B.Hallock,Phys.Rev.Lett.100(2008)235301; toYe.Vekhov,W.J.Mullin,R.B.Hallock,Phys.Rev.Lett.115(2015)019902.

(13)

[32]Z.G.Cheng,J.Beamish,A.D.Fefferman,F.Souris,S.Balibar,V.Dauvois,Phys.Rev.Lett.114(2015)165301.

[33]W.L.Bragg,Proc.Phys.Soc.52(1940)54.

[34]E.R.Parker,J.Washburn,Trans.Metall.Soc.AIME194(1952)1076.

Figure

Fig. 1. The growth shape of helium crystals shows evidence for their hexagonal structure
Fig. 3. In a temperature domain around 0.2 K, this ultrapure crystal shows a “giant plasticity”: its shear modulus is highly reduced with respect to its intrinsic value (127 bar), which is due to the elasticity of the lattice only
Fig. 4. The magnitude of the change in shear modulus is highly sensitive to the orientations of crystals with respect to the vertical shear that is used to measure this shear modulus
Fig. 6. These four crystals have different orientations, but they show the same variation of their elastic coefficient c 44
+5

Références

Documents relatifs

- Effects of annealing on an initially cold drawn specimen (from commercial superpure aluminium) : a) in the cold worked specimen (low clouds density) only the

REVISED EQUATION OF MOTION METHOD, SEMI-CLASSICAL LIMIT, AND MATHEMATICALLY CLOSED THEORY OF LARGE AMPLITUDE COLLECTIVE MOTION.. Journal de Physique Colloques, 1984, 45

The hysteresis effect of zinc crystals is observed over the temperature range be- tween 250 and 385 K, and it is caused by the redistribution of dislocations frcin polygonization

(for example, ref ./7/ ) As a result , the internal friction taken at constant temperature decreases as the frequency increases at temperatures below the peak maximum,

We define a partition of the set of integers k in the range [1, m−1] prime to m into two or three subsets, where one subset consists of those integers k which are < m/2,

- The edge dislocation (ED) is characterized by the fact that % lies in a plane orthogonal to the axis of the dislocation, again chosen to be the Oz axis, (fig.lb). Even in

He enjoys sport and friends because he hates school and physics.. He is energetic

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des