• Aucun résultat trouvé

Some notations and preliminary results Abstract The direct product of a hopfian group with a group with cyclic ccnter

N/A
N/A
Protected

Academic year: 2022

Partager "Some notations and preliminary results Abstract The direct product of a hopfian group with a group with cyclic ccnter"

Copied!
4
0
0

Texte intégral

(1)

The direct product of a hopfian group with a group with cyclic ccnter

R. I-Ims~o~

Polytechnic ]_nstitu~e of Brooklyn, Brooklyn, :N.Y., U.S.A.

Abstract

I n this p a p e r we c o n t i n u e o u r s t u d y of h o p f i c i t y b e g u n in [1], [2], [3], [4] a n d [5].

L e t A be h o p f i a n a n d let B h a v e a cyclic c e n t e r o f p r i m e p o w e r order. W e i m p r o v e T h e o r e m 4 of [2] b y showing t h a t if B has f i n i t e l y m a n y n o r m a l s u b g r o u p s which f o r m a chain (we s a y B is n - n o r m a l ) , t h e n A x B is h o p f i a n . W e t h e n consider t h e case w h e n B is a p - g r o u p o f n i l p o t e n c y class 2 a n d show t h a t in c e r t a i n cases A X B is h o p f i a n .

Some notations and preliminary results

W e d r a w f r e e l y f r o m t h e ideas in [1], [2] a n d [3]. I n t h e sequel ~ will designate a s u r j e c t i v e e n d o r m o r p h i s m o f A x B. I n o u r proofs we b e g i n b y a s s u m i n g t h a t A X B is n o t h o p f i a n so we m a y a s s u m e ~ is n o t a n i s o m o r p h i s m o n A. W e use t h e idea of t h e h o m o m o r p h i s m ~ , i n t r o d u c e d in [3]. W e n o t e t h a t for ~ , t o exist as i n t r o d u c e d in [3], we m u s t h a v e ~ a n i s o m o r p h i s m on B a n d B ~ f3 B = 1.

T h e s y m b o l s a, al, a 2 . . . will d e s i g n a t e e l e m e n t s in A.

LE~MA 1. Suppose Z ( B ) is cyclic of p r i m e power order pJ and Bod N B = 1, cr an isomorphism on B , j = 1, 2. Let <b> ~ Z ( B ) -~ Z and let (bta)~ = b, T h e n i f ~ is not an isomorphism on A, t = l m o d p .

_Proof. L e t ba = albr W e claim t h a t q ~ 0 m o d p . F o r o t h e r w i s e A B o ; - ~ A X <b> so t h a t Bc~ = <b~> x A 1"1 B~. B u t Bee has a cyclic c e n t e r a n d c a n n o t d e c o m p o s e n o n t r i v i a l l y as a d i r e c t p r o d u c t . T h u s B ~ B ~ ---- <b~> w h i c h c o n t r a d i c t s T h e o r e m 3 o f [1]. N o w

A = (A x Z ) ~ , = A a , < a l > . (1)

(2)

232 ~. HII~SttO.N ~

L e t cr 1 = (a~bf)~. H e n c e (a2bf-~)~ is a p : t h p o w e r ~nd so t h e r e f o r e is (a2bf-1)a,.

This i m p l i e s f - ~ 1 m o d p , for o t h e r w i s e if L = <a2bf-1 >

A ~- (A • = ( A L ) ~ , = A ~ , L ~ , . (2) B u t since L ~ , is g e n e r a t e d b y a p : t h p o w e r we m a y conclude f r o m (1) a n d (2) t h a t A - - - A ~ , w h i c h is impossible. N o w we s h o w t h a t ( t , p ) = 1. :For if M - = <bta> t h e n

( A M ) a , = ALx, M ~ , = A~x<al} = A . (3) B u t

A M = A • <b~> (4)

so t h a t i f pit, we could d e d u c e f r o m (3) a n d (4) t h a t A = A ~ , . Since ( t , p ) = 1, we see <b~> c Ac~B C Aa(bo~> so

AocB = A~<b~} := A~<b>. (5)

Also since (p, q) = p , we see t h a t B . A ~ = A~@h>. H e n c e we m a y w r i t e b = a z ~ . a ~ . B u t t h e n a3a , = a ~ - " so t h a t ( p , l - - r ) = p or else A = A a , . N o w l e t c = b'aa~lb -f. L e t P b e t h e s u b g r o u p of p : t h p o w e r s in Z ( A ) x Z ( B ) . N o t e

c~ 2 = aa~ 2 rood P . (6)

I f t ~ f m o d P, t h e n f r o m (6) we see t h a t A = ( A - <ca~1>)(cr = A(c~2),. I-~ence t = = - f ~ l .

Some results

TI~EORE~ l.

If

B is n-normal, A x B is hopfian.

Proof. S u p p o s e t h e t h e o r e m is false. L e t C be as in [3], p. 182 a n d l e t w b e a g e n e r a t o r f o r Z(C). L e t ~ b e a n e n d o m o r p h i s m o f A • C w h i c h is n o t a n iso- m o r p h i s m on A. T h e n , as in (5) o f L e m m a 1, A ~ C = Aa<w>. B u t t h e n C ~--

<w>C f3 Ao~. I-Ience C c A ~ or C = <w>. T h e f o r m e r is i m p o s s i b l e b y L e m m a 4 of [2] a n d t h e l a t t e r is i m p o s s i b l e b y T h e o r e m 3 o f [1].

LE~MA 2. Let B be a group with generators b, xl, yj, x2, Y2 . . . . xn, y~ and defining relations of the f o r m :

[xl, y~] : b ph, x7 ~ : b nl, y~C~ = bm~, b~k : 1 , (7) and all other generator s commute. T h e n Z ( B ) : <b> and any automorphism of Z ( B ) may be extended to an automorphism of B.

(3)

T I I E D I R E C T P R O D U C T O F A H O P F I A N GI~OUI:' W I T H A. G R O U P W I T H C Y C L I C C E N T E R 233

_Pro@ This is a n u n p u b l i s h e d r e s u l t of F. Pickel. F o r t h e d u r a t i o n o f this p a p e r B will be as in t h e a b o v e L e m m a a n d p will be a p r i m e d i s t i n c t f r o m 2.

LEMMA 3. I f B is f i n i t e we m a y assume B Cl B ~ ~ = 1 f o r all n sufficiently large.

Proof. Otherwise as in L e m m a 5 of [1], p. 237, we can p r o d u c e a n o r m a l sub- g r o u p B 1 # 1 o f B w i t h Blc~ ~ ~ B 1 for some m > 0. H e n c e c~ "~ is a n i s o m o r p h i s m on B. B u t t h e n A N B ~ = 1 for BI~ ~ m u s t i n t e r s e c t a n y n o n t r i v i a l n o r m a l s u b g r o u p o f B ~ m n o n t r i v i a l l y . H e n c e A • A • A~'~B~ m a n d h e n c e A is isomorphic to a h o m o m o r p h i c i m a g e of Acr m.

THEOtgEM 2. I f j~ = r, i = 1, 2 , . . . n i n (7), then A • is hopfian.

P r o @ B y L e m m a 3 we m a y a s s u m e B C l B c J = 1, i = 1,2. L e t ( b t a ) ~ = b . F r o m L e m m a 3 we see t h a t we m a y a s s u m e t 2~ I m o d p, for otherwise we m a y replace ~ b y Oct w h e r e 0 is a s u r j e c t i v e e n d o m o r p h i s m of A • B w h i c h is t h e i d e n t i t y on A a n d which acts as a suitable i s o m o r p h i s m on B. B y L c m m a 1, is n o t a n i s o m o r p h i s m o n B. L~t K = (kernel ~) (3 B. T h e n cr i n d u c e s a sur- j e c t i v e e n d o m o r p h i s m Y o f A + B / K o n t o A + B / K in t h e n a t u r a l w a y . L e t P = { g P l g 6 B } . I f g 6 B , we set g ' = g K in B / K = B , a n d claim

Z ( B , ) ~- <b', g;, g'2, . . . , g'k>

for suitable g~ in P . T o see this, suppose w is a w o r d in t h e g e n e r a t o r s of B such t h a t w' 6 Z ( B / K ) . L e t s be t h e e x p o n e n t of Yl in w. T h e n [xl, w] = [xl, yl] s 6 K . I f ( p , s ) = 1 t h e n [x1,?/1]= b P r 6 K - H e n c e [ x ~ , y ~ ] 6 K for all i.

H e n c e B . is abelian c o n t r a r y to T h e o r e m 3 o f [1]. H e n c e s is divisible b y p.

Similarly, t h e e x p o n e n t o f a n y o t h e r x or y s y m b o l in w is divisible b y p. N o w let

b~ = b~a~. (8)

Since cr is n o t a n i s o m o r p h i s m on B, c~ is n o t a n i s o m o r p h i s m on Z ( B ) os t h a t (p, q ) = p. Moreover, in view of (8)

A = (A • < b ' > ) r , = A T , < a l > . (9) N o w (b'-~a)~x = b~-qax I. B u t t h e n we see, ((b')'-~a)7, = a l ~ a n d since t ~ 1 m o d p,

A = (A X <b'>)7, = [A<(b')'-~a>]7, = A T , < a q > . (10) Since (p, q ) = p, (9) a n d (10) i m p l y A = A ~ , .

TttEOlCE)~ 3. I n (7) let JI <~ J2 <-- . . . ~ j,,-1 < j , < k a n d e~ = k - j~. S u p p o s e f u r t h e r that m~ - - n~ ~ 0 m o d pJ~, i = 1, 2 . . . . n. T h e n A • B is hopfian.

(4)

234 ~. ~iRs~o~

P r o o f . Our n o t a t i o n is as in t h e p r e v i o u s t h e o r e m . I f b p J" ~ K, as in T h e o r e m 2,

! t t

we c o u l d d e d u c e t h a t Z ( B . ) --= <b', gl, g2 9 9 9 gk>, gi C Pj a n d we could t h e n p r o c e e d e x a c t l y as before. W e m a y a s s u m e b Pi" E K . L e t e be t h e least positive i n t e g e r such t h a t for t = p i , , b ' E K . L e t

F = <xl, 5'1, x2, Y2, 9 9 9 xo-1, Y~-I, b> ,

A 1 = <A, x,, y~, x~+l, y~+l, 9 9 9 x , , y,>/<b'>, B I = F / < b ' > .

T h e n t h e d e f i n i n g relations for B i m p l y ( A • 2 1 5 1. N o t e t h a t A 1 is t h e direct p r o d u c t o f A a n d a f i n i t e a b e l i a n g r o u p so t h a t A~ is h o p f i a n b y T h e o r e m 3 o f [1]. N o w a i n d u c e s a n e n d o m o r p h i s m 7 o f A I • 1 in t h e n a t u r a l w a y . I f K x is t h e kernel o f 7 fl 171, a n d B~ = B 1 / K 1, t h e n 7 induces a surjective e n d o r m o r p h i s m 0 o f A I • 2 in t h e n a t u r a l way. N o w let F 1 = kernel a f l _~

a n d K 1 = F1/<b~>. T h e n JB2 ~ F / F 1. W i t h t h e aid of t h e d e f i n i t i o n o f e we see t h a t t h e center o f l~]F 1 is g e n e r a t e d b y e l e m e n t s b F 1, g l F x . . , g , F 1 for c e r t a i n g~ E F w h e r e each g~ is a p : t h p o w e r in F . W e m a y n o w m i m i c k the p r o o f o f T h e o r e m 3 a n d o b t a i n AIO , = A 1 a c o n t r a d i c t i o n o f t h e h o p f i c i t y o f A 1.

References

1. J=~IttSHOlg, R., Some theorems on hopfieity. Trans. Amer. Math. Soc., 141 (1969), 229--244.

2. --~)-- On hopfian Groups. Pacific Journal of Math., 32, No. 3 (1970), 753--766.

3. --7>-- The center and the commutator subgroup i n hopfian groups. Ark. Mat., 9, (1971), 181-- 192.

4. --*-- A conjecture on hopficity and related results. Arch. Math. (Basel), 32 (1971), 429--455.

5. --))-- Some new groups admitting essentially unique directly indecomposable decompositions.

Math. Ann., 194 (1971), 123--125.

6 .--~>-- A problem i n group theory. Amer. Math. NIonthly, 79 (1972), 379--381.

.Received September 17, 1971. 1%. Hirshon

Polytechnic Institute of Brooklyn, 333 J a y Street

Brooklyn, N.Y., IJ.S.A.

Références

Documents relatifs

In this paper, we prove some uniqueness and convergence results for a competing system and its singular limit, and an interior measure estimate of the free boundary for the

Theories about spaces of countable type and Hilbert-like spaces in [1] and spaces of continuous linear operators in [2] require that all absolutely convex subsets of the base field

To study cycles modulo algebraic equivalence, we need to use the Purity Conjecture for etale cohomology, which says that the local cohomology of a regular scheme with

with normal crossings on X and for all X provided we assume strong resolution of singularities for all varieties of dimension ~ n.. The proof of this lemma uses

We also use results of Abels about compact presentability of p-adic groups to exhibit a finitely presented non-Hopfian Kazhdan

• Because of (ii), Condition (1a) of [A, Remark 6.4.5], which involves the orthogonal of the subspace generated by roots, reduces to say that H 1 (u) does not contain the

We also use results of Abels about compact presentability of p-adic groups to exhibit a finitely presented non-Hopfian Kazhdan

Since X is defined over a finitely generated field, motivic cohomology commutes with filtering inverse limits of smooth schemes (with affine transition morphisms) and l-adic