• Aucun résultat trouvé

CARS, THE ONLY TOOL FOR THE DIAGNOSTICS OF REACTIVE MEDIA ?

N/A
N/A
Protected

Academic year: 2021

Partager "CARS, THE ONLY TOOL FOR THE DIAGNOSTICS OF REACTIVE MEDIA ?"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00223283

https://hal.archives-ouvertes.fr/jpa-00223283

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CARS, THE ONLY TOOL FOR THE DIAGNOSTICS OF REACTIVE MEDIA ?

B. Attal, M. Péalat, J. Taran

To cite this version:

B. Attal, M. Péalat, J. Taran. CARS, THE ONLY TOOL FOR THE DIAGNOSTICS OF REACTIVE MEDIA ?. Journal de Physique Colloques, 1983, 44 (C7), pp.C7-287-C7-298.

�10.1051/jphyscol:1983726�. �jpa-00223283�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplement au n O 1 l , Tome 44, novembre 1983 page C7-287

CARS, THE ONLY TOOL FOR THE DIAGNOSTICS OF REACTIVE MEDIA ?

B.

A t t a l ,

M .

P 6 a l a t and J.P. Taran

O f f i c e National d ' E t u d e s e t de Recherches Ae'rospatiales IO!IERAI,

L3.P. 7 2 ,

92322 Chiiti LLon Ceder, France

R b s d - La D i f f u s i o n Raman a n t i - S t o k e s Coh6rents (DRASC) e s t une t e c h n i q u e b i e n a d a p t b e

2(

l a mesure des t e m p e r a t u r e s e t c o n c e n t r a t i o n s molecu-

l a i r e s dans l e s m i l i e u x e n r e a c t i o n .

Les p r i n c i p e s g6nGraux s o n t e x p o s e s , a i n s i que l e s c a r a c t e r i s t i q u e s t e c h n i q u e s l e s p l u s i m p o r t a n t e s . Les exemples d l a p p l i c a t i o n l e s p l u s s i g n i f i c a t i f s s o n t d e c r i t s , de f a s o n L p r e s e n t e r l e n i v e a u ac- t u e l de performance

:

temps de mesure, r 6 s o l u t i o n s p a t i a l e , s e n s i - b i l i t e de d k t e c t i o n . La mesure de t e m p b r a t u r e i n s t a n t a n d e dans un moteur L p i s t o n , l l b t u d e des ~ r o d u i t s de p h o t o l y s e de H2C0 e t l a DRASC r b s o n n a n t e s u r C2 s o n t d i s c u t e s .

A b s t r a c t - Coherent a n t i - S t o k e s Raman s c a t t e r i n g (CARS) i s w e l l a d a p t e d t o t h e measurement o f t e m p e r a t u r e s and c o n c e n t r a t i o n s of m o l e c u l e s i n r e a c t i v e g a s e c u s media. The g e n e r a l p r i n c i p l e s a r e g i v e n a l o n g w i t h t h e major t e c h n i c a l advantages and r e q u i r e m e n t s . Characte-

r i s t i c a p p l i c a t i o n s a r e d e s c r i b e d i n o r d e r t o p r e s e n t s t a t e of t h e a r t performance l e v e l s

:

measurement t i m e , s p a t i a l r e s o l u t i o n , d e t e c t i o n s e n s i t i v i t y . I n s t a n t a n e o u s t e m p e r a t u r e measurements i n a p i s t o n e n g i n e , a n a l y s i s of p h o t o l y s i s products o f H CO and r e s -

onance-enhanced CARS of C a r e d i s c u s s e d .

2 2

The s u c c e s s o f o p t i c a l t e c h n i q u e s i n t h e d i a g n o s t i c s o f r e a c t i v e media stems from t h e i r n o n - i n t r u s i v e c h a r a c t e r . Some h a v e b e e n k n w n and used f o r a l o n g t i m e . I n p a r t i c u l a r , s p e c t r o s c o p y by a b s o r p t i o n o r e m i s s i o n i n t h e i n f r a - r e d , v i s i b l e and u l t r a - v i o l e t c a n be e x t r e m e l y s e n s i t i v e ; t h e s e t e c h n i q u e s have made p o s s i b l e t h e d e t e c t i o n o f numerous s p e c i e s and t h e measurement o f t e m p e r a t u r e s i n flames where s o l i d p r o b e s would d i s t u r b t h e r e a c t i n g f l o w f i e l d and g i v e e r r o n e o u s r e a d i n g s . Al- though t h e y a r e s t i l l w i d e l y i n u s e , t h e s e two methods g e n e r a l l y l a c k t h e s p a t i a l r e s o l u t i o n o f t e n r e q u i r e d i n thermometry and a n a l y t i c a l c h e m i s t r y .

The a d v e n t o f t h e l a s e r h a s a l l o w e d t h e development o f a new b r e e d of o p t i c a l methods b a s e d on t h e s c a t t e r i n g o f i n t e n s e , monochromatic l i g h t by t h e gaseous media and c a p a b l e of g i v i n g mm, and even s u b - m , s p a t i a l r e s o l u t i o n . F l u o r e s c e n c e and Spontaneous Raman s c a t t e r i n g h a v e b e e n t h e o b j e c t of an i n t e n s e r e s e a r c h a c t i v i t y i n t h e e a r l y s e v e n t i e s by t h e combus t i o n e n g i n e e r i n g c o r n u n i t y /1,2/. Today, Spontane- ous Raman S c a t t e r i n g i s v i r t u a l l y abandoned f o r l a c k o f d e t e c t i o n s e n s i t i v i t y , ex- c e p t i n a few l i m i t e d a p p l i c a t i o n s . F l u o r e s c e n c e h a s more a p p e a l b e c a u s e o f i t s much improved s e n s i t i v i t y and i s t h e o b j e c t o f d e d i c a t e d r e s e a r c h work by s e v e r a l groups 13 /.

S i n c e 1973, t h e s e two methods have been c h a l l e n g e d by c o h e r e n t Raman t e c h n i q u e s , and by Coherent a n t i - S t o k e s Raman S c a t t e r i n g (CARS) i n p a r t i c u l a r 141. CARS h a d been k n o b n s i n c e 1965 /S/ b u t h a d only been used f o r t h e s p e c t r o s c o p y o f some g a s e s , li- q u i d s and s o l i d s . Because of t h e i r h i g h l u m i n o s i t y and of t h e h i g h c o l l i m a t i o n of t h e s i g n a l beams t h e y produce, t h e s e c o h e r e n t Raman t e c h n i q u e s a r e e x t r e m e l y w e l l s u i t e d f o r t h e work on g a s e o u s media wherein s t r o n g luminous backgrounds a r e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983726

(3)

JOURNAL DE PHYSIQUE

~ e n e r a t e d . CARS i s t h e most p o p u l a r f o r s e v e r a l t e c h n i c a l r e a s o n s

:

- i t i s s i m p l e r and c h e a p e r t o u s e t h a n o t h e r t e c h n i q u e s l i k e RIKES and Raman g a i n s p e c t r o s c o p y ;

- i t l e n d s i t s e l f t o p r e c i s e c a l i b r a t i o n through t h e u s e o f a r a r e g a s r e f e r e n c e ;

- i t can o p e r a t e i n a m u l t i p l e x mode which a l l o w s i n s t a n t a n e o u s measurements o f tem- p e r a t u r e and s i m u l t a n e o u s d e t e c t i o n o f s e v e r a l s p e c i e s .

F i n a l l y , O p t o g a l v a n i c S p e c t r o s c o p y was a l s o p r o p o s e d r e c e n t l y f o r t h e i n v e s t i g a t i o n o f f l a m e s / 6 / . T h i s form o f s p e c t r o s c o p y i s v e r y s u c c e s s f u l w i t h t h e d e t e c t i o n o f t r a c e c o n s t i t u e n t s . S i n c e i t i s l a r g e l y d e b a t e d i n t h i s m e e t i n g , we s h a l l n o t d i s - c u s s i t h e r e .

The emphasis w i l l b e on CARS and i t s a p p l i c a t i o n s , p a r t i c u l a r l y t h o s e a p p l i c a t i o n s which a r e t h e most r e p r e s e n t a t i v e and w i l l e n a b l e t h e r e a d e r t o make u s e f u l coln- p a r i s o n s w i t h o p t o g a l v a n i c t e c h n i q u e s .

A

b r i e f o v e r v i e w o f t h e t h e o r y and p r a c t i c a l a s p e c t s of CARS w i l l be g i v e n a s a n i n t r o d u c t i o n .

I - THEORETICAL CONSIDERATIONS

CARS i s o b s e r v e d i n m o l e c u l a r g a s e s u s i n g two p a r a l l e l monochromatic l a s e r beams o f p l a n e waves, w i t h a n g u l a r f r e q u e n c i e s

wl

a n d w 2 r e s p e c t i v e l y , w i t h -

,w

If t h e s e l a s e r beams h a v e a f r e q u e n c y d i f f e r e n c e - -u2 e q u a l t o t h e v i i r a t i o n f r e -

2

-

q u e n c y u o f a Raman a c t i v e v i b r a t i o n a l mode of t h e g a s m o l e c u l e s , a new i n t e n s e beam o f T i g h t i s g e n e r a t e d i n t h e medium. T h i s beam i s a monochromatic beam o f p l a n e waves s u p e r p o s e d t o t h e two l a s e r beams ( F i g . 1). I t s f r e q u e n c y i s w

=wl

+

(W

-

c3

1. I t s g e n e r a t i o n i s t h e r e s u l t o f t h e s c a t t e r i n g o f t h e incoming q a s e r be- i y t h e g a s m o l e c u l e s , t h e v i b r a t i o n o f which i s b e i n g d r i v e n s y n c h r o n o u s l y and c o h e r e n t -

2

l y by t h e s e beams. S i n c e t h e s i g n a l a p p e a r s on t h e h i g h f r e q u e n c y s i d e o f t h e

e x c i t i n g l a s e r beams ( o r pump beams), i . e . on t h e s i d e l a b e l l e d a n t i - S t o k e s s i d e by t h e s p e c t r o s c o p i s t s , and s i n c e i t i s o n l y o b s e r v a b l e i f t h e m o l e c u l a r v i b r a t i o n s a r e Raman a c t i v e , t h i s p a r t i c u l a r g e n e r a t i o n mechanism h a s been c a l l e d C o h e r e n t a n t i - S t o k e s Raman S c a t t e r i n g . Note t h a t a s i g n a l beam i s a l s o g e n e r a t e d a t t h e s y m m e t r i c f r e q u e n c y

2w2

- w l by t h e same c o u p l i n g mechanism, b u t t h i s s i g n a l g e n e r a l l y l i e s i n a s p e c t r a l domain where i t s d e t e c t i o n i s d i f f i c u l t and i t i s s e l d o m u s e d f o r t h a t r e a s o n . The f r e q u e n c i e s o f a l l t h e s e beams a r e d e p i c t e d i n F i g .

2 .

I V L gas with vibrational resonance

Fig. 1

-

CARS and coherent Stokes Rarnan Scattering

(4)

Fig. 2

-

Spectrum of the beams emerging from the sample

'Ihe e x p r e s s i o n o f t h e s i g n a l f l u x a t w 3

=

2 w l -

w 2

i s g i v e n by / 7 /

:

I3 --- 1.9 10-'= W: 1 ~ ) ~ l;l2 2 '

where I 2

12, I 3 a r e t h e power f l u x e s ( i n W/cm

)

a t f r e q u e n c i e s w ,

W

*,

W,,

r e s p e c t ~ v e l y , and

z

i s t h e t h i c k n e s s o f t h e gas sample ( i n cm). d e r e s p o n s e o f t h e g a s e x c i t e d by t h e beams i s r e p r e s e n t e d by t h e n o n l i n e a r o p t i c a l s u s c e p t i b i l i t y x , whose e x p r e s s i o n i s g i v e n below. The l a s e r beams a l s o can b e f o c u s e d a t a p o i n t . The s i g n a l beam i s t h e n g e n e r a t e d i n t h e f o c a l r e g i o n f o r t h e most p a r t , and i t a p p e a r s i n t h e same cone a n g l e a s t h e pump beams. The power o f t h i s s i g n a l beam i n Watts i s g i v e n by

:

We assume i n t h i s e x p r e s s i o n t h a t t h e pump beams h a v e powers P a t - and e same d i a m e i e r .

f d 2 ,

r e s p e c t i v e l y , t h a t t h e y a r e d i f f r a c t i o n - l i m i t e d and h a v e hand P2

One n o t i c e s t h a t t h i s e x p r e s s i o n i s i n d e p e n d e n t o f t h e f o c a l l e n g t h o f t h e l e n s and o f t h e beam d i a m e t e r . One a l s o n o t i c e s t h a t t h e s i g n a l i s p r o p o r t i o n a l t o P

h e n c e t h e i n t e r e s t o f u s i n g h i g h power p u l s e d s o u r c e s . 1 P2' The p u r p o s e o f a l l CARS e x p e r i m e n t s i s t o r e c o r d t h e v a r i a t i o n o f P , i . e . t h e v a r i a t i o n o f s u s c e p t i b i l i t y , I f one assumes t h a t t g e r e i s o n l y one v i b r a t i o n a l r e s o n a n c e u

v

where ( d ~ / d Q ) i s t h e s p o n t a n e o u s Raman c r o s s s e c t i o n (cm / s r ) , b t h e d i f f e r e n c e i n

L

p o p u l a t i o n p r o b a b i l i t y between t h e Qwer and u p p e r v i b r a t i o n a l s t a t e s , N t h e number of m o l e c u l e s p e r u n i t volume ( i n cm

)

a n d y t h e damping c o n s t a n t .

- The f i r s t p a r t o f X i s t h e Raman r e s o n a n t p a r t , which d e s c r i b e s t h e r e s p o n s e o f t h e medium when

W

-

w

i s s c a n n i n g a c r o s s t h e v i b r a t i o n a l r e s o n a n c e . I t i s t h e most i m p o r t a n t p a r k o f t g e s u s c e p t i b i l i t y , t h e p a r t t h a n k s t o which i t i s p o s s i b l e t o conduct a c h e m i c a l a n a l y s i s o f t h e medium and t o measure t h e t e m p e r a t u r e . G e n e r a l l y , t h e medium h a s s e v e r a l v i b r a t i o n a l r e s o n a n c e s , each a s s o c i a t e d w i t h d i s t i n c t r o v i b r a t i o n a l s t a t e s

;

t h i s Raman r e s o n a n t p a r t t h e n i s made up o f a summation o v e r t h e r e s o n a n c e s i n q u e s t i o n , e a c h o f whichhas a w e i g h t p r o p o r t i o n a l t o t h e c o r r e s p o n d i n g d .

-.Xn i s t h e non r e s o n a n t s u s c e p t i b i l i t y . I t c o n t a i n s t h e c o n t r i b u t i o n s o f remote

v l b r a f i o n a l r e s o n a n c e s and t h o s e a s s o c i a t e d w i t h t h e n o n l i n e a r d i s t o r t i o n o f t h e

e l e c t r o n c l o u d o f t h e m o l e c u l e s c a u s e d by t h e i n t e n s e l a s e r f i e 1 d s . X i s r e a l

and p r o p o r t i o n a l t o t h e number d e n s i t y o f t h e m o l e c u l e s

; i t

i s a slow"fy v a r y i n g

f u n c t i o n o f w l

- u 2 ;

i t i s g e n e r a l l y n e g l i g i b l e , b u t t h e r e a r e s i t u a t i o n s f o r

which i t s complex ~ n t e r f e r e n c e w i t h t h e Raman r e s o n a n t p a r t is- t r o u b l e s o m e ,

e s p e c i a l l y when one t r i e s t o d e t e c t t r a c e s i n a m i x t u r e .

(5)

C7-290 JOURNAL DE PHYSIQUE

Of e x c e p t i o n a l i n t e r e s t i s t h e s i t u a t i o n f o r which t h e o p t i c a l f r e q u e n c i e s o f i n t e r e s t

(U

, w ~ , w ~ ) a r e c l o s e t o o r a t r e s o n a n c e w i t h a b s o r p t i o n l i n e s o f t h e m o l e c u l e s u n a e r s t u d y ( r e s o n a n c e CARS). The Raman c r o s s s e c t i o n d G / d R t h e n under- goes a l a r g e enhancement. Consequently, t h e Raman r e s o n a n t p a r t of t h e s u s c e p t i - b i l i t y i s l a r g e r , and t h e d e t e c t i o n s e n s i t i v i t y can b e improved o r d e r s o f magni- t u d e . The e x p r e s s i o n g i v i n g t h e s u s c e p t i b i l i t y i s v e r y complex and t h e s t r u c t u r e o f t h e s p e c t r u m becomes i n t r i c a t e 171. Although v e r y few groups h a v e t a c k l e d t h e problem o f r e s o n a n c e CARS i n g a s e s

/ 8 - 1 4 / ,

t h i s i s one of t h e most e x c i t i n g a r e a s of r e s e a r c h t o d a y . An example of r e s o n a n c e CARS i n C2 w i l l b e p r e s e n t e d i n t h i s communication.

I I - PRACTICAL CONS1 DERATIONS

I t i s s u f f i c i e n t t o s c a n

W

w h i l e k e e p i n g u ~ ~ f i x e d , and t o measure P3, i n o r d e r t o conduct t h e s p e c t r a l a n a l y s ~ s o f t h e g a s . From t h i s a n a l y s i s , one e x t r a c t s e x a c t l y t h e sarne i n f o r m a t i o 3 a s in16pontaneous Raman s c a t t e r i n g , b u t t h e g a i n i n l u m i n o s i t y i s c o n s i d e r a b l e

(10

t o 10 i f comparable l a s e r s a r e used) and t h e r e j e c t i o n of s t r a y l i g h t i s f a r more e f f i c i e n t b e c a u s e of t h e e x c e l l e n t d i v e r g e n c e o f t h e s i g n a l beam. From t h e s p e c t r a , one c a n e x t r a c t t h e f o l l o w i n g i n f o r m a t i o n

:

- t h e c o m p o s i t i o n o f t h e gas m i x t u r e ( s i n c e each s p e c i e s h a s i t s own c h a r a c t e r i s t i c s e t o f v i b r a t i o n a l f r e q u e n c i e s and can b e i d e n t i f i e d from i t s CARS s p e c t r a l s i g n a - t u r e ) ,

- t h e number d e n s i t y o f t h e s p e c i e s ( s i n c e t h e s i g n a l i s p r o p o r t i o n a l t o N 2 , N can be deduced from t h e measurement of P3),

- t h e t e m p e r a t u r e ( b e c a u s e t h e s i g n a l a l s o depends on A , i . e . on t h e Boltzmann p o p u l a t i o n f a c t o r s ) . More p r e c i s e l y , one t a k e s a d v a n t a g e o f t h e f a c t t h a t t h e v i b r a t i o n a l frequency weakly depends on t h e r o t a t i o n a l s t a t e , and t h a t i t de- c r e a s e s w i t h h i g h e r r o t a t i o n a l s t a t e s . The l a t t e r becomirrymore p o p u l a t e d when t h e t e m p e r a t u r e i n c r e a s e s , t h e s p e c t r a l w i d t h i n c r e a s e s .

Two methods a r e a t o u r d i s p o s a l i n o r d e r t o conduct t h e r e q u i r e d s p e c t r a l a n a l y s i s

:

s p e c t r a l s c a n n i n g and m u l t i p l e x r e c o r d i n g ( F i g . 3 ) . The f i r s t one u s e s two mono- c h r o m a t i c l a s e r s

;

i t h a s an e x c e l l e n t s i g n a l t o n o i s e r a t i o , b u t i t i s a p p l i c a b l e only t o s t a b l e media. h e s e c o n d one i s w e l l a d a p t e d t o t h e s t u d y of f l u c t u a t i n g media

;

i t i s implemented u s i n g a l a s e r c o v e r i n g a wide r a n g e o f f r e q u e n c i e s w 2' which a l l o w s one t o s i m u l t a n e o u s l y e x c i t e a l l r o t a t i o n a l components and t o g e n e r a t e

the e n t i r e s p e c t r u m u n d e r s t u d y w i t h a s i n g l e p u l s e . The d e t e c t i o n t h e n i s done w i t h a h i g h l y d i s p e r s i v e s p e c t r o g r a p h and w i t h a m u l t i c h a n n e l d e t e c t o r such a s a TV camera 1151.

Fig. 3

-

Recording of spectra in CARS:

a) scanning; bl multiplex

l b o remarkable examples of t e m p e r a t u r e and c o n c e n t r a t i o n measurements a r e p r e s e n t e d

i n f i g u r e s 4 and 5.

(6)

Figure 4 gives t h e v a r i a t i o n of the CARS s i g n a l c o l l e c t e d on t h e main v i b r a t i o n a l l i n e

~ ( 1 )

w h i l e changing the H c o n c e n t r a t i o n i n a i r a t room temperature 1 4 1 . The q u a d r a t i c dependence vs concenzration i s c l e a r l y demonstrated down t o the very low value of 100 ppm, below which the non resonant background of N2 and

0

molecules

becomes predominant.

2

H p CONCENTRATION ( p p m )

Fig. 4

-

CARS signal on 0111 H2 line in air vs mole fraction

Fig. 5

-

Normalizedspectrum of N2 calculed for different temperaturm assuming a resolution of 1 c 6

'

F i g u r e 5 gives a s e t of t h e o r e t i c a l s p e c t r a of N2 c a l c u l a t e d f o r s e v e r a l values of

the temperature. I n t h i s s i m u l a t i o n , one has assumed t h a t t h e instrument ( i . e . t h e

l a s e r sources t o g e t h e r with t h e d e t e c t i o n system) has a s p e c t r a l r e s o l u t i o n of

1.2cm-1.The f i n e r o t a t i o n a l s t r u c t u r e i s p a r t i a l l y b l u r r e d as a r e s u l t of t h a t low

r e s o l u t i o n , b u t t h e envelope d i s t o r t i o n which r e s u l t s from t h e change i n Boltzmann

f a c t o r s when t h e temperature i s changed i s c l e a r l y demonstrated, and i t can be used

f o r s e n s i n g temperature with good accuracy. This p r o p e r t y i s g e n e r a l and can b e used

with o t h e r s p e c i e s l i k e HI 02, e t c . . Let us a l s o n o t e t h a t a temperature measurement

g e n e r a l l y i s r e q u i r e d p r i o r o any c o n c e n t r a t i o n measurement.

(7)

C7-292

JOURNAL DE PHYSIQUE

These two examples c l e a r l y e s t a b l i s h t h e p o t e n t i a l o f CARS i n a n a l y t i c a l c h e m i s t r y and t e m p e r a t u r e measurement. The f i r s t example a l s o shows t h e a d v e r s e r o l e p l a y e d by t h e non r e s o n a n t s u s c e p t i b i l i t y o f t h e d i l u e n t which p r e c l u d e s t h e measurement o f t h e c o n c e n t r a t i o n s o f v e r y d i l u t e s p e c i e s . As a m a t t e r o f f a c t , t h e r e a l d e t e c - t i o n s e n s i t i v i t y o f CARS i s i n t h e r a n g e o f 1% t o 1 0 ppm depending on t h e s p e c i e s , on t h e thermodynamic c o n d i t i o n s , and on t h e e x p e r i m e n t a l a r r a n g e m e n t . I n s c a n n i n g CARS, i t i s f r e q u e n t l y advantageous t o u s e a t e c h n i q u e o f non r e s o n a n t background s u p p r e s s i o n b a s e d on t h e d i f f e r e n c e i n t h e t e n s o r p r o p e r t i e s o f t h e Raman-resonant and non r e s o n a n t p a r t s o f t h e s u s c e p t i b i l i t y . F o r t h a t , t h e pump beams a r e a p p l i e d w i t h d i s t i n c t s t a t e s o f p o l a r i z a t i o n ( g e n e r a l l y t h e s e a r e l i n e a r w i t h a 60" a n g l e between them), and one p a r t i c u l a r p o l a r i z a t i o n component o f t h e s i g n a l h a s t o b e s e l e c t e d / 1 6 , 1 7 / .

Using t h i s t e c h n i q u e c a u s e s a r e d u c t i o n o f t h e s l g n a l

;

i n s p i t e o f t h e s u p p r e s s i o n o f t h e background, t h e r e g e n e r a l l y f o l l o w s a l o s s i n d e t e c t i v i t y o f m u l t i p l e x s p e c t r o s c o p y b e c a u s e t h e s i g n a l s p e c t r a l d e n s i t y is weak and t h e m u l t i c h a n n e l d e t e c t o r s a r e n o i s y

/ 4 , 1 8 , 1 9 / .

The l a s t i m p o r t a n t f e a t u r e o f CARS i s i t s s p a t i a l r e s o l u t i o n . The l a t t e r i s o f t h e o r d e r o f 1 cm i f one u s e s c o l l i n e a r beans a t t h e d i f f r a c t i o n limit which a r e f o c u s e d a t t h e p o i n t o f i n t e r e s t under a n f number o f 60. F o r some a p p l i c a t i o n s , p a r t i c u l a r - ly i n t u r b u l e n t combustion, t h i s i s i n s u f f i c i e n t . A b e t t e r r e s o l u t i o n i s o b t a i n e d w i t h a crossed-beam geometry c a l l e d BOXCARS / 2 0 / . I n t h i s c o n f i g u r a t i o n , a n a d d i t i o n a l beam o f f r e q u e n c y ~ ~ i s f o c u s e d a t t h e same p o i n t , t h u s g e n e r a t i n g a new s i g n a l beam i n i t s d i r e c t i o n ( F i g . 6 ) . The l a t t e r i s g e n e r a t e d from t h e volume common t o a l l pump b e a m . The s p a t i a l r e s o l u t i o n depends on t h e a n g l e between t h e beams and i s o f t h e o r d e r o f 1 mm.

1

a1 .a2 (I - -

fa) U3

detection

Fig. 6 - Beam arrangement in CARS a1 collinear beams ; 61 BOXCA RS

I11 - CARS ANALYSIS OF REACTIVE MEDIA

A l l t h e measurements r e p o r t e d i n t h i s s e c t i o n , e x c e p t t h e l a s t one, h a v e b e e n ob- t a i n e d w i t h a CARS i n s t r u m e n t t h e d e s c r i p t i o n o f which can b e found i n / 1 7 / . l h i s i n s t r u m e n t i s v e r y v e r s a t i l e and can r e c o r d m u l t i p l e x o r s c a n n i n g s p e c t r a , w i t h BOXCARS o r c o l l i n e a r beams, and w i t h o r w i t h o u t background s u p p r e s s i o n . The l a s t r e s u l t s a r e resonance-enhanced CARS s p e c t r a o f C2 which w e r e r e c o r d e d u s i n g two f lash-pumped dye l a s e r s .

Temperature measurements

The f i r s t s u c c e s s f u l CARS measurements i n a p i s t o n e n g i n e were made s e v e r a l y e a r s a g o

/ 2 1 / .

These measurements a r e made v e r y d e l i c a t e by s e v e r a l t e c h n i c a l o b s t a c l e s s u c h a s s y n c h r o n i z a t i o n o f t h e l a s e r p u l s e s w i t h e n g i n e c r a n k r o t a t i o n ,

window f o u l i n g by l u b r i c a t i n g o i l , c y c l e t o c y c l e f l u c t u a t i o n s i n flame f r o n t deve-

lopment which i n t e r d i c t u s e o f s c a n n i n g CARS, and beam s t e e r i n g c a u s e d by t h e s t r o n g

d e n s i t y g r a d i e n t s . I n s p i t e o f t h e s e d i f f i c u l t i e s , s e v e r a l groups h a v e r e p o r t e d

s u c c e s s f u l a t t e m p t s /21-23/. S i m i l a r measurements were t a k e n a t

ONERA

r e c e n t l y / 2 4 / .

The e n g i n e was a f o u r - s t r o k e , i s o o c t a n e - f i r e d s i n g l e c y l i n d e r e n g i n e d r i v e n by a n

e l e c t r i c motor. The problem o f o p t i c a l a c c e s s was s o l v e d by p a s s i n g t h e beams

(8)

through 1 . 5 mm d i a m e t e r h o l e s i n t h e c y l i n d e r w a l l s . These h o l e s n a t u r a l l y c a u s e a s m a l l p r e s s u r e d r o p which remains a c c e p t a b l e a t t h e h i g h rpm. Note t h a t , i f n e c e s - s a r y , one h a s t h e p o s s i b i l i t y t o u s e m e c h a n i c a l s h u t t e r s i n o r d e r t o s t o p t h e l e a k u n t i l t h e t i m e o f t h e o p t i c a l measurement. The CARS pump beams w e r e i n a BOXCARS c o n f i g u r a t i o n which gave a b o u t 2 m s p a t i a l r e s o l u t i o n w i t h a 5 0 cm f o c a l l e n g t h f o c u s i n g l e n s .

F i g u r e 7 i s a t y p i c a l m u l t i p l e x CARS spect_rym of N2 r e c o r d e d a t a c r a n k a n g l e o f 30°. The s p e c t r a l r e s o l u t i o n i s a b o u t 1 cm . The r e s u l t o f a n u m e r i c a l s i m u l a t i o n assuming a t e m p e r a t u r e o f 2 . 1 5 0 K and a p r e s s u r e o f 15 a t m o s p h e r e s i s shown f o r comparison. The p r e s s u r e was o b t a i n e d from a p r e s s u r e gauge. The t e m p e r a t u r e i s o b t a i n e d w i t h a n a c c u r a c y o f a b o u t 5 0 K ( o n s p e c t r a l i k e t h a t o f F i g . 7) u s i n g e i t h e r v i s u a l f i t s o r a n automated l e a s t s q u a r e s r o u t i n e .

Crank angle pos~tron 30'

..----v

'Jl -'J2 Fig. 7

-

Single shot CARS spectrum i n piston engine and numerical simulation

The t e m p e r a t u r e o f t h e g a s e s through t h e f u l l c y c l e i s shown i n F i g . 8. About 20 measurements were made a t e a c h p o s i t i o n . T h e i r a v e r a g e and s t a n d a r d d e v i a t i o n a r e g i v e n . The s t a n d a r d d e v i a t i o n r e f l e c t s combined measurement u n c e r t a i n t i e s and r e a l t e m p e r a t u r e f l u c t u a t i o n s . A t 15 and 30°, t e m p e r a t u r e s measured a r e i n a r a n g e o f 600 t o 2 2 0 0

K

b e c a u s e o f f l u c t u a t i o n s i n flame f r o n t development from s h o t t o s h o t . F o r t h e s e two p o s i t i o n s , o n l y t h e a v e r a g e s a r e g i v e n .

Crank angle

0 I

0 180 360 540 720

Fig. 8 - Temperature in the combustion chamber of a single cylinder, 4 stroke gasoline-fired engine type Bernard 61 7: The average of 2 0 consmutive measurements is plotred; the bars represent the standard deviation in temperature fluctuations. The standard deviation is not given at 75 and 3 0 ', where temperature fluctuates between 6 0 0 and 2200 K because of engine cycle non reproducibility. Spatial resolution: 1 mm.

(9)

C7-294

JOURNAIL

DE

PHYSIQUE

S i m i l a r measurements have been made s u c c e s s f u l l y under h i g h l y s o o t i n g c o n d i t i o n s b u r n i n g t o l u e n e i n s t e a d of t h e i s o o c t a n e .

The p i s t o n e n g i n e example i s t y p i c a l of some o f the d i f f i c u l t t u r b u l e n t combustion e x p e r i m e n t s which can b e u n d e r t a k e n w i t h CARS. Good s p a t i a l r e s o l u t i o n , l i m i t e d r e q u i r e m e n t s f o r o p t i c a l a c c e s s and i n s t a n t a n e o u s measurement c a p a b i l i t y a r e h e r e r e m a r k a b l e a s s e t s . However, t h e d e t e c t i v i t y remains l i m i t e d . I t i s t y p i c a l l y 1% i n t h e s e m u l t i p l e x e x p e r i m e n t s . Much b e t t e r d e t e c t i o n s e n s i t i v i t i e s c a n b e a c h i e v e d u s i n g s c a n n i n g CARS.

Study of v i b r a t i o n a l l y e x c i t e d

H

produced i n H2C0 d i s s o c i a t i o n 2

A t room t e m p e r a t u r e , s c a n n i n g CARS can o f f e r e x c e l l e n t d e t e c t i o n s e n s i t i v i t i e s on s p e c i e s l i k e

H 2

o r CO2 R e c e n t l y , H2 d e n s i t i e s o f 10'' - 1 0 l 2 c m 3 on v i b r a t i o n a l s t a t e v

=

3 have been d e t e c t e d i n a d i s c h a r g e through 40 m T o r r H / 2 5 / . Such s e n s i t i v i t i e s , combined w i t h t h e p o s s i b i l i t y o f q u i c k s y n c h r o n i z a $ i o n o f t h e measu- rements w i t h f a s t e v e n t s , make CARS v e r y a t t r a c t i v e f o r p h o t o c h e m i s t r y e x p e r i m e n t s

;

t h e p h o t o l y s i s o f C H and 0 was s t u d i e d r e c e n t l y

/ 2 6 , 2 7 / .

Also o f c o n s i d e r a b l e i n t e r e s t i s t h e f o r k a l i e h y d e z h o t o d i s s o c i a t i o n .

As

a m a t t e r of f a c t , t h e UV p h o t o l y s i s of

H CO Aslone of-tpe

most a c t i v e l y s t u d i e d phenomena i n p h o t o c h e m i s t r y . E x c i t a t i o n o f $he A A2 - X A t r a n s i t i o n between 330 and 355 nm y i e l d s H + CO. About 65% o f t h e d i s s o c i a t i o n e n e r g y goes i n t o 1 p r o d u c t t r a n s l a t i o n /283. F u r t h e r m o r e , t h e prompt CO c a r r i e s l i t t l e v i b r a t i o n a l e n e r g y b u t h a s some r o t a t i o n a l e x c i t a t i o n w i t h J

=

26 - 6 3 / 2 9 / . I t was s p e c u l a t e d t h a t prompt H2 would a p p e a r w i t h fewer t h a n 4 q u a n t a o f v i b r a t i o n and J ( 15. CARS can b e used t o v e r i f y t h e s e a s s u m p t i o n s . Although t h e d e t e c t i o n s e n s i t i v i t y on p u r e H i s e x c e l l e n t , i t i s reduced i n t h i s i n s t a n c e b e c a u s e t h e t r a n s l a t i o n a l tempera- t u r e i s h i g h ( v i z 2

=

30 000 K) and b e c a u s e t h e p r e s e n c e o f

H

CO adds a l a r g e non r e s o n a n t CARS s u s c e p t i b i l i t y which swamps t h e weaker H2 l i n e s . I t i s t h e n n e c e s s a r y 2 t o add He a s a b u f f e r a t a p r e s s u r e s u f f i c i e n t t o c o o l t h e t r a n s l a t i o n and t h e r o t a t i o n , b u t n o t t h e v i b r a t i o n / 3 0 / .

The p h o t o l y s i s was performed u s i n g a frequency-doubled YAG-pumped dye l a s e r d e l i v e r - i n g 1 0 d n e a r 339 nmLlwith a p u l s e w i d t h o f 1 0 ns and a bandwidth a d j u s t a b l e a t e i t h e r 1 . 5 o r 0.15 cm . The CARS s p e c t r o s c o p y was performed w i t h t h e ONERA i n s t r u - ment i n t h e s c a n n i n g mode w i t h non r e s o n a n t background c a n c e l l a t i o n . The beams e m i t t e d by t h e s e two i n s t r u m e n t s were i n t r o d u c e d through s e p a r a t e windows and c r o s - s e d a t a s m a l l a n g l e i n t h e t e s t v e s s e l

; t h e l a t t e r was f i l l e d w i t h 1 . 3 mbar o f

H CO and 130 mbar of He. Two d e l a y s of 0 . 1 and l p s were t r i e d between t h e

UV

and c ~ R S p u l s e s . The U Y wfs tuned c l o s e t o t h e c e n t e r of a group o f l i n e s o f o r t h o H CO

a t 339 nm i n t h e 2 -4 band / 3 1 / . 2

Fig. 9

-

CARS spectrum of Hz formed in the H2C0 photolysis showing the absence of the para form

The n u c l e a r s p i n o r i e n t a t i o n o f t h e

H

f o m d was t h e n s t u d i e d . The H 2 s p e c t r u m of F i g . 9 was o b t a i n e d a f t e r an e s t i m a t e 3 150 J o f UV r a d i a t i o n had been a b s o r b e d by a p a r t i c u l a r f i l l of 1 3 . 3 mbar of H2C0 i n 150 mbar o f He b u f f e r . The W was tuned t o be c o i n c i d e n t w i t h t h e r~ ( 7 ) 0 a b s o r p t i o n l i n e and had t h e narrow bandwidth. From

5 1

t h e s p e s r a l i n t e n s i t y , we can c a l c u l a t e t h e H p a r t i a l p r e s s u r e and a r r i v e a t

28.7 10 mbar. Only t h e o r t h o form i s d e t e c t e i , which confirms c o n s e r v a t i o n of HH

n u c l e a r s p i n o r i e n t a t i o n d u r i n g t h e d i s s o c i a t i o n . F o r t h e s e e x p e r i m e n t a l c o n d i t i o n s ,

(10)

- 3

we e s t i m a t e o u r d e t e c t i o n s e n s i t i v i t y t o b e o f t h e o r d e r o f 0.44 1 0 mbar f o r p a r a H 2

;

we deduce t h a t l e s s t h a n 4% o f n a t u r a l abundance was g e n e r a t e d r t h a t s p e c i e s . Knowing t h e c e l l volume ( 2 6 l ) , we a l s o c a l c u l a t e t h a t 2.10 F9 o r t h o H 2 m o l e c u l e s were c r e a t e d and t h a t t h e d i s s o c i a t i o n y i e l d i s a b o u t 10%.

The

H

v i b r a t i o n a l d i s t r i b u t i o n , N(v), was s u b s e q u e n t l y s t u d i e d by m o n i t o r i n g t h e Q(1) Z i p e i n t e n s i t i e s u n d e r t h e nominal c o n d i t i o n s d e s c r i b e d above and w i t h t h e

1 . 5 cm bandwidth. V i b r a t i o n a l s t a t e s v = 1 t o 4 were measured. Because o f a n a m b i g u i t y a s s o c i a t e d w i t h t h e f a c t t h a t CARS measures t h e a b s o l u t e v a l u e o f t h e p o p u l a t i o n d i f f e r e n c e between v i b r a t i o n a l s t a t e s , we have two p o s s i b i l i t i e s f o r N ( 1 ) . The l a r g e r i s t h e most p r o b a h l e one. Note t h a t t h e a m b i g u i t y c o u l d be

l i f t e d by n o t c a n c e l l i n g t h e background t o t a l l y and d e d u c i n g t h e s i g n of t h e popu- l a t i o n d i f f e r e n c e from t h e l i n e asymmetry. The r e s u l t s a r e p r e s e n t e d i n F i g . 1 0 f o r t h e two d e l a y s o f 0 . 1 and 1p

S .

The a c c u r a c y o f t h e measurements i s o f t h e o r d e r of

+ 30%. The r e s u l t s show t h a t t h e p r e f e r r e d d i s t r i b u t i o n i s p e a k e d o n t h e l o w e r v ' s .

- The liq5 a s s g c i a t e d w i t h v

=

4 c o u l d n o t b e d e t e c t e d , h e n c e a n u p p e r l i m i t o f 0 . 8 ~ 1 0 cm can b e e s t i m a t e d f o r t h e p o p u l a t i o n . The p o p u l a t i o n s a p p e a r t o b e

s l i g h t l y h i g h e r w i t h t h e l o n g e r d e l a y . T h i s r e s u l t i s n o t t r u l y s i g n i f i c a n t g i v e n o u r measurement a c c u r a c y , b u t c o u l d a l s o b e e x p l a i n e d i n p a r t by t h e s l o w e r r e - l a x a t i o n o f h i g h J s t a t e s

;

t h i s e f f e c t would b e more pronounced f o r low v ' s , where h i z h e r r o t a t i o n a l e n e r g i e s a r e e x p e c t e d .

3 0 ~ ~ ~ v ~ ~ ~ ~ w c m " l

Fig. 10

-

Number density of vibrationalstates of H2C0 from 0/1/ line intensifies assuming Boltzmann equilibrium at 300 K for translation and rotation. :O. Ips delay; X : lys delay. Results in circles obtained if NIII

<

N12I.

Th7ge e - q e r i m e n t s were c o n d u c t e d w i t h a d e t e c t i o n s e n s i t i v i t y i n t h e r a n g e o f 1 0 cm d e p e n d i n g on o r t h o o r p a r a n a t u r e , on v i b r a t i o n a l quantum number v ( i t improves a s l / ( v + l ) ) and on dye l a s e r e f f i c i e n c y . The s p a t i a l r e s o l u t i o n was 8 cm.

S l i g h t l y b e t t e r d e t e c t i o n s e n s i t i v i t i e s would h a v e b e e n d e m o n s t r a t e d i f background s u p p r e s s i o n h a d n o t b e e n n e c e s s a r y .

With t h e i n t r o d u c t i o n o f b e t t e r componepp, mqre p o w e r f u l l a s e r s and photon c o u n t i n g , one c a n e x p e c t t h a t a d e t e c t i v i t y o f 10 cm w i l l b e o b t a i n e d on H a t room

t e m p e r a t u r e o r t h a t t h e d e t e c t i v i t y w i l l b e m a i n t a i n e d w h i l e t h e s p a $ i a l r e s o l u t i o n i s improved t o a b o u t 1 mm.

To t r y and make p r o g r e s s beyond t h e s e f i g u r e s would be e x t r e m e l y c o s t l y w i t h conven- t i o n a l CARS. However t h e u s e o f r e s o n a n c e enhanced CARS may a l l o w some f u r t h e r g a i n s . R e c e n t l y , r e s o n a n c e CARS was u s e d t o d e t e c t C2 i n a d i s c h a r g e and i n a flame 1321.

Resonance-enhanced CARS i n C 2

The C r a d i c a l h a s a v e r y b r j g h t e m i s 3 i o n s p e c t r u m i n t h e v i s i b l e r a n g e which i s known a s t h e Swan s y s tem 2

I d

V g a U U ] and which c a n b e u s e d f o r resonance- enhanced CARS s t u d i e s . Resonant CARS l i n e s of C2 produced by U.V. p h o t o l y s i s o f b e n z e n e h a v e a l r e a d y b e e n o b s e r v e d by N i b l e r e t a 1 1 3 3 1 b u t c o u l d n o t b e a s s i g n e d unambiguously. We have completed a CARS s t u d y of C u n d e r w e l l c o n t r o l l e d c o n d i t i o n s and f u l l y i n t e r p r e t e d t h e s p e c t r u m . Two d i f f e r e n t s o u r c e s of C were used f o r t h a t

2

s t u d y

:

a s t a b l e microwave d i s c h a r g e i n a f l o w i n g m i x t u r e of 33 a c e t y l e n e i n helium

( P t o t L 4 0 mb), and a n o x y a c e t y l e n e f l a m e .

The r e s o n a n t CARS s p e c t r o m e t e r i s composed o f two t u n a b l e flash-pumped dye l a s e r s

1171. The " l a s e r " and "Stokes" beams a r e f o c u s e d i n t o t h e d i s c h a r g e o r i n t h e i n n e r

cone o f t h e flame. The a n t i - S t o k e s s i g n a l i s f i l t e r e d by a monochromator and de-

t e c t e d by a p h o t o m u l t i p l i e r . The l a s e r f r e q u e n c y y was t u n e d i n t o t h e s p e c t r a l

(11)

C7-296

JOURNAL DE PHYSIQUE

range which was expected t o g i v e n e a r l y t r i p l e resonance enhancement of t h e CARS s i g n a l

1321.

The s e a r c h f o r t h a t t r i p l e resonance c o n d i t i o n i s done by u s i n g p r e c i s e s p e c t r o s c o p i c c o n s t a n t s . These d a t a were not a v a i l a b l e from e a r l i e r work and an i n t e r f e r o m e t r i c s t u d y of t h e Swan emission spectrum h a s been c a r r i e d o u t i n col- l a b o r a t i o n with P . Luc and C. Amiot a t CNRS.

ResonantCARS s p e c t r a of C2 a r e p r e s e n t e d i n Figs 11 ( d i s c h a r g e ) and 12 ( f l a m e ) . I n t h e s e experiments, t h e f r e uency -P w l was k e p t c l o s e t o t h e ~ ~ ( 0 - 0 ) 1 9 l i n e of t h e green band a t 19494.18 cm . The Stokes frequency

W

was tuned through t h e (0-1) band.

t

'"l

1

Fig.

1 7 -

Resonance CARS spectrum of

C2

in a microwave discharge with computer simulation.

The positions of the various single resonances are marked in the theorical plot with bars of unequal length to distinguish the J 18,

19

and 20contributions.

Fig. 72 -

C2

spectrum in the flame. The collisional width (half width at half maximum) is taken as 0.25 cm- ' for all lines in the simulation

The s p e c t r a l p r o p e r t i e s of t h e CARS s u s c e p t i b i l i t y t e n s o r a r e r e f l e c t e d i n t h e s e s p e c t r a . Because of t h e high v i b r a t i o n a l temperature, t h e s u s c e p t i b i l i t y i s mainly c o n t r i b u t e d by 4 terms, one of which i s p r o p o r t i o n a l t o t h e v

=

0 l e v e l p o p u l a t i o n of t e a 3 n u s t a t e , t h e o t h e r t h r e e e ng p r o p o r t i o n a l t o t h e v

=

1 l e v e l p o p u l a t i o n

c 09

(p ,, i n r e f . / 7 / ) .

' h 0

of t h e s e terms a r e Dopp J e r - f r e e

;

two of them c o n t a l n t h e v i b r a t i o n frequency of t h e molecule i n t h e d l l g s t a t e .

Thgas t r o n g e s t f e a t u r e i n Fig. n ' a 11 i s a laser-enhanced Raman resonance of t h e type [Q. ( 1 - O), Rna

( 0

- O), Pi ( 1 - 0 ) ] J c o n t r i b u t e d by t h e J

=

18, 19, 20 l e v e l s .

~ h 6 t r i p l e t s p l i t t i n g i s not r e s o l v e d ( w b a = 1611.74

;

1611.72 and 1611.70 r e s p e c t -

i v e l y ) . The weaker li e a t t h e l e f t i s due t o thg c o n t r i b u t i o n s of %pnresonances

w h i p a r e labelAp2 [ Z a ( 1 - 0 ) . R';' ( 0 - 01, P" a ( l - 0 ) I18 and [ol ( l - 01,

P; ( l - l ) , p1 ( l - 0 )

120

i n o u r n o t a t i o n . 20th major and minor c o n t r i b u t i o n s

a r e taken i n t o account i n t h e c a l c u l a t i o n as d e p i c t e d by t h e s h o r t b a r s on t h e

(12)

t h e o r e t i c a l p l o t s . F i n a l l y t h e s m a l l ~ h o u l d e r on t h e l e f t of t h g , z a i n l i n e i s of double e l e c t r o n i c resonance n a t u r e [q2a ( 1 - 01, ( 0 - O), P2 ( 1 - 0)119.

S e v e r a l s p e c t r a were ob.tained i n t h e flame a t v a r i o u s h e i g h t s above the b u r n e r out- l e t f o r

W, =

19494.08 cm-'. The l i n e i n t e n s i t y i s about 10 times lower than i n t h e discharge b e c use the l i n e w i d t h s a r e much l a r g e r a t atmospheric p r e s s u r e

(

1 ~ 0 . 2 1 cmdf. On t h e o t h e r hand, t h e C2 formation was known t o b e confined t o t h e i n n e r cone of t h e flame. S i n c e t h e cone 1s i e s s than 1 mm i n diameter, t h e a c t i v e volume of t h e flame i s much s h o r t e r than i n "the d i s c h a r g e . These reasons e x p l a i n

t h e lower i n t e n s i t y of t h e flame p r o f i l e . The computer f i t given f a r a temperature of about 2500 K i s considered as s a t i s f a c t o r y .

I t was p o s s i b l e t o c a l c u l a t e a rough e s t i m a t e of t h e C d e n s i t y

; t h i s c a l c u l a t i o n

i s based on our p a s t r e s u l t s on I 2 o b t a i n e d under s i m i 3 a r p r e s s u r e c o n d i t i o n s /17/.

A c a l i b r a t i o n was p o s s i b l e because t h e number d e n s i t y i n i o d i n e was p r e c i s e l y known.

The comparison i s p o s s i b l e because t h e s p e c t r o s c o p i c c o n s t a n t s and t r a n s i t i o n moments of

I2

and C 134-371 a r e known and t h e r o v i b r a t i o n a l l e v e l populations probed i n t h two experiments a r e accounte

2

f o r . We thus a r r i v e a t a number d e n s i t y of a b o u t 5 10' cm-3 i n t h e d i s c h a r g and 1 0 f l cm-3 i n t h e flame. The d e t e c t i o n s e n s i - t i v i t y a t low p r e s s u r e i s about 10' cme3 given our n o i s e l e v e l and experimental c o n d i t i o n s . However, t h e e x c e p t i o n a l g a i n o b t a i n e d i n C2 i s mainly due t o the l a r g e t r a n s i t i o n moment of t h e Swan system. Unfortunatly t h e s i t u a t i o n i s n o t s o f a v o r a b l e f o r o t h e r r a d i c a l s such as OH and NO, f o r which lower d e t e c t i o n l i m i t s a r e expected from the kmwn s p e c t r o s c o p i c d a t a .

I V - CONCLUSION

CARS i s t h e most popular, and one of t h e b e s t of t h e modern n o n i n t r u s i v e d i a g n o s t i c s t o o l s f o r r e a c t i v e media. I t s f i e l d i s extremely v a s t , thanks t o s e v e r a l o u t s t a n d i n g p r o p e r t i e s

: s p a t i a l r e s o l u t i o n , a c q u i s i t i o n time, immunity t o s t r a y l i g h t and t o

i o n i z a t i o n . I t i s r e l a t i v e l y simple t o use

; a l l s p e c i e s o f - i n t e r e s t a r e covered by

tuning the U 2 l a s e r over a l i m i t e d s p e c t r a l range (4000 cm

) ;

f i n a l l y , one was a b l e t o develop a commercial u n i t . The d e t e c t i o n s e n s i t i v i t y remains i t s weak p o i n t . I n mixtures, i t i s not b e t t e r than 1% i n t h e m u l t i p l e x mode i n flames. I n some c a s e s , scanning can be used g i v i n g a f a c t o r of 10 improvement

;

f o r s e v e r a l l g e c i e s ':6i4nd-S02 , pure and a t room temperature), d e t e c t i v i t i e s i n t h e range of 10 -

cm can be o r have been demonstrated. S i m i l a r d e t e c t i v i t i e s a r e p o s s i b l e with o t h e r s p e c i e s a t lower temperatures ( e . g . i n beams).

Resonant CARS i s a v a r i a n t which takes advantage of e l e c t r o n i c resonance enhancement of t h e s u s c e p t i b i l i t y . I t h a s a p o t e n t i a l f o r 2 o r 3 o r d e r s of magnitude improvement a t a g r e a t c o s t i n experimental complexity and i n d a t a processing, g i v i n g s e n s i - t i v i t y comparable t o t h o s e of f l u o r e s c e n c e s c a t t e r i n g .

-

However, t h e use of CARS i s r e s t r i c t e d t o t h e molecular s p e c i e s , although a few atoms (Na, 0, F f o r &S-tance)can be

cr

have been s t u d i e d . Monoatomic s p e c i e s a r e n o t e a s i l y handled by CARS because of t h e extreme wavelength coverage needed f o r t h e two l a s e r s .

For atomic s p e c i e s , t to galvanic. Spectroscopy appears s u p e r i o r as f a r as d e t e c t i o n s e n s i t i v i t y i s concerned.

But t h a t technique i s n o t q u i t e as s u c c e s s f u l with molecules. The d e t e c t i o n i s l i m i t e d t o a s i n g l e channel which makes

it

d e l i c a t e t o t a c k l e t u r b u l e n t flames.

F i n a l l y , t h e e l e c t r i c f i e l d a p p l i e d may have a s i g n i f i c a n t i n f l u e n c e upon t h e

chemistry.

(13)

JOURNAL DE

PHYSIQUE

REFERENCES

/ I / P r o j e c t SQUID Workshop o n " L a s e r Raman D i a g n o s t i c s " , e d . by M. Lapp a n d C.M.

Penney, Plenum, New York, London 1974.

/ 2 / " L a s e r P r o b e s f o r Combustion C h e m i s t r y " , e d . by D.R. C r o s l e y , ACS Symposium S e r i e s v o l . 1 3 4 , American Chemical S o c i e t y , W a s h i n g t o n D.C. ( 1 9 8 0 ) .

/ 3 / S e e , f o r i n s t a n c e , t h e two s e s s i o n s on f l u o r e s c e n c e s c a t t e r i n g i n r e f . 2.

/ 4 / P.R. R g g n i e r a n d J . P . T a r a n , Appl. Phys. L e t t e r s 23, 2 4 0 ( 1 9 7 3 ) . 1 5 1 P.D. Maker a n d R.W. T e r h u n e , Phys. Rev. 137, A 8 0 1 ( 1 9 6 5 ) .

/ 6 / C.P. A u s s c h i t t , G.C. B j o r k l u n d , a n d R.R. Freeman, Appl. P h y s . L e t t e r s 33, 8 5 1 (1978)

;

P.K. S c h e n c k , W.G. M a l l a r d , J.C. T r a v i s , and K.C. S m i t h , J . Chem. p h y s . 69, 5147 ( 1 9 7 8 ) .

-

/ 7 / S. D r u e t a n d J . P . T a r a n , P r o g r . Quant. E l e c t . 7, 1 ( 1 9 8 1 ) .

/8/ B. A t t a l , O.O., Schnepp, a n d J . P . E . T a r a n , O p t . Commun, 77 ( 1 9 7 8 ) . / 9 / D.F. G u t h a l s , K.P. G r o s s , a n d J.W., N i b l e r , J . Chem. P h y s . 70, 2393 ( 1 9 7 9 ) . / 1 0 / K.P., G r o s s , D.B. G u t h a l s , and J.W., N i b l e r , J . Chen. Phys. 2, 4673 ( 1 9 7 9 ) . / 1 1 / M.E., N c I l w a i n , and J . C . Hindman, J . Chem. P h y s .

z 1 6 8

( 1 9 8 0 ) .

/ 1 2 / B. A t t a l , K. P e a l a t , and J . P . E . T a r a n , J . Energy 4 , 1 3 5 ( 1 9 8 0 ) .

/ l 3 1 A. E e c h a n n ,

H.

F i e t z , P. B a i e r l , and

W .

K i e f e r , Chem. P h y s . L e t t . 8 6 , 4 0 ( 1 9 8 2 ) . 1 1 4 1 ~ . ~ t r a l , D.D6barre, K. I f t i l l e r - D e t h l e f s , and J . P . T a r a n , Revue P h y s . Appl. 18

39 ( 1 9 8 3 ) .

/ 1 5 / W.B. Roh, P.W. S c h r e i b e r , a n d J . P . T a r a n , Appl. Phys. L e t t e r s 2 9 , 1974 ( 1 9 7 6 ) . / 1 6 / L.A. Rahn, L . J . Zych, a n d P.L. M a t t e r n , O p t i c s Corn. 30, 249 ( - g 7 9 ) .

1 1 7 1 B . A t t a 1 , M. P d a l a t , a n d J . P . T a r a n , J . Energy 6 , 135 (1980).

1181 A.C. E c k b r e t h a n d R . J . H a l l , Cornbust. S c i e n c e a n d Techn. 2, 175 ( 1 9 8 1 ) .

/ 1 9 / R. Bbdu6, P. G a s t e b o i s , R. B a i l l y ,

M.

P e a l a t and J . P . T a r a n , "CARS Measurements i n a S i m u l a t e d Turbomachine Combus t o r " , ( t o be p u b l i s h e d ) .

1 2 0 1 A.C. E c k b r e t h , Appl. P h y s . L e t t e r s 2, 4 2 1 ( 1 9 7 8 ) .

/ 2 1 / I . A . S t e n h o u s e , D.R. W i l l i a m s , J . B . Cole a n d M.D. Swords, Appl. O p t i c s 18,

3819 ( 1 9 7 9 ) .

/22/ D. K l i c k , K.A. Marko, and L. Rimai, Appl. O p t i c s g, 1178 ( 1 9 8 1 ) .

/ 2 3 / L.A. Rahn, S.C. J o h n s t o n , R.L. Farrow, a n d P.L. M a t t e r n , i n " T e m p e r a t u r e , i t s Measurement a n d C o n t r o l i n S c i e n c e a n d I n d u s t r y " , Vo1.5, American I n s t i t u t e o f P h y s i c s , New York ( 1 9 8 2 ) .

/ 2 4 / M. P d a l a t , J . J . M a r i e , P. Bouchardy a n d J . P . T a r a n , " O p t i c a l Access f o r CARS D i a g n o s t i c s i n P i s t o n E n g i n e s " , ( t o b e p u b l i s h e d ) .

/ 2 5 / M . P & a l a t , J . P . T a r a n , J. T a i l l e t , M. B a c a l and A.M. B r u n e t e a u , J. Appl. P h y s . , 52, 2687 ( 1 9 8 1 )

;

- M. B a c a l , M. P d a l a t and J . P . T a r a n , 1 6 t h I n t e r n a t i o n a l C o n f e r e n c e o n Phenomena i n I o n i z e d G a s e s , D \ i s s e l d o r f , 1983, ( t o b e p u b l i s h e d ) .

/ 2 6 / W.M. T o l l e s , J . W . N i b l e r , J.R.

MC

Donald a n d A.B. H a r v e y , Appl. S p e c t r o s c . 2,

2 5 3 ( 1 9 7 7 ) .

1 2 7 1 J . J . V a l e n t i n i , D.S. Moore a n d D.S. Bomse, Chem. P h y s . L e t t e r s 83, 217 ( 1 9 8 1 ) . / 2 8 / P. Ho, D. Bamford, R.J. B u s s , Y.T. Lee a n d C.B. Moore, J . Chem. P h y s . , 76,

3630 ( 1 9 8 2 ) .

/ 2 9 / P . Ho a n d A.V. S m i t h , Chem. P h y s . L e t t e r s , 90, 407 ( 1 9 8 2 ) .

/ 3 0 /

M.

P d a l a t , D. D e b a r r e , J . J . M a r i e , J . P . T a r a n , A. Tramer a n d C.B. Moore, "CARS S t u d y o f V i b r a t i o n a l l y E x c i t e d H p P r o d u c e d i n Formaldehyde D i s s o c i a t i o n "

(Chem. Phys. L e t t e r s , t o b e published) .

1 3 1 1 D.A. Ramsey, Can. J . P h y s . , 57, 1224 ( 1 9 7 9 ) .

/ 3 2 / B . A t t a 1 , D. D e b a r r e ,

K .

M t i l l e r - D e t h l e f s , a n d J . P . T a r a n , Revue P h y s . Appl. 18,

39 ( 1 9 8 3 ) .

/ 3 3 / K.P. G r o s s , D.M. G u t h a l s a n d J . W . N i b l e r , J. Chem. P h y s . , 70, 4 6 7 3 ( 1 9 7 9 ) . / 3 4 / L.L. Danylewych a n d R.W. N i c h o l l s , P r o c . R. Soc. London,, S e r .

A Z , 197 ( 1 9 7 4 ) .

1 3 5 1 C. Amiot, J . C h a u v i l l e , and J . P . N a i l l a r d , J . Ztol. S p e c t r o s c . 75 19 ( 1 9 7 9 ) . 1 3 6 1 T e l l i n g h u i s e n , J . J . , J . Chem. P h y s . 5 8 , 2 8 2 1 ( 1 9 7 3 ) .

/ 3 7 / Yee, K.K., P r i v a t e communication t o C. Bordd.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to