• Aucun résultat trouvé

HIGH RAMP RATE SUPERCONDUCTING PULSED MAGNETS

N/A
N/A
Protected

Academic year: 2021

Partager "HIGH RAMP RATE SUPERCONDUCTING PULSED MAGNETS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00223747

https://hal.archives-ouvertes.fr/jpa-00223747

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HIGH RAMP RATE SUPERCONDUCTING PULSED MAGNETS

T. Ogasawara

To cite this version:

T. Ogasawara. HIGH RAMP RATE SUPERCONDUCTING PULSED MAGNETS. Journal de

Physique Colloques, 1984, 45 (C1), pp.C1-443-C1-449. �10.1051/jphyscol:1984191�. �jpa-00223747�

(2)

HIGH RAMP RATE SUPERCONDUCTING PULSED MAGNETS

T. Ogasawara

College o f Science and Technology, Nihon U n i v e r s i t y , Kanda Surugadai, Chiyoda-ku, Tckyo 101, Japan

Resume - Le developpement de bobines poloTdales s u p r a c o ~ d u c t r i c e s e s t examine. Par l ' e t u d e des problemes techniques e t l ' a p p r e c i a t i o n du p r o - gres accompli, on e s t amen@ & c o n c l u r e q u ' u n t r e s grand e f f o r t s e r a n e c e s s a i r e pour r e a l i s e r des tokamaks de t a i l l e s a u s s i b i e n moyenne que grande.

A b s t r a c t - A s u r v e y o f s u p e r c o n d u c t i n g p o l o i d a l c o i l development f o r tokamaks i s presented. E v a l u a t i o n o f p r o g r e s s and i n v e s t i g a t i o n o f t e c h n i c a l i s s u e s l e a d t o t h e c o n c l u s i o n t h a t much e f f o r t i s needed f o r t h e r e a l i z a t i o n o f b o t h medium and l a r g e - s c a l e tokamaks.

Superconducting magnets o p e r a t e d i n t h e d.c. mode have g a i n e d w i d e acceptance i n t h e i r a p p l i c a t i o n s i n v a r i o u s f i e l d s d u r i n g t h e p a s t two decades. However, t h e R & D o f superconducting p u l s e d magnets have been r a t h e r modest e x c e p t f o r h i g h energy p h y s i c s r e s e a r c h and t h i s i s e s p e c i a l l y t r u e f o r " h i g h ramp r a t e p u l s e d magnets".

These p u l s e magnets a r e t o be used m a i n l y i n t h e tokamak machine, which i s t h e p r i m a r y concern o f t h i s paper.

The p o l o i d a l f i e l d (PF) c o i l system i n tokamaks i s r e q u i r e d t o p r o v i d e t h e f u n c t i o n s o f i n i t i a t i o n , h e a t i n g , shaping and e q u i l i b r i u m o f t h e plasma. I n l a r g e - s c a l e tokamaks such as P!ET, ETR, FER and IMTOR, one o f t h e o b j e c t i v e s i s t o demonstrate t h e f e a s i b i l i t y o f t h e tokamak as a power g e n e r a t i n g machine. I n o r d e r t o r e a l i z e t h e break even o f energy, t h e superconducting TF and PF c o i l s y s t e m s ' a r e needed. The maximum p u l s i n g r a t e o f PF c o i l s i s about 10T/s a c c o r d i n 9 t o t h e conceptual d e s i g n s t u d i e s . T h i s s i t u a t i o n i s d i f f e r e n t f o r medium s i z e d e x p e r i m e n t a l tokamaks: The i n c e n t i v e f o r u s i n g s u p e r c o n d u c t i n g PF c o i l s i s weak as l o n g as t h e plasma con- f i n e m e n t t i m e i s s h o r t . I n a l o n g p u l s e o p e r a t i o n , >30 seconds, however, t h e super- c o n d u c t i n g v e r s i o n i s u s e f u l f r o m t h e v i e w p o i n t o f e l e c t r i c power s a v i n g . R e c e n t l y r e s e a r c h programmes o f such a l o n g p u l s e tokamak a r e a t t r a c t i n g an i n c r e a s i n g i n t e r e s t i n t h e f u s i o n community. The p u l s e r a t e o f PF c o i l s i n t h e medium s i z e tokamak i s as h i g h as 100T/s and t h e t e c h n o l o g i c a l f e a s i b i l i t y has n o t been e s t a b l i s h e d y e t . I n t h e f o l l o w i n g s e c t i o n s , t h e p r e s e n t s t a t u s o f t h e development o f superconducting p u l s e d magnets a r e d e s c r i b e d and t h e n t h e c r i t i c a l elements o f t h e d e s i g n and t h e t e c h n o l o g y r e q u i r e d a r e i d e n t i f i e d .

I - PULSED MAGNETS DEVELOPED OR UNDER DEVELCPMENT

Table 1 PF c o i l s o f t h e n e x t gener- The u l t i m a t e t a r g e t o f t h e R & D i s t h e

r e a l i z a t i o n o f s u p e r c o n d u c t i n q PF c o i 1 s a t i o n tokamak (example o f FER / I / ) o f t h e n e x t g e n e r a t i o n tokamak. The c o i l s i z e 3-20m d e s i g n s t u d i e s have c l a r i f i e d t h e r e - number o f c o i 1 s 12-22 q u i r e d c h a r a c t e r i s t i c s as shown i n Table maximum c u r r e n t 30-100kA 1 / I / . T h i s t a b l e a l s o i n d i c a t e s t h e f i e l d ramp r a t e 10T/s f o l l o w i n g t e c h n o l o g i c a l problems: s t o r e d energy 5-8GJ

- development o f heavy c u r r e n t c o n d u c t o r s a.c. l o s s / s t o r e d energy < 0.2%

w i t h a c a p a c i t y up t o lOOkA number o f p u l s e s 4 x 105

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984191

(3)

(21-444 JOURNAL DE PHYSIQUE

- h i g h ramp r a t e o f t h e f i e l d

- t h e r e q u i r e m e n t o f l o w a.c. l o s s e s ; t h e l o s s t i m e c o n s t a n t must be l e s s t h a n lms

- mechanical r e q u i r e m e n t s ; f a t i g u e toughness a g a i n s t 4 x 105 c y c l i c o p e r a t i o n s Next we proceed t o t h e d e s c r i p t i o n o f t h e developmental e f f o r t s on s u p e r c o n d u c t i n g p u l s e magnets i n t h e w o r l d . T a b l e 2 l i s t s t h e summary o f t h e r e s u l t s .

USA The US development programme o f s u p e r c o n d u c t i n g p u l s e mapnets f o r f u s i o n s i v e s f r o m t h e p i o n e e r i n g work c e n t e r e d a t Los Alamos K a t i o n a l Laboratory(LGNL).

The o b j e c t i v e was t o develop h i p h l y e f f i c i e n t , p u l s e d , s u p e r c o n d u c t i n g m a y e t i c energy s t o r a g e (SblES) system f o r t h e Theta P i n c h concept. S e v e r a l p u l s e magnets were de- ,veloped. A 300kJ c o i l was c h a r ~ e d u p t o 13.4kA and d i s c h a r o e d t o z e r o i n 2.4ms a t a maximum d i s c h a r g e v o l t a g e o f 58kV/2/. A 400kJ c o i l was d i s c h a r g e d i n 1.07ms and a l s o conducted f i e l d r e v e r s a l t e s t s i n a few seconds/3/. These t y p e s o f energy s t o r a g e and t r a n s f e r systems w i l l have d e r i v a t i v e a p p l i c a t i o n s i n v a r i o u s f u s i o n machines.

A f t e r t h e c o m p l e t i o n o f t h e s e works, t h e p r o j e c t o f t h e PF c o i l system was s t a r t e d t o c o n s t r u c t and t e s t a 50kA, 20MJ c o i l t h a t would demonstrate t h e t e c h n o l o g i c a l f e a s i - b i l i t y o f a tokamak ohmic h e a t i n g coi1/4,5/. The c o i l was t o be designed and con- s t r u c t e d b y Westinghouse E l e c t r i c Corp.(W) on c o n t r a c t t o LANL. A l t h o u o h LAKL had completed t h e t e s t f a c i l i t y , t h e p r o j e c t has been postponed i n d e f i n i t e l y .

A t Argonne N a t i o n a l L a b o r a t o r y (ANL), t h e f i r s t I l J - c l a s s c o i l has been developed and e x t e n s i v e l y tested/6,7,8/. The c o i l was charped t o 4.4T i n 0.4s and d i s c h a r g e d t o zero i n 0.6s a c h i e v i n g a maximum ramp r a t e o f 11T/s. A f t e r more t h a n 4000 p u l s e t e s t s t h e c o i l has s u f f e r e d no change i n p u l s i n g c h a r a c t e r i s t i c s as w e l l as t h e c r y o s t a b i - l i t y . Another s i n n i f i c a n t p r o g r e s s a t A!!L i s t h e development o f t h e Pulsed Cable Test F a c i l i t y (PCTF)/9,10,11/. The p a r a v e t e r s o f t h e PCTF s p l i t - p a i r c o i l i s com- pared w i t h t h e 1.5b1J c o i l i n Table 3. The purpose o f t h e PCTF i s t w o f o l d : F i r s t l y , i t can be used t o t e s t developmental h i g h c u r r e n t c o n d u c t o r s under p u l s i n g f i e l d s i n a f o r m o f pancake c o i l s o r as a s h o r t sample f o r t h e s t u d i e s o f a.c. l o s s e s , s t a b i l i t y and c o o l i n g channel design. Secondly, t h e p u l s e o p e r a t i o n o f t h e PCTF c o i l i t s e l f i s a t e s t o f l l k A c a b l e and t h e c o i l s t r u c t u r e . The c o i l was c h a r o e d , t o 10.6kA i n 1.0s Table 2 Superconducting p u l s e c o i l s developed o r under development. E s - s t o r e d energy, Bm-maximum f i e l d , I o - o p e r a t i o n c u r r e n t , J o - c u r r e n t d e n s i t y , d B / d t - f i e l d ramp r a t e

I n s t i t u t e Es(F1J) Bm(T) I o ( k A ) Jo(A/cmz) d B / d t ( T / s ) c o n d u c t o r LANL/W

LAPIL/W ANL ANL, PCTF ETL, MK-3 ETL , MK-4 ETL, MK-5 JAERI, Pulser-C JAERI , Pulser-D JAERI , Pul ser-E

IPPJ, RPC-I IPPJ, RPC-I1 Osaka Univ.

Toshiba LANL/W JAERI

NbTi/Cu F!bTi/Cu/CuNi KbTi/Cu/solder MbTi/Cu/solder NbTi/Cu/CuNi NbTi/Cu/CuNi NbTi /Cu/CuNi/Al

NbTi/€u/CuNi NbTi/Cu/Cuh'i NbTi/Cu/CuNi NbTi/Cu/CuNi NbTi/Cu/CuNi NbTi/Cu/CuNi NbTi/Cu/CuKi NbTi/Cu/CuNi NbTi/Cu/CuNi Notes - i t e m dB/dt: D-discharge mode, U-charge u p mode

- i t e m Es: * - w i t h t h e backup f i e l d c o i l , Pulser-C

- 20115 c o i l s a r e i n t h e d e s i g n s t a g e

(4)

800 p u l s e s w i t h r e p e t i t i o n p e r i o d s o f 10-15 seconds, no changes o f t h e c o i l charac- t e r i s t i c s have been observed. F i g u r e 1 shows t h e PCTF c o i l i n an assembly stage.

S h o r t l y a t e s t o f a 25kA-class p u l s e d c o n d u c t o r i s scheduled t o be done. ANL i s a l s o p l a n n i n ~ s t u d i e s o f energy s t o r a g e and t r a n s f e r u s i n g t h e PCTF and t h e 1.5'iJ c o i l .

Table 3 Parameters o f two ANL c o i l s parameters

peak f i e l d a t I l k A ( T ) i n n e r d i a m e t e r (cm) o u t e r d i a m e t e r (cm) a x i a l l e n g t h (cm) number o f t u r n s c a b l e dimensions (cm) c a b l e l e n g t h (m) i n d u c t a n c e (mH) Cu/NbTi r a t i o

c o n d u c t o r volume (m3) c o i l c u r r e n t d e n s i t y (A/cm2) l a y e r t o l a y e r s p a c i n g (cm) a.c. l o s s e s a t 9T/s (kV)

1.5MJ c o i l 4.5 41.6 81 .O 58.1 258 3.78x0.74

510 24 18.6 67x10-3

2685 0.32-0.48

2.65

3.3145 c o i l 6.5 45.1 87.2 62.2 + gap

402 3.05x0.63

84 0 55

JAPAN The R & D o f tokamk PF c o i l s has been i n i t i a t e d a t t h e E l e c t r o t e c h n i c a l L a b o r a t o r y

(ETL). Two 400kJ c o i l s has been developed and t e s t e d /12,13/, c f . Table 2: MK-3 and MK-4 a r e wound from a compacted c a b l e and a b r a i d e d cable, r e s p e c t i v e l y . Since t h e o v e r a l l c u r r e n t d e n s i t i e s a r e q u i t e h i g h , t h e s e c o i l s have been o p e r a t e d a t c u r r e n t l e v e l s c o n s i d e r - a b l y l a r g e r t h a n t h e r e c o v e r y c u r r e n t . As a n e x t step, a 4MJ c o i l has r e c e n t l y been con- s t r u c t e d , Table 4/14,15/. S p e c i a l f e a t u r e t o be n o t e d i s t h a t h i g h - p u r i t y aluminum has been used as t h e s t a b i l i z e r . F i g u r e 2 shows t h e c a b l e c o n s t r u c t i o n . T h i s c a b l e can meet t h e c o n f l i c t i n g r e q u i r e m e n t s o f h i g h s t a b i l i t y and l o w a.c. l o s s e s : The observed r e c o v e r y c u r r e n t o f t h e f i n a l c a b l e was about 6kA, whereas t h e d e s i g n o p e r a t i o n c u r r e n t was 5.5kA.

The l o s s t i m e c o n s t a n t o f t h e c a b l e was measured t o be 1.4111s. The e s t i m a t e d t o t a l l o s s o f t h e c o i l f o r m 6T b i p o l a r swing i n 2

seconds i s about 0.1% o f t h e s t o r e d energy. F i g . 1 - Assembly o f t h e AEL PCTF The d e t a i l s a r e t o be r e p o r t e d i n t h i s

c o n f e r e n c e / l 5 / . The ETL i s now c o n s t r u c t i n g a n o t h e r 3MJ c o i l as a matching c o i l t o t h e 4b2J c o i l f o r t h e s t u d i e s o f t h e c o i l performance and energy s t o r a g e / t r a n s f e r between t h e two c o i l s .

The Japan Atomic Energy Research I n s t i t u t e (JAERI) i s r e s p o n s i b l e f o r t h e c o n s t r u c -

t i o n o f t h e FER, t h e n e x t tokamak a f t e r JT-60. F o r FER p o l o i d a l c o i l s , JAEKI i s

d e v e l o p i n g h i g h - c u r r e n t p u l s e d c o n d u c t o r s and p u l s e d c o i l s f o r t e s t i n g t h e c o n d u c t o r s

/16-19/. Table 5 shows t h e o v e r a l l p l a n f o r t h e development o f a 20MJ p u l s e c o i l .

Two 10kA c o n d u c t o r s , JA-10 and JB-10, were s e l e c t e d as an i n t e r m e d i a t e s t e p t o 50kA

conductors, JA-50 and 36-50. The c o n s t r u c t i o n s o f JA-10 and 38-10 a r e v e r y s i m i l a r

t o t h o s e o f JA-50 and 36-50, r e s p e c t i v e l y , c f . F i g s . 3 and 4 . M a j o r d i f f e r e n c e i s

t h e d e s i g n p r i n c i p l e f o r g e t t i n g h i g h s t a b i l i t y . I n JA-10, an e f f i c i e n t c o o l i n g i s

(5)

(21-446 JOURNAL DE PHYSIQUE

Table 4 Parameters o f ETL 4MJ c o i l

number o f double pancakes 12

maximum f i e l d a t 5.53kA ( T ) 6.4 i n n e r d i a m e t e r (cm) 50.0 o u t e r d i a m e t e r (cm) 95.8

a x i a l l e n g t h (cm) 63.0

number o f t u r n s 792

c a b l e dimensions (cm) 2.0x0.54

c a b l e l e n g t h (m) 1810

i n d u c t a n c e (mH) 260

o p e r a t i o n c u r r e n t (kA) 5.53 c o i l c u r r e n t d e n s i t y (A/cm2) 3040

c o i l w e i g h t ( k g ) 1800

Table 5 JAERI development work f o r PF c o i l s Conductor

Development

Large Current

Large Energy

(10150. 2 5 T l s ) (8~011 torus. 100T/sJ

( a ) JA-50

( p o o l - c o o l e d , 50kA, 7T)

( b ) JB-50

( p o o l - c o o l e d , 50kA, 7T)

( c ) JF-30 ( f o r c e d -

c o o l ed ,

30kA, 7T)

F i g . 3 - Cross s e c t i o n s o f 30 - 50kA p u l s e d conductors developed by JAERI, c f . F i g . 4

Cu NbTi

-

CuNi- Clad Strand

99.999 %

A l --

1st Sub-cable

Kapton ,

( 5 0 ~ )

CuNt - 2nd Sub-cable

SUS 304

i

E

E

Final Cable

D LD

f

F i ? . 2 - Cable c o n s t r u c t i o n o f A l - s t a b i 1 i z e d c o n d u c t o r f o r t h e ETL 4MJ c o i l

- - -

3 5 Subcables

7.5

,567 strands

Strand

Filament

F i g . 4 - C o n s t r u c t i o n o f JAERI 30-50kA

p u l s e d c o n d u c t o r s

(6)

c o i l s , Pulser-D and Pulser-E were wound f r o m JA-10 and JB-10, r e s p e c t i v e l y , and t e s t - ed i n a background p u l s e d c o i l c a l l e d Pulser-C, c f . Table 2. The c o m b i n a t i o n o f Pulser-C & D generated 6.7T f i e l d and s a f e l y d i s c h a r g e d a t a r a t e o f 13T/s. The c o m b i n a t i o n Pulser-C & E was t e s t e d under t h e c o n d i t i o n o f 5.8T and 16T/s. F u r t h e r p r o g r e s s a t JAERI i s t h e development o f h i g h c u r r e n t c o n d u c t o r s . I n Table 5, JA-50 and 58-50 a r e two 50kA, p o o l - c o o l e d c o n d u c t o r s and JF-30 i s a 30kA, f o r c e d c o o l e d c a b l e - i n - c o n d u i t conductor, F i g s . 3 and 4. Each c o n d u c t o r has i t s u n i q u e f e a t u r e : h i g h s t a b i l i t y b y e f f i c i e n t c o o l i n g (JA-501, h i o h s t a b i l i t y b y r e c h a n i c a l r i g i d i t y (JB-50), and h i g h v o l t a g e i n s u l a t i o n and s t r u c t u r a l s t r e n g t h ( J F - 3 0 ) . The f a b r i c a - b i l i t y o f t h e s e c o n d u c t o r s was proven b y s h o r t samples.

The R e a c t i n g Plasma P r o j e c t o f t h e I n s t i t u t e o f Plasma P h y s i c s ( I P P ) , Nagoya U n i v e r - s i t y , i s d e v e l o p i n g a medium s i z e , D-T b u r n i n g tokamak/20/. Design s t u d i e s have c l a r i f i e d t h e need f o r p o l o i d a l c o i l s w i t h a maximum p u l s i n g r a t e o f about 100T/s.

I f t o t a l l y s u p e r c o n d u c t i n g o p t i o n o f t h i s tokamak i s chosen, one o f t h e k e y t e c h - n o l o g i e s t o be developed i s t h e superconducting PF c o i l s . Based on t h e p r o o f o f t h e s c i e n t i f i c f e a s i b i l i t y / 2 1 / , t h e j o i n t team o f IPP, Nihon U n i v e r s i t y , M i t s u b i s h i E l e c t r i c Corp. and ETL has been engaged i n t h e R & D o f p u l s e m g n e t s / 2 2 - 2 5 / . I n t h e d e s i g n p r i n c i p l e o f a c a b l e d c o n d u c t o r , an emphasis was g i v e n on l o w a.c. l o s s e s and t h e r e f o r e a t h i n b a s i c s t r a n d w i t h mixed m a t r i x was chosen. The c a b l e c o n s t r u c t i o n i s shown i n F i g . 5. The f i n a l c a b l e ( 2 . 3 3 ~ 1 ~ x 0.41cm) has a c u r r e n t c a r r y i n g c a p a c i - t y o f lOkA a t 6T and t h e l o s s t i m e c o n s t a n t o f 0.3ms. Two model c o i l s , RPC-I and RPC-11, were wound f r o m t h e above c o n d u c t o r , c f . Table 2 . The p u l s i n g t e s t o f t h e s e c o i l s were performed by a condenser d i s c h a r g e method w i t h a clamp c i r c u i t . I n t h e RPC-I, t h e p u l s e r a t e o f 150T/s was o b t a i n e d i n t h e charge-up p e r i o d b y a p p l y i n g a t e r m i n a l v o l t a g e o f 7.0kV. The a.c. l o s s was about 0.5% o f t h e energy s t o r e d i n t h e c o i l . A t a h i g h e r v o l t a g e a breakdown o f i n s u l a t i o n o c c u r r e d and t h e second c o i l , RPC-11, has been c o n s t r u c t e d w i t h r e i n f o r c e d i n s u l a t i o n . The t e s t r e s u l t s a r e g i v e n i n F i g . 6 and Table 2. l,lore d e t a i l s a r e p r e s e n t e d i n t h i s conference/25/.

EUROPE The development programme on t h e PF c o i l system f o r b o t h medium s i z e and -scale tbkamaks w i l l be s t a r t e d by t h e end o f 1983/26/. The o u t l i n e o f t h e

programme has been j o i n t l y prepared by KfK/Fermany and CEA/France. The f i r s t and medium t e r m t a r g e t i s t o b u i l d an e q u i l i b r i u m r i n p c o i l f o r Tore Supra/27/ o r Asdex- upgrade. T h i s c o i l w i l l b e t e s t e d under t h e o p e r a t i n g c o n d i t i o n o f tokamaks by r e - p l a c i n g one o f normal c o n d u c t i n g c o i l s . Developmental e f f o r t s t o approach t h i s t a r g e t are;-Development o f Tow l o s s FlbTi c o n d u c t o r w i t h l o s s t i m e c o n s t a n t s between O.lms and lms f o r p u l s i n g r a t e s up t o 200T/s. - S t u d i e s on optimum c o o l i n g modes.

-Mechanical d e s i g n s t u d i e s and t e s t i n g of n o n - m e t a l l i c m a t e r i a l s . -Developnlent and F i n a l

Cable

ton-coated

2nd L e v e l CuNi - c l a d

copper

I .

F i g . 5 - Cable c o n s t r u c t i o n o f F i g . 6 - Load l i n e o f RPC c o i l s and

c o n d u c t o r f o r RPC-I and RPC-I1 t h e c h a r a c t e r i s t i c c u r r e n t s , see t e x t

(7)

C l - 4 4 8 JOURNAL DE PHYSIQUE

t e s t o f h i g h v o l t a g e i n s u l a t i o n systems. V e r i f i c a t i o n o f t h e s e s t u d i e s w i l l be made by t h e c o n s t r u c t i o n and t e s t o f a model c o i l w i t h s e v e r a l MJ s t o r e d energy. The u l t i m a t e g o a l o f t h e programme i s t h e development o f magnets and c r y o g e n i c t e c h n o l o g y r e q u i r e d f o r t h e PF c o i l system f o r t h e INTOR s i z e tokamak.

I 1 - SUI'WIARY AND CRITICAL ISSUES

I n Table 2, p u l s e d magnets t e s t e d o r under c o n s i d e r a t i o n a r e l i s t e d . The l a r g e s t c o i l c o n s t r u c t e d so f a r i s 3-4 MJ and 20 MJ c o i l i s i n a d e s i g n stage. A b i g gap between t h e s e c o i l s and t h e INTOR-class c o i l may n o t be as i m p o r t a n t as i t appears, s i n c e t h e PF c o i l system o f l a r g e tokamaks w i l l be assembled w i t h s e v e r a l u n i t s . More s e r i o u s s i t u a t i o n t o be n o t e d i s t h a t t h e p r e s e n t developmental e f f o r t s seem t o be p r o g r e s s i n g a l o n g a narrow r o u t e and l a c k f l e x i b i l i t y . For example, a l l t h e c o i l s t e s t e d a r e p o o l - c o o l e d w i t h a s i n g l e e x c e p t i o n o f t h e development o f a f o r c e d - c o o l e d conductor a t JAERI.

A g r e a t d e a l o f p r o g r e s s has been made on s u p e r c o n d u c t i n g magnets f o r plasma c o n f i n e - ment. Examples o f t h e r u n n i n g a c t i v i t i e s a r e Tore Supra /27/, T-15 /28/, Large C o i l Task(LCT) /29/, M i r r o r F u s i o n T e s t F a c i l i ty(MFTF-B) /30/. These p r o j e c t s t o g e t h e r w i t h programmes on t h e s u p e r c o n d u c t i v e magnetic energy s t o r a g e (SMES) /31/ w i 11 p r o - v i d e u s e f u l i n f o r m a t i o n f o r t h e R & D o f t h e PF c o i l system, b u t much remains t o be done. The t e c h n i c a l i s s u e s p e c u l i a r t o t h e PF c o i l system are:

( 1 ) Heavy C u r r e n t Conductor Design A t r a d e o f f between a.c. l o s s e s and c r y o g e n i c s t a b ' i l i t y r e q u i r e s t h e use o f m u l t i s t a g e c a b l e s c o n s i s t e d o f many t h i n b a s i c s t r a n d s . A l t h o u g h s t a i n l e s s s t e e l r e i n f o r c e m e n t i s envisaged f o r mechanical reasons, t h e con- d u c t o r i s n o t r i g i d enough. When wound i n t o a c o i l , i t i s d i f f i c u l t t o keep t h e mechanical r i g i d i t y o f t h e w i n d i n g . A c o i l s t r u c t u r e which can s u p p o r t t h e e l e c t r o - magnetic f o r c e s i n b o t h t h e a x i a l and t h e r a d i a l d i r e c t i o n must be developed /32/.

An i m p o r t a n t a l t e r n a t i v e may be t h e c a b l e - i n - c o n d u i t concept. B u t a t p r e s e n t we have no e x p e r i e n c e o f a p p l y i n g t h i s t y p e o f c o n d u c t o r t o t h e p u l s e magnet. T h i s concept w i l l a l s o be u s e f u l f o r v e r y l a r g e , t h i n c i r c u l a r c o i l s l i k e v e r t i c a l f i e l d c o i l s .

( 2 ) H i g h V o l t a g e Performance Maximum i n d u c t i v e v o l t a g e s i n most superconducting magnets have been ,limited t o l e s s t h a n about IkV. I f a b i p o l a r swing o f a 50kA-100 MJ c o i l i s conducted i n 1 second, t h e i n d u c t i v e v o l t a g e amounts t o 8kV. The same problem w i l l o c c u r i n t h e PF c o i l system o f medium s i z e tokamak. I n t h e model magnet RPC-I, we have e x p e r i e n c e d breakdown o f i n s u l a t i o n a t 7.6kV. The use o f a f o r c e d - c o o l e d c o n d u c t o r w i t h s t r o n g e l e c t r i c a l i n s u l a t i o n may be one d e s i g n o p t i o n . When t h e s i z e o f t h e p u l s e magnet becomes l a r g e , t h e u n c e r t a i n t i e s i n h i g h v o l t a g e p e r - formance a r e s e r i o u s .

( 3 ) Mechanical F a t i g u e As mentioned i n s e c t i o n I, t h e number o f p u l s e c y c l e s i s around 5 x 105 f o r t h e n e x t g e n e r a t i o n tokamak. T h i s imposes t h e most s e r i o u s problem 1331. The y i e l d s t r e n g t h o f 304LN s t a i n l e s s s t e e l i s 800MPa, w h i l e t h e SUS c o r e o f t h e ohmic h e a t i n g c o i l c o n d u c t o r w i l l s u f f e r a maxinum s t r e s s o f 300-400MPa.

T h e r e f o r e 304LN s t a i n l e s s s t e e l cannot w i t h s t a n d t h e c y c l i c o p e r a t i o n s o f 5 x 105.

Furthermore t h e f a t i g u e d a t a do n o t e x i s t f o r t h e c o n d u c t o r which i s a c o m p l i c a t e d composite o f superconductor, m a t r i x m a t e r i a l , s o l d e r and s t a i n l e s s s t e e l .

( 4 ) Power Su p l I n a t o t a l l y s u p e r c o n d u c t i n g tokamak, t h e power s u p p l y o f t h e PF c d s a problem w h i c h r e g i r e s f u r t h e r examination; a c o n v e n t i o n a l gener- a t o r , o r s u p e r c o n d u c t i n g o p t i o n s l i k e superconducting homopolar g e n e r a t o r / super- c o n d u c t i v e magnetic energy s t o r a g e /34/.

( 5 ) Promotion o f t h e C o i l Development F o r l a r g e s c a l e tokamaks, t h e 20MJ c o i l p r o j e c t w i l l be a good s t e p t o i n t e g r a t e t h e above t e c h n i c a l i s s u e s . I n o r d e r t o r e a l i z e a l o n g p u l s e tokamak o f a medium s i z e , p u l s e c o i l s w i t h s e v e r a l MJ s t o r e d energy must be c o n s t r u c t e d and e x t e n s i v e l y t e s t e d a t p u l s i n g r a t e s o f 100-200T/s.

ACKNOWLEDGEMENTS

The a u t h o r expresses h i s a p p r e c i a t i o n t o H. K r a u t h (KfK), P. Komarek ( K f K ) , B. Turck

(CEN-Saclay), N.A. Chernoplekov (Kurchatov I n s t i t u t e ) , J.D. Rogers (LANL), S.H. Kim

(8)

a r e g r a t e f u l l y acknowledged.

REFERENCES

1. Shimamoto, S. e t a l , "Superconducting Magnet Desipn f o r t h e r!ext Tokamak and t h e S t a t u s o f t h e Research and Development", 3 r d Tech. Comvittee and Workshop on F u s i o n Reactor Design and Technology (Tokyo, October 1981)

2. Rogers, J.C. e t a1 , Advances i n Cryogenic E n g i n e e r i n g 23 (1978) 48

3. Keldon, D. e t a1 , Los Alamos N a t i o n a l L a b o r a t o r y ~ e p o r c LA-8829-MS, Play 1981 4. Singh, S.K. e t a l , Proc. o f 9 t h Syqposiurn on E n p i n e e r i n g Problems o f F u s i o n

Research(0ctober 1981) p. 644

5. Rogers, J.D., Proc. o f t h e U.S.-Japan Workshop on Superconductive Magnetic Energy Storage (October 1981) p. 526

6. Wang, S.T. e t a l , Proc. of 6 t h I n t . Conf. on Magnet Technology (August 1977) p.47 7. Kim, S.H. e t a l , IEEE Trans. on Magnetics, MAC-15 (1979) 840

8. Kim, S.H. e t a l , Advances i n Cryogenic E n g i n e e r i n g 25 (1980) 90

9. Kim, S.H. e t a l , Proc. of 9 t h Symposium on E n g i n e e r i n g Problems o f Fusion Research (Octoher 1981) p. 2016

10. Kim, S.H., Proc. o f ICEC-9 (May 1982) p.442

11. Kim, S.H. e t a l , IEEE Trans. on Magnetics, MAG-19 (1983) 346 12. O n i s h i , T. e t a l , IEEE Trans. on Magnetics, MAG-17 (1981) 1958

13. O n i s h i , T. e t a l , Proc. o f t h e U.S.-Japan Workshop on Superconductive Magnetic Energy S t o r a g e (October 1981) p.455

14. O n i s h i , T. e t a l , Proc. of ICEC-9 (May 1982) p.446 15. T a t e i s h i , H. e t a l , paper no. 5N1-03 i n t h e s e proceedings

16. T s u j i , H. e t a l , Proc. o f 9 t h Symposium on E n g i n e e r i n g Problems o f F u s i o n Research (October 1981 ) p.2035

17. Shimamoto, S, e t a l , Proc. of ICEC-9 (May 1982) p. 450

18. Takahashi, Y. e t a1, IEEE Trans. on Magnetics, MAG-19 (1983) 386

19. Shimamoto, S. e t a l , Proc. of ANS 5 t h T o p i c a l Meeting on Technology o f Fusion Energy ( A p r i l 1983) i n press

20. R - P r o j e c t Design Team, IPP, Nagoya U n i v e r s i t y , I n t e r i m R e p o r t on t h e F i r s t Phase Design o f R-Toksmak, October 1980

21. Ogasawara, T. e t a l , Proc. of 9 t h Symposium on E n g i n e e r i n g Problems o f F u s i o n Research (October 1981) p.627

22. Ogasawara, T. e t a l , Proc. of ICEC-9 (May 1982) p.339 23. Mornota, H. e t a1 , Proc. of ICEC-9 (May 1982) p. 454

24. Satow, T. e t a l , IEEE Trans. on Magnetics, MAG-19 (1983) 1406 25. Ogasawara, T. e t a l , paper no. 5N1-04 i n these proceedings 26. K r a u t h , !!. , p r i v a t e communication

27. Aymar, R. e t a1 , Tore Supra, B a s i c Design Tokamak System, EUR-CEA-FC-1068, October 1980

28. Chernoplekov, N.A., IEEE Trans. on Magnetics, MAG-17 (1981) 2158 29. Yasukochi , K., IEEE Trans. on Magnetics, MAG-17 (1981) 1720 30. Wang, S.T., Proc. o f ICEC-9 (May 1982) p.424

31. Boenig, H.J. e t a1 , paper no. 4N2-02 i n these proceedings

32. Wang, S.T. and Kim, S.H., Proc. o f t h e I n t e r n a t i o n a l Symposium on Superconductive Energy Storage (October 1979) p.90

33. Komarek, P., Proc. o f t h e U.S.-Japan Workshop on Superconductive Magnetic Energy Storage (October 1981) p. 560

34. S h i n t o m i ,T and Masuda, M., Proc. o f t h e U.S.-Japan Workshop on superconductive

M a g n e t i c Energy Storage (October 1981) p. 442

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to