• Aucun résultat trouvé

Scaling-sharp dispersive estimates for the Korteweg-de Vries group

N/A
N/A
Protected

Academic year: 2021

Partager "Scaling-sharp dispersive estimates for the Korteweg-de Vries group"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-00273050

https://hal.archives-ouvertes.fr/hal-00273050

Submitted on 14 Apr 2008

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Scaling-sharp dispersive estimates for the Korteweg-de

Vries group

Raphaël Côte, Luis Vega

To cite this version:

Raphaël Côte, Luis Vega. Scaling-sharp dispersive estimates for the Korteweg-de Vries group. Comptes Rendus Mathématique, Elsevier Masson, 2008, 346, pp.845-848. �10.1016/j.crma.2008.05.003�. �hal-00273050�

(2)

hal-00273050, version 1 - 14 Apr 2008

Scaling-sharp dispersive estimates for the Korteweg-de Vries

group

Rapha¨el Cˆote Luis Vega

Abstract

We prove weighted estimates on the linear KdV group, which are scaling sharp. This kind of estimates are in the spirit of that used to prove small data scattering for the generalized KdV equations.

The purpose of this short note is to give a simple proof of two dispersive estimates which are heavily used in the proof of small data scattering for the generalized Korteweg-de Vries equations [2].

The proof of these estimates can be easily extended to other dispersive equations. Denote U (t) the linear Korteweg-de Vries group, i.e v = U (t)φ is the solution to  vt+ vxxx= 0, v(t = 0) = φ, i.e. U (t)φ = e\ itξ3 ˆ φ or (U (t)φ)(x) = 1 t1/3 Z Ai x − y t1/3  φ(y)dy, where Ai is the Airy function

Ai(z) = 1 π Z ∞ 0 cos ξ 3 3 + ξz  dξ. Theorem 1. Let φ, ψ ∈ L2, such that xφ, xψ ∈ L2. Then

kU(t)φk2L∞ ≤ 2k Ai k2L∞t−2/3kφkL2kxφk L2, (1) kU(t)φU(−t)ψxkL∞ ≤ Ct−1(kφkL2kxψk L2 + kψk L2kxφk L2). (2)

Furthermore, the constant 2k Ai k2L∞ in the first estimate is optimal.

Remark 1. These estimates are often used with φ replaced by U (−t)φ : denoting J(t) = U (t)xU (−t), they take the form

kφk2L∞ ≤ Ct−2/3kφkL2kJ(t)φk L2, (3) kφψxkL∞ ≤ Ct−1(kφkL2kJ(t)ψk L2 + kψk L2kJ(t)φk L2). (4)

Proof. Due to a scaling argument (and representation in term of the Airy function), we are reduced to show that

kU(1)φkL∞ ≤ CkφkL2kxφk

L2,

and similarly for the second inequality. Hence we consider (U (1)φ)(x) =

Z

(3)

and we recall that the Airy function satisfies | Ai(x)| ≤ C(1 + |x|)−1/4 and | Ai′(x)| ≤ C(1 + |x|)1/4. Then

|U(1)φ|2(x) = Z Z

Ai(x − y)φ(y) Ai(x − z) ¯φ(z)y − z y − zdydz =

Z

Ai(x − y)yφ(y)Z Ai(x − z) y − z φ(z)dz¯ | {z } Hz7→y(Ai(x−z)φ(z))(y) dy − Z Ai(x − z)z ¯φ(z)Z Ai(x − y) y − z φ(y)dy | {z } −Hy7→z(Ai(x−y)φ(y))(z) dz = 2ℜ Z

Ai(x − y)yφ(y)Hz7→y(Ai(x − z)φ(z))(y)dy,

where H denotes the Hilbert transform (and with the slight abuse of notation 1x for

vp 1x). As H : L2→ L2 is isometric and hence continuous (with norm 1), and Ai ∈ L∞, we get

|U(1)φ|2(x) ≤ 2k Ai(x − y)yφ(y)kL2(dy)kH(Ai(x − ·)φ)(y)kL2(dy) (5)

≤ 2k Ai k2L∞kyφkL2kφkL2. (6)

This is the first inequality. Let us now prove that the constant is sharp. First consider the minimizers in the following Cauchy-Schwarz inequality :

Z yψ(y)H(ψ)(y)dy ≤ kyψ(y)kL2(dy)kψkL2. (7) There is equality if yψ(y) = λH(ψ)(y) for some λ ∈C. Then a Fourier Transform shows

that ∂ξψ(ξ) = λ sgn ξ ˆˆ ψ(ξ), hence ˆψ(ξ) = C exp(−λ|x|), or equivalenty, one has equality

in (7) as soon as

ψ(y) = C

1 + (y/λ)2 for some λ, C ∈R. (8)

(Notice that all the functions involved lie in L2)

We now go back to (6). Let x0 ∈ R where | Ai | reaches its maximum. Now as

Ai(x0) 6= 0, let ε > 0 such that for all y ∈ [−ε, ε], | Ai(x0 − y)| ≥ | Ai(x0)|/2, and

consider the sequence of functions φn(x) = √ n 1 + (ny)2 1 |y|≤ε Ai(x0− y) . Denote ψn(y) = 1|y|≤nε

1+y2 . As Ai(x0− y)φn(ny) =

nψn(ny),

|U(1)φn|2(x0) = 2

Z

y√nψn(ny)Hz→y(√nψn(nz))(y)dy =

2 n

Z

yψn(ny)H(ψn)(ny)dy.

One easily sees that ψn(y) → 1+|y|1 2 in L2 and yψn(y) →

y

1+|y|2 in L2, and hence, in view

of (8), as H is homogeneous of degree 0 and L2 isometric, we have |U(1)φn|2(x0) ∼ 2 n Z y 1 + |y|2H( 1 1 + | · |2)(y)dy ∼ 2 nk y 1 + |y|2kL2k 1 1 + |y|2kL2

∼ 2ky√nψn(ny)kL2k√nψn(ny)k

L2

∼ 2ky Ai(x0− y)φn(y)kL2k Ai(x0− y)φn(y)k

(4)

As φn concentrates at point 0, we deduce

|U(1)φn|2(x0) ∼ 2| Ai(x0)|2kyφn(y)kL2kφn(y)kL2 as n → ∞, (9)

which proves that the sharp constant in the first inequality is 2k Ai k2 L∞.

For the second inequality (estimate of the derivative), we have as for the first in-equality : (U (1)φU (1) ¯ψx)(x) = Z Z Ai(x − y)φ(y) Ai′(x − z) ¯ψ(z)y − z y − zdydz = Z Ai′(x − y)yφ(y)Z Ai(x − z)φ(z) y − z dz  dy − Z z Ai′(x − y)φ(y)Z Ai(x − z)z ¯ψ(z) z − y dz  dy = Z

Ai′(x − y)yφ(y)Hz7→y(Ai(x − z)φ(z))(y)dy

+ Z

Ai′(x − y)φ(y)Hz→y(Ai(x − z)z ¯ψ(z))(y)dy.

Denote ωx(y) = √ 1

1+|x−y| : ω −1

x ∈ A2 (with the notation of [4]), so that there exists C

not depending on x such that ∀v,

Z

|Hv|2ω−1x ≤ C Z

|v|2ω−1x . Recall the well-know asymptotic | Ai′(x)| ≤ C(1 + |x|1/4). Then

Z Ai′(x − y)yφ(y)H(Ai(x − ·) ¯ψ)(y)dy ≤ Z | Ai′(x − y)yφ(y)|2ωxdy 1/2Z

|H(Ai(x − ·) ¯ψ)(y)|2ωx−1(y)dy 1/2

≤ Ckyφ(x)kL2

Z

| Ai(x − y) ¯ψ(y)|2ωy−1(y)dy 1/2

≤ CkyφkL2kψk

L2.

In the same way,

Z

Ai′(x − y)φ(y)Hz→y(Ai(x − z)z ¯φ(z))(y)dy

≤ Z | Ai′(x − y)φ(y)|2ωx(y) 1/2Z

|Hz→y(Ai(x − z)zψ(z))(y)|2ωx−1(y)dy

1/2

≤ CkφkL2

Z

| Ai(x − y)yψ(y)|2ω−1x (y)dy 1/2 ≤ CkφkL2kyψkL2. So that : kU(1)φU(1) ¯ψxkL∞ ≤ 2C(kφkL2kxψk L2 + kψk L2kxφk L2).

(5)

Remark 2. This proof (especially (5)) is reminiscent of that in [3] (see also [1]) kφk2L∞ ≤ kφkL2kφ′k

L2,

where the constant is sharp and minimizers are Ce−λ|x|. This has application to the

Schr¨odinger group U(t) (i.e \U(t)φ = eitξ2

ˆ

φ). We have the following Schr¨odinger version of estimate (3) (notice that U(t)xU(−t) = ei|x|

2 4t it 2∂xe− i|x|2 4t ) : kψk2L∞ = ke i|x|2 4t ψk2 L∞ ≤ kei |x|2 4t ψk L2kei |x|2 4t ∂xei |x|2 4t ψk L2 ≤ 2 tkψkL2kU(t)xU(−t)ψkL2. From Theorem 1, we can easily obtain the optimal decay in a scaling sharp Besov like space. Let ϕ ∈ D(R) be non-negative with support in ]−2, 2[ and such that ϕ equals

1 in a neighbourhood of [−1.5, 1.5]. Denote ψ(x) = ϕ(2x) − ϕ(x) and ψj(x) = ψ(x/2j).

Finally introduce kφkNt = ∞ X j=−∞ 2j/2jU (−t)φkL2. Corollary 1. We have : kφkL∞ ≤ Ct−1/3kφkN t.

Proof. Notice that |xψj(x)| ≤ 2j+1ψj(x). As φ =PjU (t)ψjU (−t)φ, we have :

kφkL∞ ≤ X j kU(t)ψjU (−t)φkL∞ ≤ Ct−1/3X j kU(t)ψjU (−t)φk1/2L2 kU(t)xU(−t)U(t)ψjU (−t)φk 1/2 L2 ≤ Ct−1/3X j kU(t)ψjU (−t)φk1/2L2 kxψjU (−t)φk 1/2 L2 ≤ Ct−1/3X j kU(t)ψjU (−t)φk1/2L2 2j/2kU(t)ψjU (−t)φk 1/2 L2 ≤ Ct−1/3kφkNt.

References

[1] J. Duoandikoetxea, L. Vega, Some weighted Gagliardo-Nirenberg inequalities and applications, Proc. Amer. Math. Soc. 135 (2007) 2795–2802 (electronic).

[2] N. Hayashi, P. I. Naumkin, Large time asymptotics of solutions to the generalized Korteweg-De Vries equation, J. Funct. Anal. 159 (1998) 110–136.

[3] E. H. Lieb, M. Loss, Analysis, American Mathematical Society, Providence, RI, 2001.

[4] E. M. Stein, Singular integrals and differentiability properties of functions, Prince-ton University Press, PrincePrince-ton, N.J., 1970.

(6)

Rapha¨el Cˆote

Centre de Math´ematiques Laurent Schwartz, ´Ecole polytechnique 91128 Palaiseau Cedex, France

cote@math.polytechnique.fr Luis Vega

Departamento de Matem´aticas, Universidad del Pa´ıs Vasco Aptdo. 644, 48080 Bilbao, Espa˜na

Références

Documents relatifs

The purpose of this short note is to give a simple proof of two dispersive estimates which are heavily used in the proof of small data scattering for the generalized Korteweg- de

[4] Nakao Hayashi and Naumkin Pavel I., Large time asymptotic of solutions to the generalized Korteweg-De Vries equation, Journal of Functional Analysis 159 (1998), 110–136.. [5]

The goal of this note is to construct a class of traveling solitary wave solutions for the compound Burgers-Korteweg-de Vries equation by means of a hyperbolic ansatz.. Equation (1)

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Keywords: Controllability; Fifth-order Korteweg–de Vries equation; Initial-boundary value

We use sample path large deviations in this article in order to obtain lower bounds of the asymptotic as n goes to infinity and ǫ goes to zero of probabil- ities P (τ n,ǫ ≤ T ) where

Starting from the symmetric Boussinesq systems derived in [Chazel, Influence of Bot- tom Topography on Long Water Waves, 2007], we recover the uncoupled Korteweg-de Vries

Obviously, we shrank considerably the critical space by taking smooth perturbations of self- similar solutions, but the above result still shows some kind of stability of