• Aucun résultat trouvé

ISOSCALAR CHARACTER OF THE 5,845 MeV 1+ STATE IN 208 Pb

N/A
N/A
Protected

Academic year: 2021

Partager "ISOSCALAR CHARACTER OF THE 5,845 MeV 1+ STATE IN 208 Pb"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00224100

https://hal.archives-ouvertes.fr/jpa-00224100

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ISOSCALAR CHARACTER OF THE 5,845 MeV 1+

STATE IN 208 Pb

M. Fujiwara, Y. Fujita, I. Katayama, S. Morinobu, T. Yamazaki, H. Ikegami, S. Hayakawa

To cite this version:

M. Fujiwara, Y. Fujita, I. Katayama, S. Morinobu, T. Yamazaki, et al.. ISOSCALAR CHARACTER OF THE 5,845 MeV 1+ STATE IN 208 Pb. Journal de Physique Colloques, 1984, 45 (C4), pp.C4- 453-C4-457. �10.1051/jphyscol:1984434�. �jpa-00224100�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, supplkment au n03, Tome 45, mars 1984 page C4-453

2 0 8

ISOSCALAR CHARACTER O F T H E 5 , 8 4 5 MeV '1 STATE IN Pb

M. Fujiwara, Y . F u j i t a , I. Katayama, S . Morinobu, T. Yamazaki, H. Ikegami and S . I . ~ a ~ a k a w a *

Research Center for Nuclear Physics, Osaka University, Osaka 567, Japan

*Ashikaga I n s t i t u t e o f Technology, Ashikaga 326, Japan

R~sume Un B t a t I+ de f o r t e i n t e n s l t e e t ayant une grande cornposante ~ ( h ~ ~ / ~ h ~ / ~ ) -1 a Q t 6 observe a 5,845 MeV dans l e "pb p a r l e s r 6 a c t l o n s ' p b ( p , p t ) e t

' ~ i ( d , 3 ~ e ) . Des c a l c u l s DWBA microscoplques d e s s e c t i o n s ef f i c a c e s ( p , p ' ) mon- t r e n t que c e t d t a t 1' e s t s u r t o u t de na-ture I s o s c a l a i r e . C e t t e conclusion e s t compatible avec l e grand f a c t e u r spectroscopique d e d u i t de l a r e a c t i o n (8, 3 ~ e ) .

A b s t r a c t A s t r o n g 1+ s t a t e which h a s a l a r g e component of t h e ~ ~ ( h ~ ~ / ~ h ~ / ~ ) -1 con- f i g u r a t i o n was found a t 5.845 MeV i n 2O8Pb f r m t h e r e a c t i o n s 2 0 8 ~ b ( p , p 8 ) and

2 0 9 ~ i ( d , 3 ~ e ) . Microscoic DWBA c a l c u l a t i o n s of ( p , p 8 ) c r o s s s e c t i o n s show t h a t t h e 1+ s t a t e h a s a predominant i s o s c a l a r n a t u r e . T h i s conclusion is c o n s i s t e n t with t h e l a r g e s p e c t r o s c o p i c f a c t o r deduced from t h e (d,3He) experiment.

The missing 1+ ( M l ) s t r e n g t h i n 208Pb has been a big p u z z l e f o r a long time.

T h e o r e t i c a l l y numerous c a l c u l a t i o n s have been r e p o r t e d about t h e e x c i t a t i o n e n e r g i e s and t h e p r o p e r t i e s of t h e 1+ s t a t e s l ) . Experimentally s e v e r a l s t a t e s i n 2 0 8 ~ b have been proposed t o be t h e 1+ s t a t e s i n t h e p a s t . However many of t h e s e proposed 1+ s t a t e s were shown t o have e i t h e r n e g a t i v e p a r i t i e s o r d i f f e r e n t s p i n s by l a t e r experiments2). This i n t e r e s t i n g h i s t o r y t o f i n d t h e 1+ s t a t e s i n 2 0 8 ~ b can be seen i n a review a r t i c l e by ~ a m a n 3 ) . By 1980, i t was believed t h a t t h e r e was only a group of fragmented 1+ s t a t e s a t t h e e x c i t a t i o n energy of around 7.5 M ~ v ~ ) , which t o g e t h e r has about o n e - f i f t h of t h e shell-model l i m i t of s t r e n g t h . I n a simple shell-model, two 1+ s t a t e s w i t h l a r g e B ( M ~ ) + v a l u e s , which a r e made of n(h11/2h9/2) -1 and v(i1;+2~11,2) c o n f i g u r a t i o n s , a r e expected a t n e a r l y t h e same e x c i t a t i o n energy of around 6 MeV. Due t o t h e e f f e c t of t h e r e p u l s i v e

r e s i d u a l i n t e r a c t i o n 5 ) , t h e each s t a t e s p l i t s i n t o t h e s t a t e s with a s m a l l M 1 s t r e n g t h ( i s o s c a l a r c h a r a c t e r ) and with a l a r g e M 1 s t r e n g t h ( i s o v e c t o r c h a r a c t e r ) , r e s p e c t i v e l y . I n more e l a b o r a t e shell-model c a l c u l a t i o n s r e p o r t e d by vergadosl) t h e i s o s c a l a r and i s o v e c t o r 1+ s t a t e s were p r e d i c t e d t o be a t 5.45 and 7.52 MeV, r e s p e c t i v e l y . Thus we may expect some 1+ s t r e n g t h i n t h e r e g i o n of t h e e x c i t a t i o n energy lower t h a n 7 MeV, even i f t h e r e a r e s i g n i f i c a n t quenching and/or fragmenta- t i o n of t h e M 1 s t r e n g t h i n 2 0 8 ~ b .

We have performed a c a r e f u l s e a r c h f o r 1+ s t a t e s a t t h e e x c i t a t i o n energy between 4 and 7 MeV by t h e r e a c t i o n s 2 0 8 ~ b ( ~ , ~ ' ) 2 0 8 ~ b and 2 0 9 ~ i (dI3He)208pb. I n t h e c a s e of t h e 2 0 9 ~ i ( d , 3 ~ e ) 2 0 8 ~ b r e a c t i o n , we can e x p e c t some proton p a r t i c l e - h o l e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984434

(3)

C4-454 JOURNAL DE PHYSIQUE

s t a t e s with a p a r t i c l e i n t h e lhg/2 o r b i t and a h o l e i n t h e 3 ~ 1 1 2 , 2d3/2, Ih11/21 o r 2d5/2 o r b i t s . Thus our scheme f o r f i n d i n g 1+ s t a t e s was f i r s t t o l o c a t e t h e s t a t e s with n(h11/2h9/2) -1 component by picking up t h e p r o t o n s i n t h e l h l l / 2 o r b i t , and t h e n t o a s s i g n t h e s p i n s from t h e shapes of proton angular d i s t r i b u t i o n s of t h e

( p , p l ) r e a c t i o n l e a d i n g t o t h e s t a t e s .

A s a s u c c e s s f u l r e s u l t of t h e s t u d y i n t h i s scheme, we r e c e n t l y found t h a t t h e 5.845 MeV s t a t e i n 2 0 8 ~ b i s a 1+ s t a t e which h a s a l a r g e n(h1;>2h9/2) cornponent6).

The experimental s e t u p and d a t a a n a l y s i s method have been given elsewhere6). This 1+ s t a t e a t 5.845 MeV has a l s o been found by means of (y ,y ' ) 7 ) , ( e , e 1 ) 8 ) , ( d , d l ) 9, and o t h e r ( p , p 1 ) 9 ) experiments. A high r e s o l u t i o n spectrum of t h e 208pb(p,p') r e a c t i o n a t 65 MeV is shown i n f i g . 1, which c l e a r l y shows t h e presence of t h e Ex = 5.845 MeV l e v e l .

0 -

CHANNEL NUMBER

Fiy.1. I n e l a s t i c proton s p e c t r u m of t h e 2 0 8 ~ i p , p ' ) r e a c t i o n a t O1,h-lo0.

The t r a n s i t i o n s t r e n g t h of t h e 5.845 MeV 1+ s t a t e o b t a i n e d from t h e ( y , y l ) experiment7) is ~ ( l 4 1 ) +=1.6?0.5 u;. and t h i s value and t h e energy l o c a t i o n a r e q u i t e c o s i s t e n t with t h e i n t e r p r e t a t i o n of t h e i s o s c a l a r 1+ s t a t e which has been p r e d i c t e d i n a simple TDA c a l c u l a t i o n s by v e r g a d o s l ) , and a l s o p r e d i c t e d i n a RPA c a l c u l a t i o n by Wambach e t a l . 1 )

However t h e ( e r e 1 ) experiment8) c l a i m s t h a t t h e measured ( e , e l ) form f a c t o r f o r t h e e x c i t a t i o n of t h i s 5.845 MeV s t a t e is c o n s i s t e n t with an i s o s c a l a r chara- c t e r but an " i s o v e c t o r i n t e r p r e t a t i o n " can n o t be d e f i n i t e l y excluded. I t was suggested t h a t t h e r e would be two p o s s i b l e c h o i c e s f o r t h e amplitudes of t h e simple two-state model wave f u n c t i o n of t h e following form,

\2088pb. 11,5.845 M e V > = a l n h 11/2 h 9/2 > + f3\vi13/2ill,2>, -1

where i n t h e e l e c t r o n s c a t t e r i n g , t h e v a l u e s of n=O.81 and f3=0.59 have been determined f o r t h e i s o s c a l a r c o n f i g u r a t i o n and t h o s e of n=0.16 a n d 8=-0.17 f o r t h e i s o v e c t o r one. The s i m p l i f i c a t i o n of t h e i s o s c a l a r 1+ wave f u n c t i o n by t h e two-state model is supported by t h e c a l c u l a t i o n of ~ e r ~ a d o s l ) , i n which t h e lowest

(4)

1+ s t a t e a t 5.45 MeV e x c i t a t i o n h a s extremely s m a l l admixtures of t h e o t h e r p a r t i c l e - h o l e s t a t e s . I t should be noted t h a t 2p-2h components a r e neglected i n t h e i s o v e c t o r 1+ wave f u n c t i o n i n t h e above e x p r e s s i o n because t h e 2p-2h s t a t e s can n o t be d i r e c t l y e x c i t e d v i a ( e , e t ) and ( p , p 8 ) r e a c t i o n s .

I n o r d e r t o examine t h e type of t h e wave f u n c t i o n of t h e 5.845 MeV 1+ s t a t e i n 2 0 8 ~ b , we c a r r i e d o u t t h e microscopic DWBA c a l c u l a t i o n s f o r t h e 65 MeV ( p , p t ) c r o s s s e c t i o n s . We used e x a c t l y t h e same wave f u n c t i o n s a s obtained by t h e ( e , e l ) experiment. The microscopic DWBA c a l c u l a t i o n s have been performed using t h e com- p u t e r code ~ ~ ~ ~ 7 4 1 0 ) which i n c l u d e s knock-out exchange amplitudes e x a c t l y . We used t h e M3Y i n t e r a c t i o n l l ) a s an e f f e c t i v e two-body i n t e r a c t i o n between t h e i n c i d e n t proton and a nucleon moving i n t h e n u c l e a r medium. S i n g l e - p a r t i c l e wave f u n c t i o n s were c a l c u l a t e d i n a Woods-Saxon w e l l of r a d i u s R = 1.25 ~ 1 / 3 f m , d i f f u s e n e s s a

= 0.6, and a s p i n - o r b i t f o r c e of 6 MeV. The 1hll/2 and lh9/2 p r o t o n s and l i l 3 / 2 and l i l l / 2 neutrons were assumed t o be bound by 9.37, 3.77, 8.9 and 3.0 MeV, r e s - p e c t i v e l y . The optical-model parameters f o r t h e i n c i d e n t and outgoing p r o t o n s were t h o s e d e r i v e d by Sakaguchi e t a l l 2 ) .

F i g . 2 . C o m p a r i s o n o f t h e m e a s u r e d i n e l a s t i c a n g u l a r d i s t r i b u t i o n f o r the 5.845 MeV li

s t a t e i n '08pb w i t h t h e t h e o r e t i c a l c a l c u l a t i o n s . T h e s o l i d and d o t t e d c u r v e s s h o w t h e D W B a

c a l c u l a t i o n s w i t h t h e a s s u m p t i o n o f t h e i s o s c a l a r and i s o v e c t o r c o n f i g u r a t i o n s , r e s p e c t i v e l y . No r e n o r m a l i z a t i o n h a s b e e n made f o r t h e t h e o r e t i c a l c u r v e s .

The o b t a i n e d r e s u l t s a r e shown i n f i g . 2. A s can be seen i n t h e f i g u r e , t h e c a l c u l a t i o n with t h e assumption of t h e i s o s c a l a r c o n f i g u r a t i o n (a=0.81, B=0.59) g i v e s a f a i r l y good agreement with t h e experimental d a t a , b u t t h e c a l c u l a t i o n with t h e i s o v e c t o r assumption g i v e s a poor agreement, e s p e c i a l l y a t forward a n g l e s . Thus from t h e DWBA a n a l y s e s of t h e ( p , p l ) r e a c t i o n a t 65 MeV, it is suggested t h a t t h e i s o v e c t o r i n t e r p r e t a t i o n f o r t h e 5.845 MeV 1+ s t a t e i n 2 0 8 ~ b is excluded. A s i m i l a r c o n c l u s i o n t h a t t h e 5.845 MeV 1+ s t a t e h a s a predominant i s o s c a l a r n a t u r e h a s been a l s o given by ~ G l i c h group from t h e ( p , p t ) and ( d , d t ) experiments a t 45 M ~ v ~ ) ,

I t is very i n t e r e s t i n g t o n o t e t h a t t h e experimental s p e c t r o s c o p i c f a c t o r of t h e n (h11/2h9/2) proton component f o r t h e 5.845 MeV 1+ s t a t e o b t a i n e d from t h e -1 2 0 9 ~ i ( d , 3 ~ e ) 2 0 8 ~ b r e a c t i o n i s l a r g e r than 0.756), i . e . a so.87. This value of t h e s p e c t r o s c o p i c f a c t o r is q u i t e r e a s o n a b l e with t h e i s o s c a l a r i n t e r p r e t a t i o n f o r t h e

(5)

C4-456 J O U R N A L D E PHYSIQUE

5.845 MeV s t a t e . However t h e l a r g e proton component l e a d s t o t h e magnetic t r a n s i - t i o n s t r e n g t h , B ( M ~ ) 4 4 . 6 u$, i f one uses t h e b a r e M 1 o p e r a t o r . The r e s u l t e d l a r g e B(M1) v a l u e , t h u s , seems t o be i n c o n s i s t e n t with t h e experimental value of

%1.6 &.

Recently, Toki, Bertsch and ~ h a l 3 ) p o i n t e d o u t t h a t t h e discrepancy between t h e experimental B(M1) value and t h e value deduced from t h e s p e c t r o s c o p i c f a c t o r i n t h e (d,%e) pickup measurement may be removed i f one renormalize t h e s p i n moments i n t h e M 1 o p e r a t o r by a f a c t o r of c. This seems t o be i n agreement with t h e f a c t t h a t t h e observed magnetic and Gamow-Teller t r a n s i t i o n s a r e quenched by a f a c t o r of 2 - 3 compared w i t h simple shell-model calculation^^^! However, i n order t o g e t more d e f i n i t e conclusion about t h e quenching phenomenon of t h e 5.845 MeV 1+ s t a t e i n 2 0 8 ~ b , one should remember t h e f a c t t h a t we deduced t h e s p e c t r o s c o p i c f a c t o r under t h e assumption t h a t t h e l h l l / 2 proton o r b i t of t h e ground s t a t e i n 208pb was com- p l e t e l y occupied. T h i s assumption was necessary because o f t h e well-known ambiguity o f t h e a b s o l u t e v a l u e o f t h e DWBA c r o s s s e c t i o n s f o r ( d , 3 ~ e ) r e a c t i o n s ; f o r example, a 1% change o f t h e r a d i u s o f t h e l h l l l 2 proton o r b i t causes more than 20% change o f t h e calculated c r o s s s e c t i o n s .

Thus, t h e s p e c t r o s c o p i c f a c t o r f o r t h e 1' s t a t e from t h e ( d , 3 ~ e ) experiment should be c o r r e c t e d by t a k i n g i n t o account t h e occupation p r o b a b i l i t y of t h e l h l l / 2 o r b i t i n 208pb. which seems t o be i n t h e range above 0.86 i n t h e t h e o r e t i c a l c a l c u l a t i o n l 5 ) . I f we renormalize t h e s p e c t r o s c o p i c f a c t o r by a f a c t o r of 0.86 a s a lower l i m i t , we o b t a i n t h e v a l u e o f cr=d0.75x0.86 = 0.80. T h i s cr v a l u e l e a d s t o B ( M l ) +=1.8 u i i n c o n s i s t e n t w i t h t h e experimental observation.

Another p o i n t of c o n t e n t i o n r e g a r d i n g t h e M 1 s t r e n g t h i n 208pb i s t h e i s o - v e c t o r 1' s t a t e which is expected t o be s t r o n g l y e x c i t e d v i a both ( e , e r ) and ( p e p B ) experiments. In t h e p r e s e n t ( p , p ' ) experiment a t 65 MeV, t h e shape of t h e angular d i s t r i b u t i o n is expected t o show almost i d e n t i c a l phases f o r both t h e i s o v e c t o r 1'

Fig. 3. Comparison o f t h e measured i n e l a s t i c angular d i s t r i b u t i o n s f o r the 7.27-, 7.29-, 7.30-, 7.32-, 7.46-, and 7.49 MeV s t a t e s i n ' 0 8 p b w i t h t h e o r e t i c a l DWBA c a l c u l a t i o n s . The s o l i d curves a r e t h e micro- s c o p i c DWBA c a l c u l a t i o n s w i t h t h e assumption o f t h e i s o v e c t o r 1+ c o n f i g u r a t i o n . The dotted curves are t h e DWBA c a l c u l a t i o n s w i t h a c o l l e c t i v e 2' form f a c t o r . A l l t h e curves a r e renormalized a t forward angles.

(6)

t r a n s i t i o n and t h e L=2 c o l l e c t i v e t r a n s i t i o n i n t h e f o r w a r d a n g u l a r r e g i o n o f

l o 0 % 3 0 " ( s e e f i g . 3 ) . Due t o t h i s d i f f i c u l t y , we c o u l d n o t d i s t i n g u i s h 1+ s t a t e s from 2+ s t a t e s by means o f t h e e x p e r i m e n t a l c r o s s s e c t i o n s . However, a s shown i n f i g . 3 , s e v e r a l c a n d i d a t e s o f t h e s t a t e s w i t h J~ = 1' o r 2' have been o b s e r v e d i n t h e e n e r g y r e g i o n o f %7.5 MeV where t h e i s o v e c t o r 1 s t a t e + is e x p e c t e d t o e x i s t . I n o r d e r t o s e a r c h f o r t h e i s o v e c t o r I+ s t a t e s i n 2 0 8 ~ b , i t is most d e s i r a b l e t o p e r f o r m t h e h i g h e n e r g y and h i g h r e s o l u t i o n ( p , p l ) e x p e r i m e n t s o n 208pb a t f o r w a r d a n g l e s .

R e f e r e n c e s

T.T.S. Kuo, Nucl. Phys. A112 (1968) 325;

J.D. Vergados, PhyS. L e t t . 36B (1971) 12;

T.S.H. Lee and S. P i t t e l , Phys. Rev. (1975) 607;

J.S. Dehasa, J. S p e t h and A. F a e s s l e r , Phys. Rev. L e t t . 2 (1977) 208;

P. Ring and J. S p e t h , Phys. L e t t . 44B (1973) 477;

M.R. A n a s t a s i o and G.E. Brown, Nucl. Phys. A285 (1977) 516;

J. Wambach, A.D. J a c k s o n and J. S p e t h , Nucl. Phys. A348 (1980) 221;

R.A. B r o g l i a and A. M o l i n a r i , Nucl. Phys. A109 (1968) 353;

A. Bohr and B. M o t t l s o n , Nuclear S t r u c t u r e (Benjamin, Reading, Mass., 1975) v o l . 11.

J. S p e t h , E. Werner and W. Wild, Phys. Rep. 33 (1977) 127;

G.E. Brown, J.S. Dehesa and J. S p e t h , Nucl. Phys. A330 (1979) 240.

For e x a m p l e s , R.M. Del Vecchio, S.J. Freedman, G.T. Garvey and M.A. Oothoudt, Phys. Rev. C 2 (1976) 2089;

A.M. Nathan, R. S t a r r , R.M. Laszewski and P. Axel, Phys. Rev. L e t t . 42 (1979) 221.

S. Raman, Neutron C a p t u r e Gamma-Ray S p e c t r o s c o p y , (Prenum 1979) p. 193.

R.J. H o l t e t a l . , Phys. Rev. C 20 (1979) 93.

G.F. B e r t s c h , Nucl. Phys. A354 (1981) 157c.

S.I. Hayakawa, M. F u j i w a r a , S. I m a n i s h i , Y . F u j i t a , I. Katayama, S. Morinobu, T. Yamazaki, T. I t a h a s h i and H. Ikegami, Phys. Rev. L e t t . 49 (1982) 1624.

K. Wienhard, K. Ackerman, K . B a n g e r t , U.E.P. B e r g , C. ~ l z s i n g , W. N a a t z , A. R u c k e l s h a u s e n , D. ~ k k , R.K.M. S c h n i e d e r and R. S t o c k , Phys. Rev. L e t t . 49

(1982) 18.

S. ~ G l l e r e t a l . , Phys. L e t t . (1983) 305.

G.P.A. B e r g , W. ~ G r l i m a n n , I. Katayama, S.A. M a r t i n , J. M e i s s b u r g e r ,

J.G.M. ~ g m e r , B. S t y c z e n and J.L. T a i n , i n t h e 1 9 8 3 I n t e r n a t i o n a l S y m p s i u m o n L i g h t I o n R e a c t i o n Mechanism, Osaka, J a p a n , May 16-20, 1983, t o be p u b l i s h e d . J. Raynal and R. S c h a e f f e r , u n p u b l i s h e d .

G. B e r t s c h , J. Borysowicz, H. McManus and W.G. Love, Nucl. Phys. A284 (1977) 399: W.G. Love, i n t h e ( p , n ) r e a c t i o n and t h e nucleon-nucleon f o r c e , e d i t e d by C.D. Goodman e t a l . (Plenum, New York, 1980) p.23.

H. Sakaguchi e t a l . , Phys. Rev. C 26 (1982) 944.

H. T o k i , G.F. B e r t s c h and D. Cha, MSUCL-402 p r e p r i n t . C. G a a r d e , Nucl. Phys. A396 (1983) 1 4 4 ~ .

R.W. Woods e t a l . , Phys. L e t t . 9 (1982) 320;

P. Ring a n d E. Werner, Nucl. Phys. (1973) 198.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to