• Aucun résultat trouvé

From discrete microscopic models to macroscopic models and applications to traffic flow

N/A
N/A
Protected

Academic year: 2021

Partager "From discrete microscopic models to macroscopic models and applications to traffic flow"

Copied!
42
0
0

Texte intégral

(1)

HAL Id: hal-01025232

https://hal.inria.fr/hal-01025232

Submitted on 17 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

From discrete microscopic models to macroscopic models and applications to traffic flow

Nicolas Forcadel, Wilfredo Salazar

To cite this version:

Nicolas Forcadel, Wilfredo Salazar. From discrete microscopic models to macroscopic models and

applications to traffic flow. NETCO 2014, 2014, Tours, France. �hal-01025232�

(2)

and applications to traffic flow.

Nicolas Forcadel

Laboratoire de Math´ ematique de L’INSA de Rouen Joint work with W. Salazar

Conference on ”New Trends in Optimal Control”

23-27 June 2014, Tours

(3)

1 Motivations

2 Homogenization of traffic flows models

(4)

Plan

1 Motivations

2 Homogenization of traffic flows models

(5)

Bando model

Second order discrete model with n 0 ∈ N types of vehicles :

U ¨ j (t) = a j

V j

U j+1 (t) − U j (t) − l j+1 + l j

2

− U ˙ j (t)

. (1)

U j : position of the vehicle j.

a j : sensibility of the driver j (a j + n

0

= a j ).

V j : Optimal velocity function (OVF) of the driver j (V j+n

0

= V j ).

(6)

Passing from micro to macro

Goal : Describe the traffic in term of density of vehicles, i.e. passing from the microscopic model to a macroscopic one.

LWR macroscopic model:

ρ t + (ρv(ρ)) x = 0

where v is the average speed of vehicles.

(7)

Existing results

for the Frenkel-Kontorova model

(8)

Existing results for the Frenkel-Kontorova model

i − 2 i − 1 i i + 1 i + 2

m d 2 U j

dt 2 + γ dU j

dt = (U j +1 − U j ) + (U j− 1 − U j ) + sin(2πU j ) + f

(9)

Existing results for the Frenkel-Kontorova model

i − 2 i − 1 i i + 1 i + 2

m d 2 U j

dt 2 + γ dU j

dt = F j (U j−m , . . . , U j + m )

(10)

Homogenization

u(t, x) = U ⌊x⌋ (t)

4 u(t, x)

0 x

U1 U2 U3 U4

1 2 3

(11)

Rescalling

u ε (t, x) = εu t

ε , x ε

ε uε(t, x)

0 x

u ε →?

(12)

Rescalling

u ε (t, x) = εu t

ε , x ε

u0(t, x)

0 x

u ε → u 0

(13)

Homogenization results

For ε > 0, we define

u ε (t, x) = εu ε t , x ε , u ε (0, x) = u 0 (x) Theorem (F., Imbert, Monneau)

Under certain assumptions on u 0 , we have u ε → u 0 with u 0 t = ¯ F (u 0 x ),

u 0 (0, x) = u 0 (x)

The density of particles ρ = u 1

0 x

satisfies formally a conservation law

ρ t = ( ¯ H(ρ)) x with H(ρ) = ¯ −ρ F ¯ (1/ρ)

(14)

Ingredients of the proof

Main idea: inject the system of particles into a (system of) PDE.

If m is small, the system of PDE satisfies a comparison principle Order of the particles (link between the F j ).

Notion of hull functions

(15)

Plan

1 Motivations

2 Homogenization of traffic flows models

(16)

Change of variables

U ¨ j (t) = a j

V j (U j +1 (t) − U j (t)) − U ˙ j (t) .

We set

Ξ j (t) = U j (t) + 1

α U ˙ j (t) with α = 1 2 min

j∈{ 1 ,...,n

0

} (a j ).

Then

( U ˙ j (t) = α (Ξ j (t) − U j (t))

˙Ξ j (t) = (a j − α)(U j (t) − Ξ j (t)) + a j

α V j (U j +1 (t) − U j (t)) .

(17)

Change of variables

U ¨ j (t) = a j

V j (U j +1 (t) − U j (t)) − U ˙ j (t) .

We set

Ξ j (t) = U j (t) + 1

α U ˙ j (t) with α = 1 2 min

j∈{ 1 ,...,n

0

} (a j ).

Then

( U ˙ j (t) = α (Ξ j (t) − U j (t))

˙Ξ j (t) = (a j − α)(U j (t) − Ξ j (t)) + a j

α V j (U j +1 (t) − U j (t)) .

This system is monotone if a j ≥ 4kV k

(18)

Injection in a system of PDE

For j ∈ Z , pour tout (t, x) ∈ (0, +∞) × R ,

u j (t, x) = U j + n

0

⌊x⌋ (t) and ξ j (t, x) = Ξ j + n

0

⌊x⌋ (t).

Then 

 

 

 

 

 

 

 

 

 

 

∂u j

∂t = α(ξ j (t, x) − u j (t, x))

∂ξ j

∂t = (a j − α)(u j − ξ j ) + a j

α V j (u j+1 − u j ) u j + n

0

(t, x) = u j (t, x + 1)

ξ j+n

0

(t, x) = ξ j (t, x + 1).

(2)

(19)

Ordering the vehicles

We assume that V j (h) = 0 for h ≤ 2h 0 and we consider the worst case

Using the solution of this ode as barrier, we get U j+1 ≥ U j + h 0 for a good choice of h 0

This implies that Ξ j +1 ≥ Ξ j

(20)

Notion of hull function

(21)

Hull function h

 

 

 

 

∂u j

∂t = α(ξ j (t, x) − u j (t, x))

∂ξ j

∂t = (a j − α)(u j − ξ j ) + a j

α V j (u j +1 − u j ) We search particular solutions of the form

u j (t, x) = h j (λt + px), ξ j (t, x) = g j (λt + px) (h j , g j ) = hull functions

λ = mean velocity

n

0

p = mean density

U i + n

0

l − U i

l → p as l → +∞

(22)

Equation of the hull functions

( λ = α(g j (z) − h j (z))

λ = (a j − α)(h j (z) − g j (z)) + a j

α V j (h j +1 (z) − h j (z))

(23)

Existence of hull functions

Theorem (F., Salazar)

For every p ∈ (0, +∞), there exists a unique λ := F (p) for which there exists hull functions (h j , g j ). Moreover, (h j , g j ) can be constructed such that

h j (z) = z + h j (0), g j (z) = z + g j (0).

(24)

Properties of λ

Theorem (F., Salazar)

Monotonicity : λ is non-decreasing

Upper boundary : lim p→ + ∞ λ(p) = min j∈{ 1 ,...,n

0

} ||V j || zero velocity : If p ≤ 2h 0 n 0 , then λ = 0

Figure : Schematic representation of the effective Hamiltonian.

(25)

Construction of the hull functions

(26)

Existence of hull functions

Theorem (F., Salazar)

For every p > 0, there exists some (¯ u j , ξ ¯ j ) such that there exists a unique λ =: ¯ F (q) such that

u j (t, x)

j , ξ j (t, x)

j

=

px + λt + ¯ u j

j , px + λt + ¯ ξ j

j

,

is a solution of (2). Moreover, if we define (h j , g j ) such that u j (t, x) = h j (λt + qx), and ξ j (t, x) = g j (λt + qx) then (h j , g j ) is a hull function and satisfies

h j (z) = z + h j (0) and g j (z) = z + g j (0).

(27)

Ideas to construct h

1

(Initial data) u(0, x) = ξ(0, x) = px

(28)

Ideas to construct h

1

(Initial data) u(0, x) = ξ(0, x) = px

2

(Particular form of the solutions)

u j (t, x) = px + u j (t, 0) and ξ j (t, x) = px + ξ j (t, 0)

(29)

Ideas to construct h

1

(Initial data) u(0, x) = ξ(0, x) = px

2

(Particular form of the solutions)

u j (t, x) = px + u j (t, 0) and ξ j (t, x) = px + ξ j (t, 0)

3

(Long time behavior) u j (t, x)

t , ξ j (t, x)

t → λ as t → +∞

(30)

Ideas to construct h

1

(Initial data) u(0, x) = ξ(0, x) = px

2

(Particular form of the solutions)

u j (t, x) = px + u j (t, 0) and ξ j (t, x) = px + ξ j (t, 0)

3

(Long time behavior) u j (t, x)

t , ξ j (t, x)

t → λ as t → +∞

4

(Global control of the solution)

|u j (t, 0) − λt| ≤ C and |ξ j (t, 0) − λt| ≤ C

(31)

Ideas to construct h

1

(Initial data) u(0, x) = ξ(0, x) = px

2

(Particular form of the solutions)

u j (t, x) = px + u j (t, 0) and ξ j (t, x) = px + ξ j (t, 0)

3

(Long time behavior) u j (t, x)

t , ξ j (t, x)

t → λ as t → +∞

4

(Global control of the solution)

|u j (t, 0) − λt| ≤ C and |ξ j (t, 0) − λt| ≤ C

5

(Translation at infinity) By considering

(u j (t + n, y) − λn, ξ j (t + n, y) − λn) as n −→ +∞, one can construct

global in time solution (u j , ξ j )

(32)

Homogenization results

(33)

Homogenization

u j (t, x) = U j + n

0

⌊x⌋ (t)

0 4 x

U1 u1(t, x)

U3n0+1

U2n0+1 Un0+1

1 2 3

(34)

Rescalling

u ε j (t, x) = εu j

t ε , x

ε

ε uεj(t, x)

0 x

u ε j →?

(35)

Rescalling

u ε j (t, x) = εu j

t ε , x

ε

u0(t, x)

0 x

u ε j → u 0

(36)

Homogenization results

For ε > 0, we define

( u ε j (t, x) = εu j ε t , x ε

, ξ j ε (t, x) = εξ j ε t , x ε u ε j (0, x) = u 0

x + n

0

, ξ j ε (0, x) = u 0

x + n

0

Theorem (F., Imbert, Monneau)

Under certain assumptions on u 0 , we have u ε j → u 0 and ξ j ε → u 0 with u 0 t = ¯ F (u 0 x ),

u 0 (0, x) = u 0 (x)

Ansatz for the proof : u ε j (t, x) ≃ εh j

u 0 (t, x) ε

, ξ j ε (t, x) ≃ εg j

u 0 (t, x) ε

(37)

Homogenization results

For ε > 0, we define

( u ε j (t, x) = εu j t ε , x ε

, ξ j ε (t, x) = εξ j t ε , x ε u ε j (0, x) = u 0

x + n

0

, ξ j ε (0, x) = u 0

x + n

0

Theorem (F., Imbert, Monneau)

Under certain assumptions on u 0 , we have u ε j → u 0 and ξ j ε → u 0 with u 0 t = ¯ F (u 0 x ),

u 0 (0, x) = u 0 (x)

Ansatz for the proof :

u ε j (t, x) ≃ u 0 (t, x) + εh j (0), ξ j ε (t, x) ≃ u 0 (t, x) + εg j (0)

(38)

Formal idea of the proof

v j ε (t, x) := u 0 (t, x) + εh j (0), w j ε (t, x) := u 0 (t, x) + εg j (0)

(39)

Formal idea of the proof

v j ε (t, x) := u 0 (t, x) + εh j (0), w j ε (t, x) := u 0 (t, x) + εg j (0) We then have very formally

(v j ε ) t (t, x) =u 0 t = ¯ F (u 0 x ) = α(g j (0) − h j (0)) = α

ε (v j ε − w j ε ) (w j ε ) t (t, x) =u 0 t = ¯ F (u 0 x )

=(a j − α)(h j (0) − g j (0)) + a j

α V j (h j +1 (0) − h j (0))

=(a j − α) v ε j − w ε j ε + a j

α V j

v ε j +1 − v ε j ε

(40)

Formal idea of the proof

v j ε (t, x) := u 0 (t, x) + εh j (0), w j ε (t, x) := u 0 (t, x) + εg j (0) We then have very formally

(v j ε ) t (t, x) =u 0 t = ¯ F (u 0 x ) = α(g j (0) − h j (0)) = α

ε (v j ε − w j ε ) (w j ε ) t (t, x) =u 0 t = ¯ F (u 0 x )

=(a j − α)(h j (0) − g j (0)) + a j

α V j (h j +1 (0) − h j (0))

=(a j − α) v ε j − w ε j ε + a j

α V j

v ε j +1 − v ε j ε

(v j ε , w ε j ) and (u ε j , ξ j ε ) satisfy (almost) the same equation, so u ε j ≃ v j ε and

ξ j ε ≃ w j ε .

(41)

An example of computation of F (W. Salazar)

(42)

Conclusions and Perspectives

Conclusions :

Homogenization results for discrete traffic flow models

This allows to add microscopic phenomena in the modeling (red light, car crashes,....)

Perspectives :

Study of car crashes, red light

Homogenization on networks

Numerical computation of F

Homogenization in random media

Références

Documents relatifs

Abbreviations used: DMEM, Dulbecco’s modified Eagle’s medium; ERK, extracellular-signal-regulated kinase; GFP, green fluorescent protein; GST, glutathione S-transferase;

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide