• Aucun résultat trouvé

Scalable action detection in video collections

N/A
N/A
Protected

Academic year: 2021

Partager "Scalable action detection in video collections"

Copied!
137
0
0

Texte intégral

(1)Scalable action detection in video collections Andrei Stoian. To cite this version: Andrei Stoian. Scalable action detection in video collections. Image Processing [eess.IV]. Conservatoire national des arts et metiers - CNAM, 2016. English. �NNT : 2016CNAM1034�. �tel-01466845�. HAL Id: tel-01466845 https://tel.archives-ouvertes.fr/tel-01466845 Submitted on 13 Feb 2017. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) ÉCOLE DOCTORALE Informatique, Télécommunications et Électronique Centre d’Études et de Recherche en Informatique et Communications (CEDRIC). THÈSEprésentée par : Andrei STOIAN soutenue le : 15 janvier 2016. pour obtenir le grade de : Docteur du Conservatoire National des Arts et. Métiers. Discipline/ Spécialité : Science Traitement de l’Image et du Signal. Scalable action detection in video collections THÈSE dirigée par :. M CRUCIANU Michel Mme BENOIS-PINEAU Jenny. Professeur, Cnam Professeure, Université de Bordeaux. RAPPORTEURS : M BREMOND François M QUENOT Georges. Directeur de Recherches, INRIA Directeur de Recherches, CNRS. JURY : M MERIALDO Bernard M BUISSON Olivier M BERRANI Sid-Ahmed M CARRIVE Jean. Professeur, EURECOM Chercheur, INRIA Chercheur, Orange Labs Directeur de Recherches, INA.

(3) BB.

(4) +FMQrH2/;K2Mib.

(5) Bp.

(6) *QMi2Mib R AMi`Q/m+iBQM. R. k h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. N. j +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. dj.

(7) pB. *PLh1Lha. 9 *QM+HmbBQM. RyR. Sm#HB+iBQMb. Ry8.  _ûbmKû. Ryd. "B#HBQ;`T?v. RRN.

(8) *?Ti2` R AMi`Q/m+iBQM. R. R. ?iiT,ffrrrX#`BiBb?Ti?2X+QKf.

(9) k. RXR *QMi2ti. *?Ti2` R, AMi`Q/m+iBQM.

(10) RXR *QMi2ti. j.

(11) 9. *?Ti2` R, AMi`Q/m+iBQM. *?m`+?BHH b?FBM; ?M/b.

(12) RXk :QHb. 8. _2b2`+? +QMi2ti. k. RXk. k. :QHb. ?iiT,ffK2t+mHim`2X+MKX7`ftrBFBf#BMfpB2rfJBMf.

(13) e. RXj *QMi`B#miBQMb. *?Ti2` R, AMi`Q/m+iBQM.

(14) RXj *QMi`B#miBQMb. d.

(15) 3. *?Ti2` R, AMi`Q/m+iBQM.

(16) *?Ti2` k h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM kXR. *QMi2ti.

(17) Ry. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kXRXR oB/2Q /2b+`BTiBQM 7Q` *QMi2Mi "b2/ oB/2Q _2i`B2pH. L1.

(18) kXR *QMi2ti. RR.

(19) Rk. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM.

(20) kXR *QMi2ti. Rj.

(21) R9. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM.

(22) kXR *QMi2ti. R8. L2.

(23) Re. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM.

(24) kXR *QMi2ti. Rd.

(25) R3. √. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. 2. L2.

(26) kXR *QMi2ti. RN. L = 15 N = 32 nσ = 2. nτ = 3.

(27) ky. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kXRXk G2`MBM; 7Q` +iBQM /2i2+iBQM.

(28) kXR *QMi2ti. kXRXkXR. .2+BbBQM 7mM+iBQM M/ K2i`B+ H2`MBM;. kR.

(29) kk. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. wis. D(T, L) =. M X X. wis minr∈Rs d (tis , qir ). i=1 s∈Ei. Ei. i wis s. i tis. s qis. s q = Sh 6. wis 6 q. P. P,ξ. X 1 ||P ||2 + C ξijk 2 i,j,k. ∀i, j, k. hP T Fi , dij − dik i > 1 − ξijk. ∀i, j, k : ξijk ≥ 0. dij. i, j dik. i, k L. 2.

(30) kXR *QMi2ti. kj. *=c T. +. T. * 6= c. −. Q. dq. M I(C = c, Q) =. X. M I(C = c, dq ) =. dq ∈Q. 1 1+. P (dq |*6=c) (C P (dq |*=c. − 1). P (dq |C6=c) P (dq |C=c). P (dq |* 6= c) = P (dq |* = c). 1 |Tc− | 1 |Tc+ |. P P. dj ∈Tc− dj ∈Tc+. K(dq − dj ). K(dq − dj ). T+ , T−. N1 (µ1 , S1 ) S0 , S 1. d. µ0 , µ1. p(x, y = 1) p(x, y = 0). N0 (µ0 , S0 ).

(31) k9. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. f (x) =. p(x, y = 1) 1 1 = (µ1 − µ0 )T Σ− 1x − µT1 Σ−1 µ1 + µT0 Σ−1 µ0 + p(x, y = 0) 2 2 N2 N1 S1 + S2 , Σ= N N p(y = 1) = π. w = (µ1 − µ0 )T Σ−1 f (x) = hw, xi + const. π 1−π.

(32) kXR *QMi2ti. k8. d. w. d. f (x) = hw, xi + b. w. 1 ||w||2 2 ∀i = 1..n, yi (hw, xi i − b) >= 1 (w,b). yi ∈ {−1, 1}. xi , i = 1..n. K(x, y) = hΦ(x), Φ(y)i. w=. p X k=1. αk Φ(xk ). b.

(33) ke. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. w L(w, b, α) =. p X 1 ||w||2 − αk [yi (hw, xi i − b) − 1] 2 k=1. αk ≥ 0, k = 1, 2, ..p. w∗. ∗. w =. p X. αk∗ yk Φ(xk ),. k=1 ∗. yk (hw , Φ(xk )i) = 1. α, b. L(α, b) =. p X i=1. 1 αk (1 − byk ) − α · > · α 2 p×p. >. Hkl = yk yl K(xk , xl ). Φ(x). K. f (x) = hw∗ , Φ(x)i + b =. N SV X k=1. yk αk∗ K(xk , x) = b.

(34) kXR *QMi2ti. kd. σ ||x − y||2 − 2σ 2. KRBF (x, y) = χ2. d Kχ2 (x, y) =. d X 2xi yi x + yi i=1 i. L1 KHI (x, y) =. d X i=1. kXRXkXk. a2H2+iBM; ;QQ/ 72im`2b. (xi , yi ). !.

(35) k3. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. D c∈*. I S = {wi } ⊂ W R D R. W. D(S, c) =. 1 X I(wi , c) |S| w ∈S i. R(S) =. 1 X I(wi , wj ) |S|2 w ,w ∈S i. j.

(36) kXR *QMi2ti. kN. I(wi , c). wi. I(X, Y ) =. XX. p(x, y). y∈Y x∈X. c. I(wi , wj ). p(x, y) p(x)p(y). D(S, c) − R(S). wi ∈ 0..3 I(wi , c) I(wi , wj ). H;Q`Bi?K R _2[mB`2, P N R, S ∅ W ={ } k, r?BH2 Card(S) < smax /Q j, w∈W D(S ∪ {w}, c) − R(S ∪ {w}) 9, S = S ∪ {w} W = W − {w} 8, 2M/ r?BH2 e, `2im`M S. φ, ψ F, C. c wi || · ||HS E[·]. HSIC(F, C) = ||Ewi c [(φ(wi ) − µwi ) ⊗ (ψ(c) − µc )] ||2HS ⊗. µwi = E[φ(wi )]. µc = E[ψ(c)].

(37) jy. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kXRXj _2Hi2/ rQ`F BM +iBQM /2i2+iBQM kXRXjXR >QHBbiB+ K2i?Q/b. z. fi (z). τ. hi (fi (z)) =. (hw, fi (z)i − τ ). w = (S (1) + S (2) )−1 (µ(1) + µ(2) ). S (1) S (2) µ(1) µ(2). C(z) = sgn. m X i=1. αi hi (fi (z)). !.

(38) kXR *QMi2ti. L2. jR.

(39) jk. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kXRXjXk GQ+H 72im`2 K2i?Q/b +iBQM HQ+HBxiBQM rBi? aoJ +HbbB}2`b.

(40) kXR *QMi2ti. jj. P (action) =. K X. fASM (tj,1 , tj,2 , tj,3 )pj. j=1. tj,1 , tj,2 , tj,3 fASM j − th. j − th pj.

(41) j9. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM j − th. K = 10. 53.

(42) kXR *QMi2ti. j8. L2. +iBQM HQ+HBxiBQM #v pQiBM;.

(43) je. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. .22T L2m`H L2irQ`Fb 72im`2b 7Q` +iBQM MHvbBb.

(44) kXk +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi. kXk. +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi. jd.

(45) j3. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kXkXR "2vQM/ i2KTQ`H bmKK`BxiBQM. T = 15. W. wi ∈ W desc. t. d. ttraj = ((x1 , y1 , t1 ), (x2 , y2 , t2 ), ..., (xT , yT , tT )) = (tHOG , tHOF , tM BH ). δtime (ttraj , τ ) =. δdesc (t. desc. , i) =. (. 1 0. j. (. 1 0. t1 ≤ τ. ||(tHOG , tHOF , tM BH ) − wj ||2 = i, wj ∈ W. τ 1≤i≤d. τ ≤ tT. d. Xτ i.

(46) kXk +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi. jN. Ntraj. tτ i =. X. δtime (ttraj , τ )δword (tdesc , i) i i. 9LVXDO:RUGQXPEHU. i=1. . . . . . . . . . . . . 7,0(. . L. [1 , [2 , ...[M s = t1 , t2 , ...tN K i. . . . X = {t1 , t2 , ..., tL }. Z s Z= d [i tj wk = (i, j) k ∈ 0..K, 1 ≤ i ≤ M, 1 ≤ j ≤ N i1 < i2. j1 > j2.

(47) 9y. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM [i. c W∗ ∈ A Z s. W ∗ = w1 , w2 , ..., wK CW ∗. DT W (Q, X) = CW ∗ =. W. CW =. |W | X. W. c(wk ). k=1. χ2 L2. v u d uX c(wk ) = c([B , tD ) = k[B − tD k2 = t ([BF − tDF )2 k=1. S = {ci,j }. L2. dL2. L. d (A). L R. L. i, j L×L. i = j = 0. L2 Si,j. O(d). R. ?iiT,ffQ2BbXQ`;fyyR38yfHBbi. L. tj.

(48) kXk +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi H;Q`Bi?K k _2[mB`2, Z = [1 , [2 , ...[L , s = t1 , t2 , ...tL _2[mB`2, Ci,j L × L R, 7Q` i = 1..L /Q k, 7Q` j = 1..L /Q j, Si,j ← c([B , tD ) c 9, Ci,j ← (Ci−1,j , Ci−1,j−1 , Ci,j+1 ) + Si,j ∞, ∀i, j ∈ {1..L} 8, 2M/ 7Q` e, 2M/ 7Q` d, `2im`M CL,L. (CA ) =. X. W ∈A. exp(−CW ). 9R. C0,j = Ci,0 = C0,0 =. !. κσ. σ. c(wk ) = κσ ([B , tD ) =. κσ. KRBF ([B , tD ) 2 − KRBF ([B , tD ). kGA.

(49) 9k. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. . . . . .  . . . . . . L2. . . . . . . í. í. í . . . í .  í. . .  í. í. (x, y) (. (−x) +. kGA (Z, s) =. (−y)). (. (CA )) =. X. W ∈A. í. [0..1]2.   |W |  X  − c(wk )   k=1. Si,j Ci,j. Ci,j ← Ci−1,j + Ci−1,j−1 + Ci,j+1 + Si,j ,. C0,j = Ci,0 = C0,0 = 0, ∀i, j ∈ {1..L}.

(50) kXk +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi. kXkXk. 9j. 62im`2 b2H2+iBQM. L2.

(51) 99. O(dL2 ). *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. S⊂W. s << d.

(52) kXk +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi. 98. x = x 1 , . . . , xL. S S. P resence(S, x) =. L Y i=1. ". ¬P resence(S, x) = 1 −. X. xiw. w∈S. L X Y i=1 w∈S. !. xiw. !#.

(53) 9e. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. (x) = {1. x. xiw ≥ 0 x>0 0. w. i. }. .     . . )HDWXUHVHWLV 3UHVHQWLQWKLVVHTXHQFH. . )HDWXUHVHWLV $EVHQWIURPWKLVVHTXHQFH. . .    . . $OOIHDWXUHVLQWKH VHWKDYH YDOXHLQIUDPHVí. . .  . . . S1 = {3, 4, ..., 11} S2. . . . . S1. S2 = {30, ..., 35}. P + (S) P + (S) =. 1 X P resence(S, x) |P| x∈P. P. A− (S).

(54) kXk +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi. A− (S) = N. 9d. 1 X ¬P resence(S, x) |N | x∈N. P. N. P + (S)·A− (S) 24000. H;Q`Bi?K j _2[mB`2, P R, S ∅ GroupScore = 0 W = { k, r?BH2 Card(S) < smax /Q j, w∈W Score(S ∪ {w}). N. }. Score(G) = P + (G) · A− (G). 9, S = S ∪ {w} GroupScore = Score(S ∪ {w}) W = W − {w} 8, 2M/ r?BH2 e, `2im`M S.

(55) 93. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM %XOO&KDUJH&DSH$FWLRQ)HDWXUH*URXS6WDWLVWLFV.  . . . *URXS6FRUH. 9DOXHLQ. .    . 5HOHYDQF\í3 6

(56).   . %XOO&KDUJH&DSH$FWLRQ)HDWXUH*URXS6FRUH. . . . . . . 1XPEHURIIHDWXUHV. . . .    . í. 6SDUVLW\í$ 6

(57) . .  . . . . . . *URXS6FRUH. )HDWXUH*URXS6FRUHVIRUGLIIHUHQWDFWLRQVLQWZRGDWDVHWV  %XOO&KDUJH&DSHí0(; +RUVH5LGLQJí0(; 'ULQNLQJí& &  6PRNLQJí& &    . . . . 1XPEHURIIHDWXUHV. . . 1XPEHURIIHDWXUHV. . kXkXj *HbbB}2` +b+/2. L. . . . .

(58) kXk +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi. kXkXjXR. h`BMBM; TT`Q+? 7Q` i?2 irQ bi;2b. ± 31 L. ±. L. L. k k. 9N. ?iiTb,ffrrrX+bB2XMimX2/mXirf +DHBMfHB#bpKf.

(59) 8y. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. σ σ (C, σ) (C, σ). &URVVí9DOLGDWLRQ$YHUDJH3UHFLVLRQ. &URVVí9DOLGDWLRQ$YHUDJH3UHFLVLRQ. .  . . . ORJ σ

(60). . $3 . . . . . . . ORJ &

(61). . . . . . . . . . $3 . .  í. . . . .  . . . . ORJ σ

(62). . . . . ORJ &

(63). . . C. σ. kXkXjXk *b+/2 }`bi bi;2. X (agg) X (agg). . d. d. (agg) Xk. (agg). X1. (agg). , X2. (agg). , ..., Xd. PL. Xik , k ∈ 0..d PL k=1 i=1 Xik. = Pd. i=1. f1 (X (agg) ) ≥ τ1. .

(64) kXk +iBQM /2i2+iBQM #v i2KTQ`H HB;MK2Mi. kHI (Q, X) =. |W| X. (agg). min(Qi. 8R. (agg). , Xi. ). i=1. C. X X + = {X ∈ X |class(X) = P ositive} R. F N R1 =. Card({X (agg) ∈ X + |f1 (X (agg) ) < τ1 }) Card(X + ). Coverage =. Card({X (agg) ∈ X |f1 (X (agg) ) ≥ τ1 }) Card(X ). τ1 τ1 C αF N R1 + (1 − α)Coverage R. kXkXjXj. *b+/2 b2+QM/ bi;2. τ1 α = 0.8.

(65) 8k. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. X Card(S) f2 f2 (X) ≥ 0. f2. w ρ. n. 1 1 X 2 ξi − ρ w,ξi ,ρ kwk + 2 νn i=1 hw, Φ(xi )i ≥ ρ − ξi , ξi ≥ 0 hΦ(a), Φ(b)i. xi. kGA (a, b) ξi. n. ν ρ/kwk. f2 (X) =. (. hw, Φ(X)i − ρ,. P resence(S, X). −∞. αi w.

(66) kXj 1pHmiBQM. 8j. f2 (X|P resence(S, X)) = hw, Φ(X)i − ρ * + X = αi Φ(xi ), Φ(X) − ρ i∈SV s. =. X. αi kGA (xi , X) − ρ. i∈SV s. K(x, x) = 1. ′ (x, y) = kGA. kXkXjX9. 1 2. SQbi@T`Q+2bbBM;. τmerge = 50. L. kXj. kGA (x, y) (kGA (x, x) + kGA (y, y)). 1pHmiBQM. kXjXR. 1tBbiBM; /i b2ib. kXjXRXR. aKQFBM; M/ .`BMFBM;. 720 × 576.

(67) 89. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kXjXRXk Ja_ +iBQM AA. 320 × 240.

(68) kXj 1pHmiBQM. kXjXk. 88. J1s+iBQM,  MQp2H H`;2 b+H2 +iBQM /2i2+iBQM /ib2i. j. 9. "mHH*?`;2*T2. >Q`b2_B/BM;. j. pBH#H2 i ?iiT,ffK2t+mHim`2X+MKX7`ftrBFBf#BMfpB2rfJBMf.ib2ib h?2 h>lJPa kyR9 /i b2i- +QMiBMBM; k8y ?Qm`b Q7 pB/2Q- rb BMi`Q/m+2/ BM kyR9X a22 ?iiT,ff+`+pXm+7X2/mfh>lJPaR9f?QK2X?iKH 9.

(69) 8e "mHH*?`;2*T2. >Q`b2_B/BM;. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM.

(70) 1XPEHURIPLQXWHV. kXj 1pHmiBQM. 8d.                        <HDURISURGXFWLRQ. "mHH HQM2- +?`;BM; 4 `mMMBM; 7bi- ?Q`Mb 7Q`@ r`/X .Bz2`2Mi 7`QK #mHH rHFBM; Q` `mMMBM; UMQi MMQii2/V "mHH +?`;BM; iQ`2`Q- iQ`2`Q- rBi?Qmi +T2pQB/b Bi i?`Qm;?  72BMi "mHH +?`;BM; iQ`2`Q- ?2 ;`#b QMiQ Bib ?Q`Mb b Bb +``B2/ rvX JMv Qi?2` iQ`2`Qb `2 T`2b2Mi "mHH ii+Fb  TB+/Q`Ƕb ?Q`b2X #mHH +?`;2b  iQ`2`Q r?Q DmKTb i?`Qm;? i?2 B` iQ pQB/ Bi S2`bQM `B/BM; QM  #mHH- HBF2 BM  `Q/2Q hQ`2`Q KF2b #mHH im`M `QmM/ ?BK mbBM; ?Bb +T2 JMv T2QTH2 `B/BM; ?Q`b2b U2X;X  ?Q`b2 `+2V.

(71) 83. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kXjXkXR *QKT`BbQM. kXjXj 1pHmiBQM K2i`B+b. kXjXjXR _2bmHi [mHBiv K2i`B+b. 8. h`BMBM; Bb /QM2 QM +HBTb 7`QK i?2 Eh> +iBQM AA /ib2i a22 h#H2 kXk 7Q` /2iBHb d *`Qbb oHB/iBQM /m`BM; H2`MBM; 3 #Qmi RyW Bb BM >. e.

(72) kXj 1pHmiBQM. 8N. 8. e. d. e. 3. yX. f2 (X). E = {X1 , X2 , ..., Xn }.

(73) ey. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. P (E) =. |E ∩ P ositives| |E|. R(E) =. |E ∩ P ositives| |P ositives|. Ek = {X1 , X2 , ..., Xk }, k ≤ |E|. AP (E) =. |E| X k=1. Bi |/|Bi | > 0.5 P i |A ∩ Bi |/|A| > 0.2. P (Ek ) (R(Ek ) − R(Ek−1 )). Bi |A ∩.

(74) kXj 1pHmiBQM. )*. )*. )*+. ),*. eR. ),*. ),*+. )+*. )+*.      .

(75)   .    .  .

(76) .           !.

(77) .           . "#   .

(78) .       "#   . .

(79) .        "# !  . .  . . . . . .  . . . " "(-    .. . " "(-  .   $%     &'   (( "    $%   (        (( " . A J (A, B) = |A ∩ B|/|A ∪ B| B J (A, B) ≥ 20. kXjXjXk. *QKTmiiBQMH +Qbi K2i`B+b.

(80) ek. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kXjX9 S`K2i2`b. d = 4000 L = 30. ν. ν = 0.05. kXjX8 _2bmHib M/ /Bb+mbbBQM. τ1 R. τ1.

(81) kXj 1pHmiBQM. ej. R. UR i`BM f pHB/iBQM bTHBiV. UR i`BM f pHB/iBQM bTHBiV. R. URy i`BM f pHB/iBQM bTHBibV. 8.1 ± 4.0 9.1 ± 1.7. 23.8 ± 4.5 27.8 ± 4.6. R. 8.6 R.

(82) e9. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. $YHUDJH3UHFLVLRQ 

(83).      . 76í0506 P505 %$+6,&. . $YHUDJH3UHFLVLRQ 

(84).  . . . . . . 1XPEHURI)HDWXUHV. . . . .     . 76í0506IHDWXUHV P505 %$+6,&.   . . . . . . . . . 1XPEHURI)HDWXUHV. 54.9. . ± 4.2 60 ± 1. 46 ± 4. . . . .

(85) kXj 1pHmiBQM &/$33,1*GHWHFWLRQ$3. . . QG.  67$*(*$$3  &$6&$'($3 .     . . . . . 5(&$//. :$9,1*GHWHFWLRQ$3. . . 35(&,6,21. VW67$*(+,$3 . 35(&,6,21. 35(&,6,21. . e8.  . VW67$*(+,$3 . .  67$*(*$$3  &$6&$'($3 . . O(sL2 ) L.  . QG. . . . 5(&$//. . VW.  67$*(+,$3  QG.  67$*(*$$3  &$6&$'($3 .     . . %2;,1*GHWHFWLRQ$3. . . . s. 2nd. 2nd 33.0 ± 4.7. . 5(&$//. 33.9 ± 5.0. . .

(86) ee. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. 1st 2nd. 9jXRW 88XyW jNXeW. e9X9W. e8X8W. j3XjW. 98XRW. 9.7 ± 2.3. jdXdW. RNX8W. 4. k3Xj±kXeW R8X8±kX3W. N. N. ?iiT,ffrrrXpH72iXQ`;f. L = 30.

(87) kXj 1pHmiBQM. ed. 35(&,6,21.        . 35(&,6,21. '5,1.,1*GHWHFWLRQ$3. VW.  67$*(+,$3 . QG67$*(*$$3  &$6&$'($3  . . . . 5(&$// 602.,1*GHWHFWLRQ$3. . VW67$*(+,$3 . . QG.  67$*(*$$3  &$6&$'($3 .     . . . . 5(&$//. . .

(88) e3. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. . %XOO&KDUJH&DSHGHWHFWLRQ$3 VW67$*(+,$3  QG. 35(&,6,21. .  67$*(*$$3  &$6&$'($3 .     . . . . . 5(&$//. . . +RUVH5LGLQJGHWHFWLRQ$3 VW.  67$*(+,$3  QG.  67$*(*$$3  &$6&$'($3 . 35(&,6,21.      . . . . 5(&$//. . .

(89) kXj 1pHmiBQM. eN. 8yW e8X8W. 6.5 × 106. 4, 000. 28.3 ± 2.6. 15.5 ± 2.8. ∼ jjX8± jX8W. RdXe±RXNW. 31.1 ± 5.9. 14.0 ± 1.4.

(90) dy. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM. kX9 *QM+HmbBQM.

(91) kX9 *QM+HmbBQM. dR.

(92) dk. *?Ti2` k, h2KTQ`H HB;MK2Mi 7Q` +iBQM /2i2+iBQM.

(93) *?Ti2` j +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv jXR. *QMi2ti.

(94) d9. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. jXRXR GQ+HBiv b2MbBiBp2 ?b?BM;. M. ( H. x, y ∀x, y ∈ M. d(x, y) h ∈ H d(x, y) ≤ R ⇒ P rh [h(x) = h(y)] ≥ P1. d(x, y) ≥ cR ⇒ P rh [h(x) = h(y)] ≤ P2 (R, cR, P1 , P2 ). h1 , h2 , ...., hn. c∈R. H.

(95) jXR *QMi2ti. d8. L2. ha,b (v) = ⌊. ha, vi + b ⌋ r. L2. c = ||v1 − v2 ||. a. a ∼ N , b ∼ U nif orm(0, r) P ra,b [ha,b (v1 ) = ha,b (v2 )] =. √1 2π. Z. r 0. 1 fp c.    t t 1− dt c r fp (x) =. fp (−x2 /2) s(x, y) = r ∈ Rn. (θ(x, y)) =. hx,yi ||x||||y||.

(96) de. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. hr (x) =. (. 1 0. hr, xi ≥ 0. P rr [hr (x) = hr (y)] = 1 −. θ ≈1−. θ π. L2. x, y θ ∈ [0, π/2]. L2. θ(x, y) π (θ(x, y)) = hx, yi.

(97) jXR *QMi2ti. dd. Rn. hi (p). hi (q). δi xi (δi ). P r[hi (p) = hi (q) + δi ] ≈. (−Cxi (δi ))2.

(98) d3. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. jXRXk Zm2`v@#v@/2i2+iQ`. Rn L2. Rn. θ. L2 K(x, x) = 1.

(99) jXR *QMi2ti. dN. L2. ||φ(x) − φ(y)||2 = hφ(x), φ(x)i − 2hφ(x), φ(y)i + hφ(y), φ(y)i = K(x, x) − 2K(x, y) + K(y, y) = 2 − 2K(x, y). θ. K(x, x) =.

(100) 3y. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv.

(101) jXR *QMi2ti. 3R. P r[h(x) = h(y)] = K(x, y) = hΦ(x), Φ(y)i x, y. h(x) Φ. K.

(102) 3k. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv Φ. r N (0, I) T r Φ(x). r. N (0, I). h(Φ(x)) =. r = Σ−1/2 zt. (. 1, 0,. hΦ(x), ri ≥ 0. zt =. 1 t. Σ r. Pn. i=1. Φ(xi ).

(103) jXk a+H#H2 +iBQM HQ+HBxiBQM mbBM; ?b?BM;. jXk. a+H#H2 +iBQM HQ+HBxiBQM mbBM; ?b?BM;. 3j.

(104) 39. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. dza+H#H2 _2i`B2pHǴ Ua_ b2`+?V. jXkXR oB/2Q /2b+`BTiBQM M/ +iBQM /2i2+iQ`. d = 4000. L 1 L 6. K(x, y) =. d X. (xi , yi ). i=1. L1. hΦ(x), Φ(x)i = K(x, x) = 1. jXkXk a+H#H2 `2i`B2pH mbBM; ?b?BM;. D. hj j ∈ [0..D]. M.

(105) jXk a+H#H2 +iBQM HQ+HBxiBQM mbBM; ?b?BM;. h(v) =. m X i=0. x∗i K(x, y). m. D. 38. αi∗ K(x∗i , v) + b. !. αi∗. D D. D NT.

(106) 3e. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. q=. n X. βi Φ(yi ). i=0. gk (q) = = =. m X. i=0 m X i=0 m X i=0. αi∗ αi∗. *. Φ(x∗i ),. p X j=1 p. αi∗. X j=1. p X. βj Φ(yj ). j=1. +. +b. hΦ(x∗i ), βj Φ(yj )i + b βj K (x∗i , yj ) + b. T. = α Kβ + b ∗. h(q) =. %. (gk (q)) =. Kij = K (x∗i , yj ) x∗i i ∈ {1..m} yj j ∈ {1..p}) ∗ (α1∗ , ..., αm ) β = (β1 , ..., βp ). α∗ Kβ T + b. α∗ =. {h1 (q), h2 (q), ...., hD (q)} D = 16. D = 24. s = dH (H(q), H(v)) Ps. n=1. %D  n. .

(107) jXk a+H#H2 +iBQM HQ+HBxiBQM mbBM; ?b?BM;. 3d. ' . . 1XPEHURIEXFNHWV.    LWHPLQWKH TXHU\¶VEXFNHW.    . . +DPPLQJGLVWDQFH. . . . . ' . [. 1XPEHURIEXFNHWV.   . LWHPVLQWKH TXHU\¶VEXFNHW.     . . . . +DPPLQJGLVWDQFH. . D = 24. K pk. k k. k. p =. j. n X i=1. K(yjk , yik ).

(108) 33. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv ' . . 1XPEHURILWHPV. . . . .  . . . . +DPPLQJGLVWDQFH. . hi. d(q, hi ) =. Kqh Khh. E D Pp ∗ ∗ α ), β Φ(y ) Φ(x j j i i=0 i j=1 α∗ Kqh β T qP P = ∗ α Khh α∗T ∗ ∗ ∗ ∗ i j αi αj K(xi , xj ). Pm.

(109) jXk a+H#H2 +iBQM HQ+HBxiBQM mbBM; ?b?BM;. 3N. H;Q`Bi?K 9 R, A0 = {1} k, A0 j, 7Q` iQ NP /Q 9, `2T2i 8, Ai Ai e, As d, As 3, Ae Ai N, Ae Ry, mMiBH Ai RR, Ai Rk, 2M/ 7Q`. A0. As Ae. A. D A. P r[h(p) = h(q) ⊕ ∆(A)] =. D Y i=1. P r[hi (p) = hi (q) ⊕ δi ] ≈. D Y i=1.  % exp −Cxi (δi )2. ∆(A) A. δi hi.

(110) Ny. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. D. jXkXj 6bi }Hi2`BM; mbBM; M aoJ TT`QtBKiBQM. fˆq (v) dH (H(q), H(v)).

(111) jXk a+H#H2 +iBQM HQ+HBxiBQM mbBM; ?b?BM;. fˆq (v) = fˆq (v). . dH (H(q), H(v)) π D. NR. . ||q|| + bq. fq (v). D. ||q|| D D ∈ {32, 64, 96, ..., 1024} v fˆq (v). fq (v). 6SHDUPDQUDQNFRUUHODWLRQ. D. +DVK6905DQNLQJ3HUIRUPDQFH.         . . . . . . . . 1XPEHURIKDVKIXQFWLRQV '

(112). 1 P r[fq (x) < 0 ∩ fˆq (x) ≥ 0] ≤ 2. . . . . (D(1 − p) − ⌊rq,b ⌋)2 −2 D. .

(113) Nk. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv p = p(q, x) = 1 −. q rq,b. rq,b. D = π. −1. 1 P r[fq (x) ≥ 0 ∩ fˆq (x) < 0] ≤ 2. 3UREDELOLW\ERXQG. . . −b ||q||. . θ(q,x) π. b. . (Dp − ⌈rq,b ⌉)2 −2 D. . )DOVH3RVLWLYH3UREDELOLW\%RXQG )DOVH1HJDWLYH3UREDELOLW\%RXQG.      . . . . 1XPEHURIKDVKIXQFWLRQV '

(114). . θ = π/2 π/2. fˆq (x) ≥ 0. jXkX9 Zm2`v 2tTMbBQM.

(115) jXj 1pHmiBQM. Nj. H(v). L ∆T = 56 L. jXkX8. fˆq (x) ≥ 0. SQbi@T`Q+2bbBM;. f (v) ≥ 0 τmerge = 10 ∆T 5 L 6. A S(A) =. P. jXj. 1pHmiBQM. i. f (vi ). L.

(116) N9. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. H;Q`Bi?K 8 yj∗. _2[mB`2, _2[mB`2, v. βj∗. G. H(v). × αi _2[mB`2, Nqe _2[mB`2,. R, k, j, 9, 8, e, d, 3, N, Ry, RR, Rk, Rj, R9, R8, Re, Rd, R3, RN, ky, kR, kk, kj, k9, k8, ke,. 7Q`. iQ. 2M/ 7Q`. xi Rqe = 25 /Q keyql ← Hl (q) = {hl1 (q), ...hlD (q)} ck = {y1 , ...ynk }. G 7Q` iQ /QP k n k k pk ← j i=1 G(yj , yi ) 7Q` iQ /Q l keypk ← Hl (pk ) = {hl1 (pk ), ...hlD (pk )} 2M/ 7Q` 2M/ 7Q` b ← ∪l,k blk r← b 7Q` iQ Nqe /Q r′ ← ∅ 7Q` iQ /Q Nj ← { r′ ← r′ ∪ {v ∈ Nj |fˆq (v) > 0 2M/ 7Q` r = r ∪ r′ 2M/ 7Q` 7Q` iQ /Q vi ← s(ri ) = f (vi ) 2M/ 7Q`. keypi k. Rqe } H(v). rj. S(A) S(A). keyql }. ri. r, s(r). kd, `2im`M A, S(A). bik. A.

(117) jXj 1pHmiBQM. jXjXR. N8. S`K2i2`b. L = 30. d. D. NT K. NP. jXjXk. "b2HBM2b. jXjXkXR. 1t?mbiBp2 2t+i b2`+?. dz2t?mbiBp2 2t+i b2`+?Ǵ U11 b2`+?V. jXjXkXk. 1t?mbiBp2 TT`QtBKi2 b2`+?. fˆq (v). fq (v). dzTT`QtBKi2 2t@ ?mbiBp2Ǵ U1 b2`+?V.

(118) Ne. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. jXjXj .ib2ib. d = 4000. jXjX9 1pHmiBQM K2i`B+b. Bi |A ∩ Bi |/|Bi | > 0.5.

(119) jXj 1pHmiBQM. Nd P. i. |A ∩ Bi |/|A| > 0.2. L. jXjX8. _2bmHib M/ /Bb+mbbBQM D D D D. D. NP D D. D = 16 NP. NP ∈ 50, 75, 100, 250. D.

(120) N3. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. 9DU\LQJWKHQXPEHURIKDVKIXQFWLRQV '

(121)  DQGWKHQXPEHURISUREHV 1S

(122). 9DU\LQJWKHQXPEHURIKDVKIXQFWLRQV '

(123)  DQGWKHQXPEHURISUREHV 1

(124) S. . . ' ' ' '.  . 3UHFLVLRQ. 5HFDOO.    ' ' ' '.    . . .    . . 3FW'%. D.    .  . .  . . . 5HFDOO. . . K=5. NP D = 16. D = 32 D = 24. . . . . .     . &RYHUDJH 

(125). . 5HFDOO 

(126). 3UHFLVLRQ 

(127). NT.    . . . . 1XPEHURIWDEOHV 1

(128) 7. NT. . . .   . 1XPEHURIWDEOHV 1

(129) 7. K=5. NT = 16. . . . 1XPEHURIWDEOHV 1

(130) 7. NP = 30. D = 24 M = 32 NT. NT. . . NP = 30.

(131) jXj 1pHmiBQM. NN. NT D K = {5, 15, 25}. NP = {5, 10, 20, 30}. . . . . . . . . 5HFDOO. 5HFDOO. f (v).  65. 4( 65.  65.  65.  ($6HDUFK.    . . . . . . . 1XPEHURILWHPVUHWULHYHG. . . . 65. . . 65. . 65.  65. 4(. . . [.  . ($6HDUFK . . . . . . 1XPEHURILWHPVUHWULHYHG. . .  . [. NP. K=5. K= 5, NP = 30. K = 25, NP = 30.

(132) Ryy. *?Ti2` j, +iBQM HQ+HBxiBQM rBi? bm#@HBM2` +QKTH2tBiv. NT × D × NSV K ×L×D×M. . . $3/RFDOL]DWLRQ. $3/RFDOL]DWLRQ. . . . 65.  65.  65.  ($6HDUFK 65. 4( ((6HDUFK. .  . . . . . . 3FWRI'%LWHPVUHWULHYHG. jX9 *QM+HmbBQM. . . . . 65.  65.  65.  65. 4( ($6HDUFK ((6HDUFK. .  . . . . 3FWRI'%LWHPVUHWULHYHG. . . .

(133) *?Ti2` 9 *QM+HmbBQM.

(134) Ryk. *?Ti2` 9, *QM+HmbBQM. 9XR amKK`v Q7 +QMi`B#miBQMb *HbbB}2` +b+/2 M/ i2KTQ`H HB;MK2Mi 7Q` +iBQM HQ+HBxiBQMX. a+H#H2 +iBQM HQ+HBxiBQM mbBM; ?b?BM;X. J1s+iBQM,  MQp2H +iBQM HQ+HBxiBQM /i b2iX. 9Xk S2`bT2+iBp2b 7Q` 7mim`2 `2b2`+?X. +iBQM KQ/2Hb mbBM; :HQ#H HB;MK2MiX.

(135) 9Xk S2`bT2+iBp2b 7Q` 7mim`2 `2b2`+?X. Ryj. L2. h2KTQ`H KQ/2HBM; Q7 +iBQMbX. R. k. R k. ?iiT,ffpBbBQMXbiM7Q`/X2/mf.ib2ibfPHvKTB+aTQ`ibf ?iiT,ffD2z/QM?m2X+QKfH`+Mf.

(136) Ry9 JmHiB@T`Q#2 Ga> 7Q` [m2`B2b@#v@/2i2+iQ`X. _2H2pM+2 722/#+F 7Q` +iBQM HQ+HBxiBQMX. *?Ti2` 9, *QM+HmbBQM.

(137) Sm#HB+iBQMb AMi2`MiBQMH *QM72`2M+2b aiQBM- X. aiQBM- X. aiQBM- X. aiQBM- X. CQm`MHb aiQBM- X.

(138) Rye. *?Ti2` 9, *QM+HmbBQM aiQBM- X. Pi?2` aiQBM- X.

(139) TT2M/Bt  _ûbmKû AMi`Q/m+iBQM.

(140) Ry3. TT2M/Bt , _ûbmKû.

(141) TT2M/Bt , _ûbmKû. RyN.

(142) RRy. TT2M/Bt , _ûbmKû.

(143) TT2M/Bt , _ûbmKû. RRR. dzJ1s+iBQMǴ @ mM MQmp2m D2m /2 /QMMû2b TQm` H /ûi2+iBQM /2b +iBQMb. R. k. R. H2 rQ`Fb?QT h>lJPa *?HH2M;2 kyR9- ?iiT,ff+`+pXm+7X2/mfh>lJPaR9f?QK2X?iKH- T`QTQb2 /2TmBb kyR9 mM D2m /2 /QMMû2 /2 k8y ?2m`2b /2 pB/ûQb k .BbTQMB#H2 ¨ ?iiT,ffK2t+mHim`2X+MKX7`ftrBFBf#BMfpB2rfJBMf.ib2ib.

(144) RRk. TT2M/Bt , _ûbmKû. .ûi2+iBQM /Ƕ+iBQMb T` HǶHB;M2K2Mi /2b i`K2b. L1.

(145) TT2M/Bt , _ûbmKû. RRj.

(146) RR9. TT2M/Bt , _ûbmKû. L1. L2.

(147) TT2M/Bt , _ûbmKû. RR8. \. _2+?2`+?2 `TB/2 ¨ HǶB/2 /m ?+?;2.

(148) RRe. TT2M/Bt , _ûbmKû.

(149) TT2M/Bt , _ûbmKû. RRd. L=8 D = 24.

(150) RR3. *QM+HmbBQM. TT2M/Bt , _ûbmKû.

(151) TT2M/Bt , _ûbmKû. S2`bT2+iBp2b. RRN.

(152) Rky. TT2M/Bt , _ûbmKû.

(153) "B#HBQ;`T?v.

(154) Rkk. "A"GAP:_S>u. ฀.

(155) "A"GAP:_S>u. Rkj.

(156) Rk9. "A"GAP:_S>u.

(157) Rk8. "A"GAP:_S>u. ฀ ฀. ฀ ฀. ฀.

(158) Rke. "A"GAP:_S>u. ฀.

(159) "A"GAP:_S>u. Rkd.

(160) Rk3. "A"GAP:_S>u. ฀.

(161) RkN. "A"GAP:_S>u. ฀.

(162) . . ŶĚƌĞŝ^dK/E 6FDODEOHDFWLRQGHWHFWLRQLQYLGHRFROOHFWLRQV. . ZĠƐƵŵĠ͗ ĞƚƚĞƚŚğƐĞĂƉŽƵƌďƵƚĚĞƉƌŽƉŽƐĞƌĚĞŶŽƵǀĞůůĞƐŵĠƚŚŽĚĞƐĚΖŝŶĚĞdžĂƚŝŽŶĚĞƐďĂƐĞƐĚĞĚŽŶŶĠĞƐǀŝĚĠŽĚĞ ƚLJƉĞĂƌĐŚŝǀĞĐƵůƚƵƌĞůůĞăƉĂƌƚŝƌĚĞƐĂĐƚŝŽŶƐŚƵŵĂŝŶĞƐƋƵΖĞůůĞƐĐŽŶƚŝĞŶŶĞŶƚ͘>ĞƐĂĐƚŝŽŶƐŚƵŵĂŝŶĞƐ͕ ƌĞƉƌĠƐĞŶƚĞŶƚƵŶĂƐƉĞĐƚŝŵƉŽƌƚĂŶƚĚĞƐĐŽŶƚĞŶƵƐŵƵůƚŝŵĠĚŝĂ͕ăĐƀƚĠĚĞƐƐŽŶƐ͕ŝŵĂŐĞƐŽƵĚĞůĂƉĂƌŽůĞ͘ >ΖŝŶƚĞƌƌŽŐĂƚŝŽŶƚĞĐŚŶŝƋƵĞƉƌŝŶĐŝƉĂůĞăůĂƋƵĞůůĞŶŽƵƐƌĠƉŽŶĚŽŶƐĞƐƚǭǭŽŵŵĞŶƚĚĠƚĞĐƚĞƌĞƚůŽĐĂůŝƐĞƌ ƉƌĠĐŝƐĠŵĞŶƚĞƚƌĂƉŝĚĞŵĞŶƚĚĂŶƐƵŶĞǀŝĚĠŽƵŶĞĂĐƚŝŽŶŚƵŵĂŝŶĞ͕ăƉĂƌƚŝƌĚĞƋƵĞůƋƵĞƐĞdžĞŵƉůĞƐĚĞĐĞƚƚĞ ŵġŵĞĂĐƚŝŽŶ͍ΖΖ͘>ĞĚĠĨŝƌĞůĞǀĠƉĂƌĐĞƚƚĞŝŶƚĞƌƌŽŐĂƚŝŽŶƐĞƚƌŽƵǀĞĚĂŶƐůĂƐĂƚŝƐĨĂĐƚŝŽŶĚĞĐĞƐĚĞƵdžĐƌŝƚğƌĞƐ͗ ƋƵĂůŝƚĠĚĞĚĠƚĞĐƚŝŽŶĞƚƌĂƉŝĚŝƚĠ͘EŽƵƐĂǀŽŶƐƚƌĂŝƚĠ͕ĚĂŶƐƵŶĞƉƌĞŵŝğƌĞƉĂƌƚŝĞ͕ůΖĂĚĂƉƚĂƚŝŽŶĚĞƐŵĞƐƵƌĞƐ ĚĞƐŝŵŝůĂƌŝƚĠĂƵdžĐŽŶƚƌĂŝŶƚĞƐĚĞƚĞŵƉƐĚĞĐĂůĐƵůĞƚŵĠŵŽŝƌĞŶĠĐĞƐƐĂŝƌĞƐƉŽƵƌĂǀŽŝƌƵŶƐLJƐƚğŵĞƌĂƉŝĚĞ ĚĞĚĠƚĞĐƚŝŽŶĚΖĂĐƚŝŽŶƐ͘EŽƵƐĂǀŽŶƐŵŽŶƚƌĠƋƵΖƵŶĞĂƉƉƌŽĐŚĞĚĞƚLJƉĞΗĂůŝŐŶĞŵĞŶƚĚĞƐĠƋƵĞŶĐĞƐΗ ĐŽƵƉůĠĞĂǀĞĐƵŶĞƐĠůĞĐƚŝŽŶĚĞǀĂƌŝĂďůĞƐƉĞƌŵĞƚĚĞƌĠƉŽŶĚƌĞƌĂƉŝĚĞŵĞŶƚăĚĞƐƌĞƋƵġƚĞƐĞƚŽďƚŝĞŶƚƵŶĞ ďŽŶŶĞƋƵĂůŝƚĠĚĞƐƌĠƐƵůƚĂƚƐ͘>ΖĂũŽƵƚĚΖƵŶĨŝůƚƌĂŐĞƉƌĠůŝŵŝŶĂŝƌĞƉĞƌŵĞƚĚΖĂŵĠůŝŽƌĞƌĞŶĐŽƌĞůĞƐ ƉĞƌĨŽƌŵĂŶĐĞƐ͘ĂŶƐƵŶĞƐĞĐŽŶĚĞƉĂƌƚŝĞĚĞůĂƚŚğƐĞŶŽƵƐĂǀŽŶƐĐƌĠĞƵŶĞŵĠƚŚŽĚĞĚΖĂĐĐĠůĠƌĂƚŝŽŶĚĞ ůΖĠƚĂŐĞĚĞĨŝůƚƌĂŐĞƉŽƵƌŽďƚĞŶŝƌƵŶĞĐŽŵƉůĞdžŝƚĠĚĞƌĞĐŚĞƌĐŚĞƐŽƵƐͲůŝŶĠĂŝƌĞĚĂŶƐůĂƚĂŝůůĞĚĞůĂďĂƐĞ͘EŽƵƐ ŶŽƵƐƐŽŵŵĞƐďĂƐĠƐƐƵƌůĞŚĂĐŚĂŐĞƐĞŶƐŝďůĞăůĂƐŝŵŝůĂƌŝƚĠĞƚƐƵƌƵŶĞŶŽƵǀĞůůĞĂƉƉƌŽĐŚĞăůΖĞdžƉůŽƌĂƚŝŽŶ ĚĂŶƐůΖĞƐƉĂĐĞĚĞŚĂĐŚĂŐĞ͕ĂĚĂƉƚĠĞăůĂффƌĞƋƵġƚĞͲƉĂƌͲĚĠƚĞĐƚĞƵƌхх͘EŽƵƐĂǀŽŶƐƚĞƐƚĠůĞƐŵĠƚŚŽĚĞƐ ƉƌŽƉŽƐĠĞƐƐƵƌƵŶĞŶŽƵǀĞůůĞďĂƐĞĂŶŶŽƚĠĞĚĞǀŝĚĠŽƐĚĞŐƌĂŶĚĞƚĂŝůůĞĚĞƐƚŝŶĠĞăůĂĚĠƚĞĐƚŝŽŶĞƚ ůŽĐĂůŝƐĂƚŝŽŶĚΖĂĐƚŝŽŶƐŚƵŵĂŝŶĞƐ͘EŽƵƐĂǀŽŶƐŵŽŶƚƌĠƋƵĞŶŽƐĂƉƉƌŽĐŚĞƐĚŽŶŶĞŶƚĚĞƐƌĠƐƵůƚĂƚƐĚĞďŽŶŶĞ ƋƵĂůŝƚĠĞƚƋƵΖĞůůĞƐƉĞƵǀĞŶƚƉĂƐƐĞƌăůΖĠĐŚĞůůĞ͘   ^ƵŵŵĂƌLJ͗ dŚŝƐƚŚĞƐŝƐƉƌŽƉŽƐĞĚŶŽǀĞůŵĞƚŚŽĚƐŽĨŝŶĚĞdžŝŶŐůĂƌŐĞĐŽůůĞĐƚŝŽŶƐŽĨǀŝĚĞŽƐ͕ƚŚƌŽƵŐŚƚŚĞŚƵŵĂŶĂĐƚŝŽŶƐ ƚŚĞLJĐŽŶƚĂŝŶ͘ĐƚŝŽŶƐƌĞƉƌĞƐĞŶƚĂŶŝŵƉŽƌƚĂŶƚĂƐƉĞĐƚŽĨŵƵůƚŝŵĞĚŝĂĐŽŶƚĞŶƚ͕ƚŽŐĞƚŚĞƌǁŝƚŚƐŽƵŶĚ͕ ŝŵĂŐĞƐĂŶĚƐƉĞĞĐŚ͘KƵƌŵĂŝŶƚĞĐŚŶŝĐĂůĐŚĂůůĞŶŐĞŝƐŚŽǁƚŽƌĂƉŝĚůLJĂŶĚƉƌĞĐŝƐĞůLJĚĞƚĞĐƚĂŶĚůŽĐĂůŝnjĞ ŚƵŵĂŶĂĐƚŝŽŶƐ͕ƐƚĂƌƚŝŶŐĨƌŽŵĂĨĞǁĞdžĂŵƉůĞƐŽĨƚŚŝƐĂĐƚŝŽŶ͘/ŶƚŚĞĨŝƌƐƚƉĂƌƚŽĨƚŚŝƐƚŚĞƐŝƐǁĞĚĞĂůǁŝƚŚ ƚŚĞƌĞƉƌĞƐĞŶƚĂƚŝŽŶŽĨĂĐƚŝŽŶƐƚŚƌŽƵŐŚƚŝŵĞƐĞƌŝĞƐĂŶĚĂĚĂƉƚŝŶŐĂĚĞƋƵĂƚĞƐŝŵŝůĂƌŝƚLJŵĞĂƐƵƌĞƐƚŽƚŚĞƚŝŵĞ ĂŶĚŵĞŵŽƌLJĐŽŶƐƚƌĂŝŶƚƐŝŵƉŽƐĞĚ͘tĞƐŚŽǁƚŚĂƚĂƐĞƋƵĞŶĐĞĂůŝŐŶŵĞŶƚĂƉƉƌŽĂĐŚ͕ĐŽƵƉůĞĚǁŝƚŚĨĞĂƚƵƌĞ ƐĞůĞĐƚŝŽŶĂůůŽǁƐƚŽƌĂƉŝĚůLJĂŶƐǁĞƌĂĐƚŝŽŶƋƵĞƌŝĞƐĂŶĚŽďƚĂŝŶƐƋƵĂůŝƚLJƌĞƐƵůƚƐ͘ĚĚŝŶŐĂƉƌĞůŝŵŝŶĂƌLJ ĨŝůƚĞƌŝŶŐƐƚĂŐĞŝŶĂĐĂƐĐĂĚĞĂĐĐĞůĞƌĂƚĞƐƐĞĂƌĐŚ͘/ŶƚŚĞƐĞĐŽŶĚƉĂƌƚŽĨƚŚŝƐƚŚĞƐŝƐǁĞĐƌĞĂƚĞĚĂĨĂƐƚĨŝůƚĞƌŝŶŐ ŵĞƚŚŽĚƚŚĂƚŽďƚĂŝŶƐƐƵďͲůŝŶĞĂƌĐŽŵƉůĞdžŝƚLJǁŝƚŚƌĞƐƉĞĐƚƚŽƚŚĞǀŝĚĞŽĚĂƚĂďĂƐĞƐŝnjĞ͘tĞƵƐĞůŽĐĂůŝƚLJ ƐĞŶƐŝƚŝǀĞŚĂƐŚŝŶŐĂŶĚĂŶŽǀĞůĂƉƉƌŽĂĐŚďĂƐĞĚŽŶĞĨĨŝĐŝĞŶƚŚĂƐŚͲƐƉĂĐĞĞdžƉůŽƌĂƚŝŽŶŝŶŬĞƌŶĞůƐƉĂĐĞ͘tĞ ƚĞƐƚĞĚŽƵƌŵĞƚŚŽĚƐŽŶĂůĂƌŐĞŶŽǀĞůǀŝĚĞŽĚĂƚĂƐĞƚƚŚĂƚŝƐĂĚĂƉƚĞĚƚŽĐƵůƚƵƌĂůĂƌĐŚŝǀĞƚLJƉĞĐŽŶƚĞŶƚ͘tĞ ƐŚŽǁĞĚƚŚĂƚŽƵƌĂƉƉƌŽĂĐŚŐŝǀĞƐŐŽŽĚƋƵĂůŝƚLJƌĞƐƵůƚƐĂŶĚŝƐƐĐĂůĂďůĞ͘  .

(163)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to