• Aucun résultat trouvé

INTERNAL FRICTION IN MANGANESE-COPPER AND MANGANESE-COPPER-ALUMINIUM ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "INTERNAL FRICTION IN MANGANESE-COPPER AND MANGANESE-COPPER-ALUMINIUM ALLOYS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00227192

https://hal.archives-ouvertes.fr/jpa-00227192

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTERNAL FRICTION IN MANGANESE-COPPER AND MANGANESE-COPPER-ALUMINIUM ALLOYS

T. Kê, L. Wang, H. Yi

To cite this version:

T. Kê, L. Wang, H. Yi. INTERNAL FRICTION IN MANGANESE-COPPER AND MANGANESE- COPPER-ALUMINIUM ALLOYS. Journal de Physique Colloques, 1987, 48 (C8), pp.C8-559-C8-565.

�10.1051/jphyscol:1987888�. �jpa-00227192�

(2)

J O U R N A L D E P H Y S I Q U E

C o l l o q u e C8, s u p p l 6 m e n t a u n012, Tome 48; d h c e m b r e 1 9 8 7

INTERNAL FRICTION IN MANGANESE-COPPER AND MANGANESE-COPPER-ALUMINIUM ALLOYS

A

T.S. K E , L.T. W A N G and H.C. YI

Institute of Solid State Physics, Academia Sinica, Hefei, China

A b s t r a c t : I n t e r n a l f r i c t i o n and e l a s t i c modulus of Mn-Cu a l l o y s containing 60 and 70 w t % Mn and of Mn-Cu-A1 a l l o y s c o n t a i n i n g about 40 w t % Cu, 1.92-3.59 w t % A 1 were measured with a c o u s t i c frequency i n t h e temperature range of -150 t o 150'C. The m a r t e n s i t i c transformation peak and t h e twin boundary r e l a x a t i o n peak which d i d n o t appear before ageing were observed above room temperature a f t e r a d e f i n i t e ageing time i n t h e temperature range under t h e s p i n o d a l curve within the m i s c i b i l i t y gap. It is shown t h a t t h e transformation peak proper i s o r i g i n a t e d from t h e s t r e s s - i n d u c e d movement of t h e i n t e r f a c e boundaries between t h e parent phase and t h e transformation product, and t h e i n t e r n a l f r i c t i o n background a t the low-temperature s i d e of t h e transformation peak which e x h i b i t s a very s t r o n g amplitude e f f e c t and shows a s t r o n g non-linear behaviour, is o r i g i n a t e d from the h y s t e r e t i c movement of t h e martensite-martensite i n t e r f a c e s .

It has a l s o been found t h a t t h e a d d i t i o n of aluminium enhances t h e s t r e n g t h but reduces t h e i n t e r n a l f r i c t i o n of t h e specimen. A choice of s u i t a b l e ageing time and temperature can give an optimum compromise of high s t r e n g t h and high i n t e r n a l f r i c t i o n .

I. I n t r o d u c t i o n

Previous experiments on t h e i n t e r n a l f r i c t i o n of Mn-Cu a l l o y s were mainly done f o r high Mn contents [I]. Two i n t e r n a l f r i c t i o n peaks were observed : a r e l a x a t i o n peak a t lower temperature and a transformation peak a t higher temperature. I n p r a c t i c e , t h e use of Mn-Cu a l l o y s a s high-damping m a t e r i a l s r e q u i r e s t h a t t h e Mn content should not be too high and i s u s u a l l y about 60 w t

%.

The c a s e o f c a s t Mn-Cu a l l o y s has been s t u d i e d i n our l a b o r a t o r y by Wen e t a l . [ 2 ] . The purpose of t h e p r e s e n t r e s e a r c h is t o study t h e damping mechanism of Mn-Cu and Mn-Cu-A1 a l l o y s of lower manganese content s u b j e c t e d t o d i f f e r e n t ageing treatments. Conditions f o r o b t a i n i n g high damping and high s t r e n g t h around room temperature a r e explored. I n t e r n a l f r i c t i o n and e l a s t i c modulus were measured with a c o u s t i c frequencies s o t h a t t h e system i s b a s i c a l l y i n an a d i a b a t i c s t a t e and the amount of transformation product remains constant during measurements.

11. P r e p a r a t i o n o f Specimens

I n g o t s o f t h e a l l o y s were supplied by Shanghai J i a o t o n g University. Sheet specimens of 80 x 4 x 2 mm were prepared by h o t r o l l i n g and spark c u t t i n g and were homogenized by annealing a t 850'C f o r 100 h and then water quenched. The compositions of t h e specimens a r e shown i n Table 1.

Table 1. Composition of t h e a l l o y specimens

Specimen No Mn Cu A 1 Others

Composition ( w t

J )

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987888

(3)

JOURNAL DE PHYSIQUE

111. Experiments w i t h Mn-Cu Alloys

1. Measurements of i n t e r n a l f r i c t i o n and e l a s t i c modulus

Acoustic measurements i n f l e x u r e v i b r a t i o n were taken with a frequency of about 340 Hz i n t h e temperature range of from -150 t o +150°C. The s t r a i n amplitude i s from 1 x t o 1 x

.

For t h e specimens i n homogenized condition, no transformation peak was observed i n t h e temperature range where t h e measurements were taken and t h e v a r i a t i o n of e l a s t i c modulus with temperature i s normal.

However, a s w i l l be reported i n SIV of t h i s paper, an ageing i n t h e temperature range under t h e spinodal curve w i t h i n t h e m i s c i b i l i t y gap w i l l s h i f t t h e phase transformation temperature M s t o higher temperatures. For specimen S1 (Mn 60/Cu 4 0 ) . 450'C i s i n t h e middle of t h i s temperature range. Therefore ageing a t 450'C i s s e l e c t e d f o r the following experiments. After S1 was aged a t 450'C f o r 30 min, an i n t e r n a l f r i c t i o n peak appeared around -18'C and an abnormal drop of t h e e l a s t i c modulus curve appeared around -10°C a s shown i n Fig. 1. ( a ) and (b) f o r the s t r a i n amplitude ranging from 1.4 t o 14 x 10-5. This i n t e r n a l f r i c t i o n peak i s e v i d e n t l y t h e m a r t e n s i t i c transformation peak. When amplitude e f f e c t is small, we may c o n s i d e r t h e temperature a t which t h e e l a s t i c modulus becomes minimum as t h e transformation temperature M s . Experiments showed t h a t t h e i n t e r n a l f r i c t i o n peak does n o t change with t h e frequency o f v i b r a t i o n and t h e r a t e of change of temperature of measurements, s o t h a t i t i s a s t a b l e peak. No amplitude e f f e c t was observed when t h e s t r a i n amplitude i s s m a l l e r than 1 x For l a r g e r amplitudes, t h e i n t e r n a l f r i c t i o n i n t h e temperature range TGds (-10'C) i n c r e a s e s approximately l i n e a r l y with t h e s t r a i n amplitude and can be expressed a s 8-'(T)=bQ-l -A, where A, i s t h e s t r a i n amplitude. The amplitude dependent c o e f f i c i e n t bQ-1 i n c r e a s e s with a decrease of temperature and approaches a s a t u r a t i o n v a l u e a t -100°C as shown i n Fig. 2 ( a ) . This s a t u r a t i o n temperature c o i n c i d e s with t h e temperature a t which t h e transformation peak drops t o i t s background value, i . e . when t h e transformation has been completed. Consequently, we conclude t h a t t h e amplitude e f f e c t begins with t h e appearance o f m a r t e n s i t e ( f c t phase) and reaches a maximum value when t h e parent phase ( f c c phase) has been transformed completely t o martensite. A s such, t h e amplitude e f f e c t e v i d e n t l y o r i g i n a t e s from a process t a k i n g p l a c e between t h e m a r t e n s i t e p l a t e s .

A s i s shown i n Fig. 1 ( b ) . t h e e l a s t i c modulus i n t h e temperature range T a s a l s o decreases approximately l i n e a r l y with t h e s t r a i n amplitude and can be expressed a s E(T) = b ,.A,. The amplitude dependent c o e f f i c e n t b, i n c r e a s e s with a decrease of temperature and approaches a s a t u r a t i o n v a l u e a t -100'C [Fig. 2 ( b ) ] . which i s s i m i l a r t o t h a t f o r b p - I .

I n o r d e r t o confirm t h e r e s u l t s shown i n Fig. 2 ( a ) and ( b ) , s i m i l a r a c o u s t i c measurements were taken with S1 (Mn 60/Cu 40) aged a t 430'C f o r 45 min.

The transformation p o i n t s h i f t s now t o M s = 25°C and t h e transformation peak appears a t Tp = -6'C. The b Q - i and b, curves behave s i m i l a r l y t o those shown i n Fig. 2 ( a ) and ( b ) , only t h e s a t u r a t i o n temperature i s somewhat higher but i s s t i l l c o i n c i d e n t with t h e temperature a t which t h e transformation peak drops t o i t s background value. This s t r e n g t h e n s t h e b e l i e f t h a t t h e amplitude e f f e c t of t h e i n t e r n a l f r i c t i o n and e l a s t i c modulus i s c l o s e l y connected with t h e product of m a r t e n s i t i c transformation.

When specimen S1 was aged a t 430'C f o r 1 h. M s s h i f t s t o 59°C [Fig.

3

( b ) ] and t h e transformation peak appears around 34'C [Fig.

3

( a ) ] . I n a d d i t i o n t o t h e transformation peak a new i n t e r n a l f r i c t i o n peak appears a t a lower temperature -16'C. Evidently t h e new peak is t h e r e l a x a t i o n peak a s s o c i a t e d with t h e twin boundaries e x i s t i n g i n t h e transformation product ( m a r t e n s i t e ) . The optimum temperature T,, f o r t h e r e l a x a t i o n peak i s seen t o be -16'C. t h i s i s the peak temperature corresponding t o a frequency of 340 Hz used f o r i n t e r n a l f r i c t i o n measurements.

It can be seen from Fig. 3 ( a ) and ( b ) t h a t i r r e s p e c t i v e of t h e appearance of t h e r e l a x a t i o n peak P

,

which i s u s u a l l y amplitude independent, t h e amplitude dependent behavior of t h e transformation peak P and t h e corresponding e l a s t i c modulus curve i s s i m i l a r t o those shown i n Fig. 1 ( a , b ) .

S i m i l a r experiments have a l s o been done f o r specimen So (Mn 7O/Cu 30). The M s and TP, a f t e r t h e specimen was aged a t 450'C f o r v a r i o u s t i m e s a r e r e s p e c t i v e l y - 1 0 8 ' ~ . -1204C(P2) f o r 15 min ageing, -12'C. -20eC(P2) f o r 30 min ageing, and 59'C, - 1 6 ' c ( ~ 34'C(P2) f o r 45 min ageing. The amplitude dependent behavior of P2 and t h e corresponding e l a s t i c modulus curve is s i m i l a r t o t h e c a s e of S1 (Mn 60/Cu 40) specimen.

(4)

Fig. 1 F i g . 2

Fig. 1. V a r i a t i o n of i n t e r n a l f r i c t i o n ( a ) and e l a s t i c modulus ( b ) with temperature of S1 (Mn 60/Cu 40) aged a t 4 5 0 " ~ f o r 30 min and t h e amplitude e f f e c t . Curves 1-6 correspond t o s t r a i n amplitude 14, 8.4, 5.6, 4.2, 2.8, and 1.4 x 10-5.

Frequency = 340 Hz measurements taken i n ascending temperatures stepwise ( T = 0 ) . F i g . 2. V a r i a t i o n of t h e amplitude dependent c o e f f i c i e n t bq-1 f o r i n t e r n a l f r i c t i o n ( a ) and b, f o r e l a s t i c modulus ( b ) with temperature. The arrows i n t h e f i g u r e s i n d i c a t e t h e temperature a t which t h e i n t e n s i t y of amplitude e f f e c t reaches i t s s a t u r a t i o n value.

2. Non-linear d i s t o r t i o n of t h e resonance curve i n f l e x u r e v i b r a t i o n Simultaneously with t h e occurrence of amplitude dependent e f f e c t i n i n t e r n a l f r i c t i o n and e l a s t i c modulus, t h e frequency response curve ( t h e resonance curve) i n f l e x u r e v i b r a t i o n e x h i b i t s an unsymmetrical d i s t o r t i o n a s shown i n Fig. 4. For S1 (Mn 60/Cu 40) aged a t 450'C f o r 30 min. M s = -10'C. the unsymmetrical d i s t o r t i o n o f t h e resonance curve (with frequency of v i b r a t i o n about I kHz) s t a r t s a t temperatures TGls. The t o p of t h e peak l e a n s toward t h e lower frequency s i d e and t h i s behavior i s enhanced with t h e lowering of the temperature of measurement. The v i b r a t i o n becomes u n s t a b l e a t -50, -70 and -89'C a s shown i n F i e .

-

4.

3.

On t h e mechanism of t h e transformation peak proper and t h e low temperature i n t e r n a l f r i c t i o n background

A glance on t h e i n t e r n a l f r i c t i o n curves shown i n F i a . 1 ( a ) r e v e a l s t h a t

-

. .

t h e transformation peak can be resolved i n t o two components : t h e transformation peak proper and t h e low-temperature background. The l a t t e r e x h i b i t s a s t r o n g amplitude e f f e c t and g i v e s rise t o an apparent s h i f t of t h e top of t h e peak toward lower temperatures with an i n c r e a s e of s t r a i n amplitude. I n t h e e a r l y s t a g e of the m a r t e n s i t i c transformation, t h e amount of t h e i n t e r f a c e between t h e p a r e n t phase P ( f c c ) and t h e m a r t e n s i t e M(fct) i n c r e a s e s when t h e temperature i s lowered, s o t h a t t h e i n t e r n a l f r i c t i o n i n c r e a s e s with a lowering of temperature. However, a s the transformation proceeds f u r t h e r , t h e i n c r e a s e of t h e amount of m a r t e n s i t e and the mutual c o n t a c t between t h e m a r t e n s i t e p l a t e s w i l l reduce t h e amount and the mobility of t h e P-M i n t e r f a c e . Consequently t h e i n t e r n a l f r i c t i o n w i l l decrease

(5)

C8-562 JOURNAL

DE

PHYSIQUE

with a f u r t h e r lowering of temperature, g i v i n g r i s e t o an i n t e r n a l f r i c t i o n peak ( t h e transformation peak). A t t h e same time, t h e mutual c o n t a c t of t h e martensite p l a t e s i n c r e a s e s t h e amount of t h e m a r t e n s i t e - m a r t e n s i t e (M-M) i n t e r f a c e . The h y s t e r e t i c movement of t h e M-M i n t e r f a c e s g i v e s rise t o t h e low temperature i n t e r n a l f r i c t i o n background which i s s t r o n g l y amplitude dependent. The amplitude e f f e c t becomes s t r o n g e r with an i n c r e a s e of t h e q u a n t i t y of M-M i n t e r f a c e s .

The s o f t e n i n g of t h e e l a s t i c modulus and non-linear behavior of resonance curve i n f l e x u r e v i b r a t i o n corresponding t o t h e low temperature i n t e r n a l f r i c t i o n background may be a t t r i b u t e d t o t h e non-linear e l a s t i c s t r a i n caused by t h e s t r e s s - a s s i s t e d h y s t e r e t i c movement.

F i g . 3 Fig. 4

Fig. 3. V a r i a t i o n of i n t e r n a l f r i c t i o n ( a ) and e l a s t i c modulus ( b ) with temperature of S1 (Mn 60/Cu 40) aged a t 450'C f o r 1 h and t h e amplitude e f f e c t . Curves 1-4 correspond t o s t r a i n amplitude 8.4, 5.6, 2.8, and 1.4 x 10-5. Frequency = 340 Hz, T = 0.

Fig. 4. The unsymmetrical d i s t o r t i o n of t h e resonance curve a t various temperatures f o r specimen S1 (Mn 60/Cu 40) aged a t 450'C f o r 30 min. Frequency : 1 kHz. = 14 X

I V . Experiments w i t h W-Cu-A1 Alloys

1. V a r i a t i o n o f i n t e r n a l f r i c t i o n and e l a s t i c modulus by ageing a t various temperatures

(1) Ageing a t 4 5 0 ' ~ .

According t o t h e phase-diagram of Mn-Cu a l l o y s shown i n Fig. 5 [3], t h e metastable Y-phase formed by quenching t h e high temperature Y-phase t o room temperature has t h e tendency of transforming t o t h e s t a b l e a + Y a t room temperature, and t h i s process can be sped up by ageing i n t h e temperature range under t h e spinodal curve w i t h i n t h e m i s c i b i l i t y gap. For Mn 7O/Cu 30 a l l o y , B u t l e r e t a l . 141 showed t h a t t h i s temperature range i s around 400-500'C. Vitek e t a l . found t h a t t h e hardness i n c r e a s e s by ageing a t 450°C. The purpose of t h e following r e s e a r c h i s t o study t h e changes i n i n t e r n a l f r i c t i o n and some mechanical p r o p e r t i e s of homogenized low manganese c o n t e n t Mn-Cu-A1 a l l o y s aged a t d i f f e r e n t temperatures f o r v a r i o u s times t o f i n d o u t an optimum compromise of high s t r e n g t h and high i n t e r n a l f r i c t i o n and t o understand t h e micro-mechanism underlying t h e s e changes.

(6)

Specimen S2 (Mn 59.35/Cu 38.73/Al 1.92) was aged a t 450°C f o r 0.5, 1, 2 , 4, and 9 h, and water quenched t o room temperature. and t h e i n t e r n a l f r i c t i o n and e l a s t i c modulus were measured with f = I H z , A

,

= 5.2 x with ascending temperatures (T = l0C/min). Two i n t e r n a l f r i c t i o n peaks appear a s shown i n Fig. 6.

The portion of t h e lower temperature peak around 15°C i s independent of the ageing time and i s e v i d e n t l y t h e r e l a x a t i o n peak connected with twin boundaries. The p o s i t i o n of t h e higher temperature peak, t h e transformation peak, s h i f t s t o higher temperature with an i n c r e a s e of ageing time although t h e s h i f t i s not evident when t h e ageing time i s l a r g e r than 4 h . It can be seen from the e l a s t i c modulus curves 1-5 t h a t t h e M s p o i n t ( c h a r a c t e r i z e d by the lowest p o i n t on t h e molulus curve) s h i f t s t o high temperatures with an i n c r e a s e of ageing time. The height of the transformation peak reaches its maximum value f o r an ageing of 1 h but drops r a p i d l y a f t e r an ageing of 4 h.

F i g . 5 F i g . 6

Fig.

5.

Phase diagram of Mn-Cu a l l o y and t h e a s s o c i a t e d m i s c i b i l i t y gapC31.

F i g . 6. I n t e r n a l f r i c t i o n and e l a s t i c modulus of specimen S2 (Mn 59.35/

Cu 38.73/Al 1.92) aged a t 450°C f o r various times. Curves 1-5 correspond t o ageing time o f 0.5, 1, 2 ,

4,

and 9 h. f = 1 kHz, A, = 5.2 x T = leC/min with ascending temperatures.

Experiments with specimen S3 (Mn 58.16/Cu 39.13/Al 2.71) and S4 (Mn 56.161 Cu 40.25/A1 3.59) g i v e s i m i l a r r e s u l t s a s t h e s e of S2. only t h e h i g h t of the corresponding transformation peaks i s much lower than those of S2, i n d i c a t i n g t h a t a higher aluminium content has t h e e f f e c t of reducing t h e i n t e r n a l f r i c t i o n . The r e s u l t s f o r specimen 54 a r e shown i n Fig. 7. Comparing t h e r e s u l t s f o r S2 and S4, i t i s seen t h a t doubling t h e aluminium content reduced t h e h e i g h t of t h e i n t e r n a l f r i c t i o n peak almost t o one h a l f .

(7)

JOURNAL

DE

PHYSIQUE

Fig. 7. I n t e r n a l f r i c t i o n and e l a s t i c modulus of specimen S4 (Mn 56.16/

Cu 4 0 . 2 5 / ~ 1 3.59) aged a t 450'C f o r various times. Curves 1-5 correspond t o ageing time of 0.5, 1, 2 , 4, and 9 h. f = 1 kHz, A, =

5.2

x T = l'C/min with ascending temperatures.

( 2 ) Ageing a t 400" and 500'C.

Ageing experiments a t 400" and 500°C ( r e s p e c t i v e l y a t t h e lower bound and t h e upper bound of t h e m i s c i b i l i t y gap) show a s i m i l a r tendency of t h e change i n i n t e r n a l f r i c t i o n and e l a s t i c modulus. However, t h e r a t e of t h e s h i f t of Ms with ageing time i s q u i t e d i f f e r e n t when aged a t d i f f e r e n t temperatures. And the ageing time a t which t h e transformation peak reaches its maximum value is d i f f e r e n t f o r d i f f e r e n t ageing temperatures. The ageing times required a r e 4. 1 and 0.5 h r e s p e c t i v e l y f o r ageing a t 400". 450' and 500°C.

It can be concluded thus t h a t a s i m i l a r change has taken place i n the specimens aged i n 400"-500°C. This change i s t h e spinodal decompostion, only t h a t t h e r a t e of decomposition is d i f f e r e n t f o r d i f f e r e n t ageing temperatures.

( 3 ) Ageing a t 300" and 60oeC.

The temperatures 300' and 600'C l i e both o u t s i d e t h e m i s c i b i l i t y gap f o r t h e Mn content of specimens S1. S2. S3 and S4. Ageing experiments have been done f o r specimen S4 aged a t 300' and 600'C f o r 0.5 and 2 h. t h e i n t e r n a l f r i c t i o n was found t o be very low and no i n t e r n a l f r i c t i o n peak appears i n the temperature range of -150' t o 150QC. The e l a s t i c modulus curve i s normal and no phase transformation occurs a t a l l . This shows d e f i n i t e l y t h a t t h e phase transformation and t h e high i n t e r n a l f r i c t i o n observed i n ageing experiments f o r 400"-500°C a r e a l l o r i g i n a t e d from spinodal decomposition. -

2. Results bf mechanical t e s t i n

I n Fig. 8 a r e shown t h e Rock:ell hardness ( H R B ) ( a ) , o,,

,

( b ) .

q

( c ) , and 6 ( d ) f o r specimen S1 (Mn 6O/Cu 4 0 ) , S2 (Mn 59.35/Cu 3 8 . 7 3 / ~ 1 1.92). S3 (Mn 58.16/

CU 39.13/A1 2.71). S4 (Mn 56.16/Cu 4 0 . 2 5 / ~ 1 ~. 3.59) aged a t 450°C f o r d i f f e r e n t times. It can be seen t h a t the H,,

,

ao,, and ab a l l i n c r e a s e with ageing time and t h e r a t e of i n c r e a s e becomes lower a f t e r an ageing f o r 4 h. I t can a l s o be seen t h a t S4, which has t h e l a r g e s t aluminium content, e x h i b i t s a l a r g e r i n c r e a s e i n hardness and s t r e n g t h .

(8)

Fig. 8. Variation of % , ( a ) , u o . * ( b ) , u b ( c ) and 6 ( d ) of various specimens aged a t 450'C f o r various times. Curves 1.2.3.4, correspond t o Sl,S2,S3 and S4.

The elongation 6 of t h e specimen drops with an increase of ageing time. The r a t e of drop is a l s o slowed down a f t e r an ageing of 4 h. Furthermore, the presence of aluminium has the e f f e c t of reducing t h e elongation 6 of the specimen.

V. Concluding Remarks

Although the Mn content i n the homogenized specimens used i n the present experiment i s only about 60 w t f , but because of micro-inhomogeneity produced by spinodal decomposition during ageing the localized content of Mn can be much higher than 60 w t %, s o t h a t martensitic transformation f c d c t can take place similar t o t h e case of specimens with high Mn content.

Figs. 6 and 7 show t h a t f o r the specimens aged i n the spinodal curve within the m i s c i b i l i t y gap (see Fig.

5).

the i n t e r n a l f r i c t i o n f i r s t increases and reaches its maximum value f o r a c e r t a i n ageing t i m e and then decreases when aged f o r a longer time. The increase i s due t o the increase of the amount of martensite phase due t o spinodal decompobition. and we believe t h a t the decrease is due t o the occurrence of t h e s t a b l e a-Eln phase. A t higher ageing temperatures, the formation of Mn-rich regions i s f a s t e r s o t h a t the i n t e r n a l f r i c t i o n reaches its maximum value a t a s h o r t e r ageing time. However, the occurrence of or-Mn i s a l s o f a s t e r , so t h a t t h e i n t e r n a l f r i c t i o n starts t o decrease a t a s h o r t e r ageing time. The magnitude of t h e i n t e r n a l f r i c t i o n is thus determined by the competition between t h e amount of the transformation product ( f c t martensite) and the amount of the s t a b l e u-Mn.

The increase of the hardness and strength of the specimen is evidently due t o the l a t t i c e d i s t o r t i o n produced by t h e f c t transformation product and the cause of b r i t t l e n e s s is due t o the occurrence of the or-Mn.

An optimum compromise of high i n t e r n a l f r i c t i o n and high strength can be obtained by ageing the specimens a t 450°C f o r 2-3 h.

References [I] K. Sugimoto, T. Mori, and S. Shiode, Met. Soc. J., 1, 103, (1973)

-

[2] Y.T. Wen. C.Y. Xie, and H. Chen. J. de Physique, 46, C10-413. (1985)

.

[3]

J . M . Vitek and H. Warlimont. Met. Sci.. No. 1.7, (1976).

[4] E.P. Butler and P.M. Kelly. Trans. Met. Soc., AIME 242, 2099. (1968)

Références

Documents relatifs

Alors que des épidémies de maladies vectorielles surviennent partout à la surface du globe (Zika en Amérique du Sud et dans les Antilles, de la fièvre jaune en Angola, et de la

Abbreviations used: DMEM, Dulbecco’s modified Eagle’s medium; ERK, extracellular-signal-regulated kinase; GFP, green fluorescent protein; GST, glutathione S-transferase;

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

When a monotone Markov chain (finite or infinite) admits a domi- nating chain whose stationary distribution can be sampled easily, then one can first sample the dominating chain,