• Aucun résultat trouvé

ELECTRONIC BEHAVIOR OF LIQUID SEMICONDUCTING ALLOYS My (Se.5Te.5)1-y WITH MONOVALENT DOPING ELEMENTS

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRONIC BEHAVIOR OF LIQUID SEMICONDUCTING ALLOYS My (Se.5Te.5)1-y WITH MONOVALENT DOPING ELEMENTS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220861

https://hal.archives-ouvertes.fr/jpa-00220861

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRONIC BEHAVIOR OF LIQUID

SEMICONDUCTING ALLOYS My (Se.5Te.5)1-y WITH MONOVALENT DOPING ELEMENTS

H. Radscheit, R. Fischer, M. Cutler

To cite this version:

H. Radscheit, R. Fischer, M. Cutler. ELECTRONIC BEHAVIOR OF LIQUID SEMICONDUCTING

ALLOYS My (Se.5Te.5)1-y WITH MONOVALENT DOPING ELEMENTS. Journal de Physique

Colloques, 1981, 42 (C4), pp.C5-1051-C5-1054. �10.1051/jphyscol:19814230�. �jpa-00220861�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C4, suppZ6ment au nOIO, Tome 4 2 , octobre 1981 page C4-1051

ELECTRONIC BEHAVIOR OF L I Q U I D SEPIICONDUCTING ALLOYS M ~ ( s ~ . 5 ~ e - 5 ) l-y WITH MONOVALENT DOPING ELEMENTS

H. Radscheit

* ,

R. F i s c h e r and M. C u t l e r

Physics Departmdnt, Oregon S t a t e U n i v e r s i t y , CorvaZZis, OR 97331, U.S.A.

A b s t r a c t . - Results o f measurements o f t h e magnetic s u s c e p t i b i l i t y , e l e c t r i c a l con- d u c t i v i t y and thermopower a r e i n t e r p r e t e d w i t h t h e h e l p o f bond e q u i l i b r i u m theory.

It i s found t h a t an a t t r a c t i v e i n t e r a c t i o n enhances f o r m a t i o n o f diatomic molecules c o n t a i n i n g o n e f o l d bond d e f e c t atoms a t t a c h e d t o \l atoms. Transport occurs i n an acceptor band a t y 0.02, and t h e temperature dependence o f t h e c o n d u c t i v i t y o f t h i s band i n d i c a t e s t h a t a l a r g e f r a c t i o n o f t h e i o n p a i r s a r e i n b i n a r y c l u s t e r s .

I n t r o d u c t i o n . - I n a study o f t h e e f f e c t o f doping l i q u i d Se-5Tea5 w i t h monovalent elements, measurements have been made o f t h e magnetic s u s c e p t i b i l i t y X, t h e e l e c t r i - c a l c o n d u c t i v i t y o and t h e thermopower S i n a l l o y s M (Se 5Te.5)1-y w i t h M = Cu, T1,

Y .

Ag, o r Na and 0 < y

2

0.10.

X

was measured up t o T = 900°C. The paramagnetic con- t r i b u t i o n

xn

was determined as described i n e a r l i e r papers ( 1 ) . Except a t h i g h T where t h e l r q u i d i s m e t a l l i c , X f o l l o w s a C u r i e l a w f o r s p i n centers whose d e n s i t y ds obeys t h e Arrhenius law (2). d, vs y i s p l o t t e d i n Fig. 1 a t several tempera- t u r e s f o r T1 a l l o y s . I n t h e S and-o measurements as w e l l as these, r e s u l t s f o r Na, Cu and Ag were s i m i l a r t o T1, w i t h almost q u a n t i t a t i v e agreement between Ag and T1.

a and S were measured simultaneously up t o 500°C f o r Ag, T1, and Na, and up t o 650°C f o r Cu. The behavior o f t h e undoped l i q u i d has been analyzed i n terms o f t r a n s p o r t a t t h e m o b i l i t y edge o f t h e valence band (3). According t o t h i s model

,

t h e c o n d u c t i v i t y oc a t t h e energy Ec a t which t r a n s p o r t occurs and t h e d i s t a n c e o f t h e Fermi energy EF from Ec can be determined f r o m the experimental values o f o and S by

oc = U exp[Se/k)

-

a]

,

(1 )

EF

-

Ec = T ( s ~ - a k ) (2)

a = 1 i n t h e m o b i l i t y - e d g e model. T h i s i s a s p e c i a l case f o r a type o f a n a l y s i s ( 4 ) which has general v a l i d i t y f o r s i n g l e band t r a n s p o r t i n t h e Maxwell Boltzmann l i m i t . The behavior o f oc and EF

-

E, as a f u n c t i o n o f y and T f o r t h e T l a l l o y s i s shown i n Figs. 2 and 3. The decrease i n oc a t low T when y i s increased t o .02 can o n l y be e x p l a i n e d by t r a n s p o r t i n new s t a t e s between EF and t h e valence band.

We b e l i e v e these s t a t e s a r e i n an acceptor band. For y $ 0 . 2 , t h e p l o t s o f I n oc vs T-l a r e p a r a l l e l and s h i f t upward w i t h y. T h i s i n d i c a t e s t h a t t r a n s p o r t i s i n - t i r e l y i n t h e acceptor band f o r y

>

.OZ.

I m p l i c a t i o n s o f Bond E q u i l i b r i u m Theory (BET).- The BET equations developed f o r Se- Te a l l o y s ( 5 ) can be r e a d i l y extended t o t h e present problem. There a r e t h r e e types o f bond d e f e c t s : o n e f o l d (1 F) n e u t r a l D* atoms, I F n e g a t i v e D- ions, and t h r e e - f o l d (3F) p o s i t i v e D+ ions. The D* centers a r e paramagnetic and t h e i o n s a r e d i a - magnetic. The c o n c e n t r a t i o n s (normalized t o t h e c o n c e n t r a t i o n s o f atoms) a r e

d* = pt e x p ( - ~ g * ) > (3)

"permanent address : U n i v e r s i t a t Heidelberg, 6900 Heidelberg, F.R.G.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19814230

(3)

C4-1052 JOURNAL DE PHYSIQUE

F i g u r e 1 Dependence o f s p i n d e n s i t y o f F i g u r e 2 Dependence o f l o g o on T-l T1 -doped a1 l oys on composition f o r T1 -doped a1 l oys!

a t v a r i o u s temperatures.

T ( O K )

Figure 3 Dependence o f EF

-

EC on T f o r T1-doped a1 l o y s .

U

1.3 1.4 1.5 1 0 0 0 / T (K-')

F i g u r e 4 D e n s i t i e s o f c o n s t i t u e n t s i n 3.95% Ag a l l o y s c a l c u l a t e d from Eqs. 10 and 11, assuming t h a t t h e value o f R c o r r e - sponds t o a narrow acceptor band. The v e r t i c a l l e n g t h s o f t h e p o i n t s correspond t o t h e range o f c a l c u l a t e d values.

(4)

B =

l/kT, and g*, g- and

g

+ are f r e e energies of formation from the normal 2F atom.

(More accurate expressions which take i n t o account the presence of two kinds of chalcogen atoms with d i f f e r e n t bond energies would include another f a c t o r which has some dependence on T

(6).)

The polymer f a c t o r s pl and p3 depend strongly on the branch r a t i o

X =

2c3/(cl-c3),where cl and c3 a r e the t o t a l concentrations of 1F and 3F c o n s t i t u e n t s , respectively. When

A >>

1 , plaX and

p j a

1/X.

In the doped a l l o y t h e f u l l y bonded M1 atoms have a concentration ml which i s related t o the fugacity

XM

of t h e dopant by

ml = p X 1 M

( 6 )

A s t r i k i n g aspect of the magnetic s u s c e p t i b i l i t y r e s u l t s i s the large increase in ds with y shown i n Fig. 1 . I f

ds =

d*, Eq. 3 implies t h a t pl increases with y.

B u t a simple view would predict t h a t

X

and hence pl would decrease with y , since cl (=d-+d*+m 1

)

increases because of the increase in ml . This leads t o consideration of the p o s s i b i l i t y t h a t d* increases because of a decrease in

g*.

I f

q*

decreases because of proximity t o an M atom, there should be an enhanced concentration of diatomic molecules MD*. There seems t o be a good reason f o r ex- pecting the energy of formation of MD* t o be smaller than f o r a normal D* center.

The l a t t e r i s known t o contain a positive term due t o overlap between the occupied dangling bond o r b i t a l and a p a r a l l e l lone-pair o r b i t a l on the neighboring chalcogen atom ( 7 ) . Since the

M

atom has no non-bonding valence p e l e c t r o n , t h i s term i s missing, and the energy of formation of the D* center should be lower. Enhancement of the entropy of formation as the r e s u l t of hindered rotation of the small MD*

m01 ecul e s may a1 so reduce g* appreciably.

The same f a c t o r s would reduce the f r e e energy of formation of MD- molecules.

The reduction in energy may be even greater because two electrons a r e involved.

Thus we consider the presence of two more constituents designated Df and D i with

concentrations.

d i

=

XM exp(-$gi)

( 7 )

d i

= XM

e x p C - ~ ( g i - EF)I ,

(8)

where g i

<

g* and g i

<

g-.

I t i s possible t o derive information about the concentrations of the c o n s t i t - upnts without know'n the f r e e energy parameters. The only 3F constituents a r e

D

. so t h a t c3

=

d'.' Therefore the equation f o r

A

can

be

written

~(d*+d-+ml

) =

(2+X) d +

(9)

In addition, d'

=

d-+di and di+di+ml

=

y. If d* i s replaced by ds-df one can derive from these equations:

ml

=

(y-ds)/2

+

(d-+di)/X (10)

d- =

t(y+dS) - (d-/A)

M

l+R

+

(l/ X)

I

(11 1

where

R =

d i / d i .

Eq. 2 provides an upper l i m i t t o the value of

R

since EF - E,

=

kT ln(1/2R) i f

the acceptor band i s narrow, and

EF

- Ec i s l a r g e r otherwise. Two values f o r each

of the parameters d i , ml , d i , and d* can be calculated from experimental data using

Eqs. 10 and 11, together with the narrow-band value of R. One i s with

X = m

and

(5)

C 4 - 1054 JOURNAL DE PHYSIQUE

another uses a value f o r X (which turns out t o be >> 1 ) estimated from the corre- sponding value of d*(y) in comparison with d*(O). The two values a r e generally close toqether. The r e s u l t s f o r 3.95% Ag shown in Fig. 4 a r e typical. Positively charged 1F attached ring molecules, which play a r o l e i n undoped Se-Te alloys (6) a r e neglected here because t h e i r concentrations a r e small compared t o

m l .

The curves in Fig. 2 show t h a t 5, increases with T with an activation energy

E, -

0.4 eV, while the calculations from Eq. 11 indicate t h a t t h e number of s t a t e s

i n

the acceptor band i s nearly constant % y/2. The explanation seems t o be t h a t a l a r g e f r a c t i o n of the

D i

ions a r e in binary c l u s t e r s with D+ ions, so t h a t the cor- responding acceptor s t a t e s have an energy reduced below

Ec

by roughly the dissocia- t i o n energy Ed. Binary c l u s t e r s have been discussed in r e l a t i o n t o the behavior of amorphous chalcogenide a l l o y s by Kastner, Adler and Fritzche, who r e f e r t o them a s intimate valence a l t e r n a t i o n pairs ( 8 ) . Clustering causes a d i s t r i b u t i o n of ac- ceptor s t a t e s whose width corresponds t o the value of Ed f o r ions in contact.

Dissociation with increasing T r e d i s t r i b u t e s the s t a t e s . Assuming a d i f f u s i v e model f o r transport a t E,, oc

is

proportional t o t h e square of t h e density of f r e e

D i

ions, so t h a t Ea

=

2Ed. Preliminary investigation of theoretical models f o r ion c l u s t e r i n g indicates t h a t

Ed =

0.2 eV corresponds t o a reasonable value f o r the d i s - tance of c l o s e s t approach. As a r e s u l t of t h e width of the acceptor band, the c a l - culated values of d i such a s those shown in Fig. 4 a r e too l a r g e by a f a c t o r > 3, and the values of d* a r e correspondingly l a r g e r .

Discussion.- The BET analysis has led t o the surprising conclusion t h a t the spin centers a r e mostly D* r a t h e r than

D i

centers. The increase in ds with y in Fig. 1 i s largely due t o t h e f a c t o r pl in Eq. 3, and i s caused by a novel mechanism. The f r e e energy of formation of D;

-

D

+

ion p a i r s i s so low t h a t a large f r a c t i o n of the M atoms form D# ions and a correspondingly l a r g e density of D counterions. The

+

l a t t e r a r e 3F, so t h a t X and pl a r e increased t o the point where

ml

i s nearly a s l a r g e a s d i , and these two account f o r most of y.

The present study has provided f u r t h e r and more d i r e c t evidence of t h e impor- tance of the polymer f a c t o r s in BET. Another i n t e r e s t i n g r e s u l t i s the concept of an a t t r a c t i v e i n t e r a c t i o n between chalcogen 1F bond defects and covalently bonded elements which lack lone p a i r electrons. Since t h i s would apply t o elements of groups I through V ,

i t

should be s i g n i f i c a n t in a large number of chalcogenide alloys.

We thank H. Rasolondramanitra f o r technical assistance. This work has been supported by t h e National Science Foundation with grants DMR-77-19035 and DMR 80- 23682.

References

(1) GARDNER J.A., CUTLER M., Phys. Rev.

B E

(1979) 529.

( 2 ) RADSCHEIT

H.,

proceedings of t h i s conference.

( 3 ) C TLER M . , FISCHER

R . ,

J. Non-Crystal l i n e Solids 35-36 (1 980) 1289.

( 4 )

D 1 HLER

G . H . , Phs. Rev.

B E

(1979) 2083.

( 5 )

CUTLER M . ,

Phys. Rev. 8% (1979) 2981.

(6) CUTLER M., BEZ W.G., Phys. Rev., t o be published.

(7)

VAMDERBILT D . , JOANNOPOULOS J.D., Phys. Rev.

B E

(1980) 2927.

(8) KASTFIER M.,

ADLER D . ,

FRITZSCHE

H. ,

Phys. Rev. Letters

37

(1 976) 1504.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to